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Abstract: Point cloud classification is quite challenging due to the influence of noise, occlusion,
and the variety of types and sizes of objects. Currently, most methods mainly focus on subjectively
designing and extracting features. However, the features rely on prior knowledge, and it is also
difficult to accurately characterize the complex objects of point clouds. In this paper, we propose a
concise multi-scale convolutional network (MSNet) for adaptive and robust point cloud classification.
Both the local feature and global context are incorporated for this purpose. First, around each point,
the spatial contexts of different sizes are partitioned as voxels of different scales. A voxel-based MSNet
is then simultaneously applied at multiple scales to adaptively learn the discriminative local features.
The class probability of a point cloud is predicted by fusing the features together across multiple
scales. Finally, the predicted class probabilities of MSNet are optimized globally using the conditional
random field (CRF) with a spatial consistency constraint. The proposed method was tested with
data sets of mobile laser scanning (MLS), terrestrial laser scanning (TLS), and airborne laser scanning
(ALS) point clouds. The experimental results show that the proposed method was able to achieve
appreciable classification accuracies of 83.18%, 98.24%, and 97.02% on the MLS, TLS, and ALS data
sets, respectively. The results also demonstrate that the proposed network has a strong generalization
capability for classifying different kinds of point clouds under complex urban environments.

Keywords: point cloud; multi-scale convolutional network (MSNet); conditional random field
(CRF); classification

1. Introduction

Point clouds are widely available now due to the progressive development of various laser
sensors and dense image matching techniques. The efficient classification of point clouds is one of
the fundamental problems in scene understanding for three-dimensional (3D) digital cities, intelligent
robots, and unmanned vehicles. However, classifying point clouds under complex urban environments
is not a trivial task, since they are usually noisy, sparse, and unorganized [1]. The density of point
clouds varies with the sampling intervals and ranges of laser scanners. Moreover, severe occlusions
between objects during scanning can lead to incomplete coverage of object surfaces. These problems
present challenges for point cloud classification.

Point cloud classification can be accomplished via various approaches, such as region growing,
energy minimization, and machine learning. A review of these approaches can be found in Nguyen
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and Le [1]. Region growing is a segmentation method that partitions point clouds into disjoint
homogenous regions. Based on the catastrophe and non-continuous points of curvatures, the seed
regions are grown with a geometrical and topological continuity of the points. However, the process
is sensitive to noise in the point cloud. One of the solutions to this problem is to grow the regions
according to the local geometrical characteristics [2] so that the noise can be largely suppressed.
Another way to solve this problem is to jointly use the edge and local region characters [3] to reduce
the computational complexity and improve the classification accuracy. However, the region growing
approach is susceptible to the initial seeds [4]; inaccurate seeds may lead to under or over-segmentation,
and the growing process is difficult to stop when the transitions between two regions are smooth [5].

The energy minimization approach is a global solution framework that formulates the
classification as an optimization problem [6]. The process starts by considering the point cloud as a
graph. Each vertex corresponds to a point in the data, and the edges connect neighboring points [7,8].
By turning the segmentation into a min-cut/max-flow problem, the point cloud is segmented with
graph cuts [9–11]. In addition, many studies on the graph approach also cast it into a probabilistic
inference model, such as the conditional random field (CRF) [12,13], which regards the classification
as a multi-labeling optimization problem. By constraining the fidelity of the data, the continuity of
feature values, and the compactness of the segment boundaries [6], the energy function is minimized
to ensure that the statistic characteristic difference is the minimum in the same class and the maximum
between different classes [9,10]. To efficiently combine other constraints, the weights in the graph also
can be computed as a combination of Euclidean distances, pixel intensity differences, and the angles
between the surface normals, among others [14]. This global optimization approach is insensitive to
noise, but its segmented results are usually piecemeal.

Machine learning aims to train an efficient classifier from enormous numbers of samples. To this
end, a proper feature descriptor is important for the classification model. Generally, the currently
available feature descriptors can be divided into three categories: (1) global, (2) local, and (3) regional [15].
Global descriptors describe the holistic statistical characteristics of a class of objects, and are useful in
object retrieval and recognition. However, they are sensitive to incomplete object extraction, which is a
common problem in point cloud processing. Local descriptors represent the local properties of objects,
such as the surface normals, surface curvatures, and eigenvalues of the covariance matrix; however,
they are sensitive to noise. Regional descriptors further introduce some neighboring region information,
including texture [16], geometrical structure [17], topology [18], and contexture [19]. In addition, as objects
often present different properties at different spatial scales, the multi-scale or multi-resolution spatial
feature descriptors [20–22] can describe the objects across different scales. After the feature descriptors are
extracted, the point cloud is classified with a machine learning classifier. The commonly used machine
learning methods include support vector machine (SVM) [23,24], cascaded AdaBoost [25], and random
forest [26,27]. However, the accuracy of these classifiers is similar and sensitive to the selection of
the feature descriptors [25]. A good feature descriptor should be discriminative enough to adapt to
complex situations. Nonetheless, the procedure of the aforementioned feature extraction techniques is
“knowledge-driven”, and highly relies on the human operator’s a priori knowledge, which can be an
overwhelming task with complex urban environments.

Over the last several years, deep learning has led to substantial gains in many areas, owing to
its powerful feature learning ability. It simulates the cognitive processes of the human brain to learn
the discriminative features from enormous amounts of data. As one of the deep learning networks,
the convolutional neural network (CNN) uses convolution kernels to simulate the receptive fields of the
vision system. CNN has become one of the most efficient methods for image classification, document
analysis, voice detection, and video analysis [28,29], among others. For 3D object recognition [30,31],
which aims to assign a reasonable label to a cluster of points, CNN has achieved promising results for
discriminative feature extraction and representation [32,33].

As for 3D point cloud classification, each point is labeled separately. Some researchers [34] project
the point cloud to a plane so that the standard two-dimensional (2D) CNN can be applied. Nevertheless,
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due to the occlusion among objects, directly projecting the point cloud to imagery inevitably loses the
depth and 3D spatial structure information. Another way to apply CNN to a point cloud is by voxelizing
the entire unorganized 3D scene into a 3D array of point clouds. This would allow using some classical
image semantic labeling networks such as FCN [35], SegNet [36], Deeplab [37], and DeconvNet [38] for
point cloud classification by extending 2D convolution kernels into 3D ones. However, a point cloud is not
actually the “3D data” of whole solid objects; rather, it is a recording of the objects’ surfaces, which actually
is a manifold that is embedded in the 3D space. Except for the objects’ surfaces, the 3D space is filled with
enormous null data. Simply voxelizing the entire 3D point cloud into a regular 3D array can lead to huge
unnecessary computation. Therefore, an efficient network constructed directly on the point or voxel has
increasingly become a topic of interest among research studies [39–41].

One of our arguments is that objects of various sizes exist in a point cloud. For objects that are
small in size, a fine scale within a small neighboring region is enough, while large objects require a
coarse scale containing a large region. To adapt to the varying sizes of objects, multi-scale voxelization
is proposed in this paper to “observe” the small neighbors finitely and the large neighbors roughly.
Instead of dividing the whole space into voxels with a fixed size, multi-scale voxelization divides
a point cloud into voxels at multiple scales, thereby allowing the multi-scale features of objects of
various sizes to be extracted based on those voxels. Also, the spatial context information at different
scales is integrated during multi-scale feature extraction.

Based on multi-scale voxelization, we further propose a multi-scale convolutional network
(MSNet), with the aim of efficient feature learning and class prediction. In our proposed method,
only the position information (x, y, and z coordinates) of a point cloud was considered, as the intensity
or RGB information is not always available. Among the neighboring voxels around a point, MSNet is
proposed for the discriminative feature learning of its local context. The multi-scale features of
different spatial resolutions are learned with convolutional networks and fused across different scales.
Meanwhile, as a result of multi-scale voxelization, the spatial context with different sizes is captured
at different scales by the 3D convolution kernels of MSNet. With this strategy, the conventional
pooling operation is not necessary in MSNet to robustly capture the multi-scale features, so the
structure of MSNet becomes concise to implement. However, the classification of point clouds with
MSNet is voxel-level, and inevitably influenced by noise. As such, a CRF that fully considers the
spatial consistency of a point cloud is applied to achieve a global optimization of the predicted class
probabilities. Therefore, our method incorporates both local and global constraints for a highly accurate
point cloud classification.

The remainder of this paper is structured as follows. Section 2 starts with multi-scale point cloud
voxelization. MSNet is then established for the discriminative local feature learning, and global label
optimization with CRF is employed. Section 3 starts with the experimental data description, followed
by a presentation of the individual and overall test results to demonstrate the solution procedure.
Section 4 is a series of discussions where we compare our proposed MSNet with some state-of-the-art
methods, and analyze the generalization capability of the proposed approach. Both quantitative and
qualitative evaluations are presented. Section 5 consists of our concluding remarks on the properties
of MSNet and our proposed future efforts.

2. Materials and Methods

As depicted in Figure 1, the proposed method consists of two complementary parts. In Part I
of Figure 1, a point cloud is represented as multi-scale 3D voxels. Then, a corresponding MSNet is
established for discriminative local feature learning to predict a class probability. In Part II of Figure 1,
the point cloud is regarded as an edge-weighted graph, and a CRF with spatial consistency constraints
is constructed to obtain the global context. Finally, global label optimization is used to combine the
local feature and the global context for accurate classification of the point cloud.
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Figure 1. Flowchart of the proposed multi-scale convolutional network (MSNet).

2.1. Multiscale Voxelization

Humans perceive the object context of point clouds at multiple scales, including the scene at a
coarse scale, and then objects, structures, edges, and points at a fine scale. It is a multi-scale observation
process that considers information across different scales to enable comprehensive judgment. Similarly,
to automatically understand point clouds across different scales for discriminative feature learning,
the context of a point cloud is analyzed by multi-scale voxels that are centered at the point, which allows
the network to closely observe at a fine scale, and a consider rough view at a coarse scale.

At each scale, for a given point P(x, y, z), a neighboring cubic [x− 0.5R, x + 0.5R] ×
[y− 0.5R, y + 0.5R]× [z− 0.5R, z + 0.5R] with length R is set up around it, as shown in Figure 2a.
Then, the cube is subdivided into n× n× n grid voxels [42] as a patch, and the side length of each
voxel is r = R/n. R corresponds to the size of the neighboring region. The smaller the r is, the finer
the scale. For small objects, a fine scale within a small neighboring region R is enough, whereas for
large objects, a coarse scale including a large region is needed. On the contrary, observing small objects
at coarse scale will omit details, while the processing of large objects with a fine scale may lead to
high noise sensibility and large unnecessary computation. Therefore, dividing the point cloud with
multiple scales is necessary to accommodate the various sizes of objects.

Figure 2. Point cloud voxelization at (a) uniform scale and (b) multiple scales. Around point P(x, y, z),
the spatial contexts of different sizes are partitioned as voxels of different scales, respectively. The points
near P(x, y, z) are more important, and are characterized with finer scales in several voxels than those
far away from it.

According to the aforementioned analysis, we present the design of a multi-scale voxelization frame
in this paper. The patch length n of different scales is fixed to an equal number that is as small as possible
for computation efficiency. Then, a series of voxel side lengths {r1, r2, . . . , rS}with increasing values are
applied. With a larger r ∈ {r1, r2, . . . , rS}, the cubic side length R also will increase and yield a coarse
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view in a large region, and vice versa. Instead of dividing the whole space into voxels of a fixed size,
the multi-scale voxelization divides the individual context of the point cloud into voxels at multiple scales,
and the spatial context information of different scales is well represented for each point. As shown in
Figure 2b, with an equal patch length n of all of the scales, the spatial context with different sizes are
obtained by changing the voxel length ri (i = 1, 2, . . . , s) without compromising the computation efficiency.

Without loss of generality, the point density of each voxel, which is defined as the ratio of the point
count within the voxel and its volume, is adopted as the representative value of the voxel. For fine
voxel volume, the commonly-used occupancy value (i.e., if there is a point inside the voxel, the value
is set as 1, otherwise it becomes 0) is reasonable, as the voxel is small, and there are only a few or no
points that lie in it. Whereas, for the coarse voxel volume, the number of points that lie in the voxels
may vary greatly, and cannot be simply approximated as 0 or 1. Compared with the occupancy value,
the point density characterizes the degree of point occupancy within a voxel, and is invariant to scale.

2.2. Multi-Scale Convolutional Network of a 3D Point Cloud

Based on the multi-scale voxelization, MSNet is proposed for discriminative local feature learning
and class probability prediction, as shown in Figure 3. With the multi-scale voxelization of point
clouds, the multi-scale features of different spatial resolutions are learned with a series of convolutional
networks (ConvNets) of shared weights that are fused directly across different scales. Due to multi-scale
voxelization, the 3D convolution kernels of MSNet capture the spatial context with different sizes at
different scales. Thus, the cascaded pooling operation is not necessary, and a concise structure of less
model parameters is proposed in MSNet.

Figure 3. Multi-scale convolutional network.

2.2.1. Multi-scale Feature Extraction

Many excellent discriminative feature extraction methods have been proposed for point cloud
classification [16–18]. However, most of them are “knowledge-driven”, and are designed subjectively
based on prior knowledge. Due to the influence of noise, occlusion, and various types and sizes of objects,
these subjectively-designed features are difficult to use for characterizing the objects in a point cloud.

Owing to its convolution and pooling layer, CNN has recently been shown to have a powerful
feature learning capability in the classification and semantic labeling of 2D images [28,29]. The kernels
of the convolution layer simulate the receptive fields of human vision, while the pooling layer is
applied for dimension reduction and an invariance guarantee of translation, rotation, and scale.

However, it is difficult to directly utilize the conventional CNN for 3D point cloud classification.
CNN needs an input of regular 2D or 3D array, but when the 3D point cloud is simply projected into
2D imagery, the 3D point cloud loses its 3D spatial context information. Dividing the point cloud into a
regular 3D array cannot adaptively reflect the different sizes of the objects in the point cloud, and also
will lead to large unnecessary computation on null values inside the object, even with the following
pooling operation.

To address these problems, MSNet is proposed based on the 3D multi-scale voxelization of the point
cloud. By simultaneously applying the ConvNets at multiple scales, the multi-scale contextual features
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of the objects of different sizes in the point cloud are extracted with discriminative feature learning.
The ConvNets at different scales operates within the spatial context of different region sizes, which acts as
the cascaded pooling operations in normal CNN. Therefore, the pooling layer is not necessary in MSNet,
and a less deep structure is achieved due to the simultaneous convolution at multiple scales.

At each point (x, y, z) in the 3D scene, we first construct the corresponding multiscale 3D voxels
according to Section 2.1. Denote the patch of scale s ∈ {1, . . . , S} as Vs ∈ Rn×n×n×q0 . In the superscript
of R, the last dimension of Vs represents the number of features. In this paper, only the voxel’s density
is considered, leading to the last dimension q0 = 1. For each scale s, the 3D Convnet Fs can be described
as a sequence of linear transforms and non-linear activations. For the 3D Convnet Fs with L layers,
the m-th output feature map of layer l ∈ {1, 2, . . . , L} can be represented as:

H(m)
s,l = Relu(

ql−1

∑
t=1

H(t)
s,l−1 ∗W(t,m)

s,l + b(m)
s,l ) (1)

for all of m ∈ {1, 2, . . . , ql} with bs,l ∈ Rql as a vector of bias; where Hs,0 = Vs. W(t)
s,l ∈ R fl× fl× fl is the

convolution kernel with a size of fl , ql is the feature number of hidden layer Hs,l , and ∗ represents
the 3D convolution operator. Relu(·) = max(·, 0) is the activation function acting on each element of
the input matrix, which leads to the non-linearity of the network and reduces the vanishing of the
gradient and fast training. In addition, the contribution of the neighboring voxels to the center one
is similar across different scales, and depends on their spatial relationship. To capture this character
and improve the generalization capability of our MSNet, the weights of ConvNets are shared across
different scales to reduce the number of model parameters, which also makes the MSNet concise.

The output of the 3D Convnet Fs is obtained as:

Fs(Vs) =
[

H(1)
s,L , H(2)

s,L , . . . , H(qL)
s,L

]
(2)

It is regarded as the feature of point (x, y, z) at scale s ∈ {1, . . . , S}. A detailed convolution process
at a single scale is provided in Figure 4.

Finally, the outputs of the S-scale ConvNets are flattened and fused to produce the final feature
vector F̂, which can be seen as the multi-scale feature around point (x, y, z):

F̂ = Relu(W f [ f latten(F1), f latten(F2), . . . , f latten(FS)] + b f ) (3)

where f latten(·) is the flatten function to stretch the matrix to be a vector, W f represents the full
connection parameters, and b f is the corresponding bias.

Figure 4. The three-dimensional 3D convolutional networks (Convnet) Fs with L = 6 layers. The input
of the network is a patch with q0 feature channels. A sequence of convolution kernels are applied for
multi-layer feature learning (without padding for high computation efficiency), and the size of the
output at l-th layer is denoted as nl = nl−1 − fl + 1, l = 1, 2, . . . , L, and n0 = n. The final output is a
feature vector (n6 = 1). To this end, the kernel size of the last layer is the same as the output of the
former layer ( f6 = n5).
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2.2.2. Discriminative Feature Learning

With the fused multi-scale feature F̂, our goal is to use it for class probability prediction. To this
end, we apply softmax regression to predict the probability distribution p over each class as:

p̂i,k = so f tmax(F̂i) =
eWT

k F̂i

∑cj∈C eWT
j F̂i

(4)

where p̂i,k is the predicted probability for the i-th point belonging to class ck ∈ C, C = {c1, c2, . . . , cC}
is denoted as the set of classes, and C represents the number of classes.

Next, we construct the loss function using cross entropy, which depicts the difference between the
probability distribution p̂i,k and the true probability distribution pi,k of class ck:

Loss(Θ) = − ∑
i∈voxels

∑
k∈C

pi,k ln ( p̂i,k(Θ)) (5)

where the parameters Θ =
{

W1, b1, W2, b2, . . . , WL, bL, W f latten, b f latten

}
can be learned by

minimizing Loss(Θ) with a batch stochastic gradient descent algorithm. Once the network is learned,
the loss function is no longer needed, and the predicted probabilities are used for further class
label inference.

2.3. Global Label Optimization with CRF

Point cloud classification must assign each point a unique label that indicates its class. The simplest
strategy for this end is to give each voxel a label with the argmax of the predicted probabilities
(Equation (4)). Then, the label is assigned to the points in the corresponding voxel. However,
such classification results are at the voxel level, and are inevitably influenced by noise and result in the
spatial inconsistency of label prediction.

To address this issue, we use a CRF model with spatial consistency to globally optimize the class
label of the point cloud. For this purpose, we construct a graph G(V, E) with vertex v ∈ V and edge
e ∈ E. Each vertex is associated to a point, and the edges are added between the point and its K-nearest
points of the point cloud.

Let random variable Xi be the label of point i. Random variable X consists of X1, X2, . . . , XN ,
where N is the total number of the points. We regard vertex V of the graph G(V, E) as the
random variable of label (i.e., V = {X1, X2, . . . , XN}). We can constitute the CRF model (P, X)
based on the graph G(V, E) of the point cloud, where P is the global observation of G(V, E).
P = { p̂1, p̂2, . . . , p̂N} corresponds to the predicted class probability of the point cloud, which is
obtained with MSNet. The posterior probability of the point cloud that is assigned to label l,
which consists of l1, l2, . . . , lN (li ∈ C = {c1, c2, . . . , cC}) under the global observation P, is then
represented as below:

p(X = l|P ) =
1

Z(P)
exp (−E( l|P )) (6)

where Z(P) indicates the normalized index, and the energy of label l can be represented as:

E(l|P) = ∑
i∈V

ϕ( p̂i, li) + ∑
(i,j)∈E

ψ(li, lj) (7)

Label l maximizing the posterior probability p(X = l|P ) is the most appropriate label of the point
cloud, whereas maximizing the posterior probability in Equation (6) is equal to minimizing the energy
in Equation (6), which leads to a global optimization of the point cloud label.
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The data cost term ϕ( p̂i, li) penalizes the disagreement between a point and its assigned label.
In this paper, the initial data cost of each point is calculated with its predicted probability in Section 2.2
as unary terms:

ϕ( p̂i,k, li) = exp (− p̂i,k)δ(li 6= ck) (8)

where δ(·) is an indicator function. The data cost enforces the value of label l close to the
predicted probability.

The smooth cost term ψ(li, lj) penalizes the label inconsistency between neighboring points.
The neighboring points are encouraged to assign similar labels. In this work, the K-nearest neighboring
points are connected with the central point. The smooth cost is calculated according to the Euclidean
distance between two points:

ψ(li, lj) =
1− exp (−di,j)

1 + exp (−di,j)
δ(li 6= lj) (9)

where di,j is the 3D Euclidean distance between points i and j. The smooth cost constrains the regularity
and consistency of label l.

Finally, the energy function E(l|P) is minimized with the α–expansion [43–45] algorithm.
A simple diagram of the optimization process is provided in Figure 5. The initial probabilities of each
point are pre-predicted with MSNet, as described in Section 2.2. After several iterations, all of the class
labels of the point cloud are globally optimized.

Figure 5. The global optimization aims to give each point a spatially consistent class label with the
conditional random field (CRF). Assuming there are two classes R and B, the points in (a) describe the
predicted probability of each class, which contributes to the initial data cost. The red and blue points
totally belong to class R and class B, respectively. The color of the other points is mixed with the degree
of red and blue, which is decided by the probability belonging to class R and class B, respectively.
After global optimization, each point is assigned to be a certain class as shown in (b).

3. Results

3.1. Experimental Data

Both mobile laser scanning (MLS) and airborne laser scanning (ALS) point clouds were used
to evaluate the proposed method, and included objects of different sizes and scanning densities.
They were acquired from the same area of Wuhan University (WHU), China, and are available at
https://github.com/wleigithub/WHU_pointcloud_dataset. An overview of the experimental area is
shown in Figure 6, and the experimental data are provided in Figure 7. The properties of these data
sets are summarized in Table 1.

The MLS point cloud with two blocks (block I and block II) was obtained with SICK LMS291
Laser Range Finder in March 2014. They are labeled into seven classes, which included vegetation
(e.g., tree and grass), buildings, cars, pedestrians, lamps, and fences. The point density of the MLS

https://github.com/wleigithub/WHU_pointcloud_dataset
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point cloud varied a lot with the different distances between the objects and scanners. Moreover,
the point cloud of many of the objects often was incomplete due to mutual occlusion. The ALS
point cloud (block III) was acquired in Wuhan, China in July 2014 by a Y5 plane carrying an H68-18
airborne laser radar system with a mean flight altitude of 800m above the ground. The point density
in the experimental area was approximately 5–10 points/m2. Compared with the MLS point cloud,
the ALS point cloud was more sparse, and much more fragmented. Therefore, only three classes
(i.e., vegetation, buildings, and cars) were recognizable in block III scanned with the ALS. Additionally,
ground points, which were a large portion of the point cloud, were previously removed artificially
in the experimental data sets. All of the data sets were divided into training and testing data by a
randomly chosen plane. Human operators carefully labeled the data sets with the CloudCompare
(http://www.cloudcompare.org/) tool. Figure 7 provides an overview of the three blocks (2,330,834,
5,023,784, and 804,836 points respectively).

Figure 6. Study area. The three dashed boxes with different colors indicate different blocks for
experiments. Blocks I and II were scanned with mobile laser scanning (MLS), while block III was
scanned with airborne laser scanning (ALS) with a sparser point density.

Figure 7. Experimental data overview. (a,b) are the MLS point cloud of block I and block II; (c) is the
ALS point cloud of block III. Each block is divided into two parts, P1 and P2, by a vertical plane marked
with a dash line. P1 and P2 are the training data and testing data, respectively.

Table 1. Properties of the experimental data.

Site Block I Block II Block III

Scanning method MLS ALS
Equipment LMS 291 H68-18

Acquisition data March 2014 July 2014
Accuracy of

measurement 10 mm -

Total points 2,330,834 5,023,784 804,836
Points for training 1,049,782 2,213,511 398,987
Points for testing 1,281,052 2,810,273 405,876

http://www.cloudcompare.org/


Remote Sens. 2018, 10, 612 10 of 19

3.2. Experimental Results and Assessment

At each point in 3D space, the corresponding multi-scale voxels were constructed among its
neighbors. For the training samples, each voxel was assigned a unique label based on the majority of
the neighboring labels in the voxel. For equal numbers of labels, a label was chosen randomly among
them. Meanwhile, to simulate objects with different orientations, the training samples were randomly
rotated around the voxels’ central vertical axis. Additionally, k-fold cross validation was used for all of
the experiments.

Considering both performance and efficiency, deeper layers would lead to higher accuracy,
but more computation expense at the same time. L = 6 hidden layers were chosen and applied.
In addition, n was fixed at 11 for computation efficiency, f1 = f2 = f3 = f5 = f6 = 3 for feature
learning, and f4 = 1 for feature dimension reduction. In this way, the output of each scale corresponded
to a feature vector. Moreover, the seven nearest neighbors of each point are searched to construct the
graph G(V, E) for global label optimization.

3.2.1. Classification of Point Clouds

The MLS point cloud in Figure 7a,b contains different objects, such as vegetation, buildings,
cars, pedestrians, lamps, fences, and others (sculptures, roadblocks, and trash bins). To classify them,
we used S = 5 scales for point cloud voxelization due to the wide range of object sizes, and n
was fixed at 11 for computation efficiency. Based on the object sizes and the point cloud density
in the space, the side length of the finest scale was set as r1 =0.035 m (i.e., slightly larger than the
average resolution of the point cloud). Additionally, similar to most multi-scale strategies, we set
the side length of the next scale as two times that of the current scale, which was formulated as
ri+1 = 2ri, i = 1, 2, . . . , S− 1. Then, the side lengths of the other four scales were derived as r2 = 0.07 m,
r3 = 0.14 m, r4 = 0.28 m, and r5 = 0.56 m, respectively. These scales allowed us to characterize the
point cloud with five different scales. The finest scale was r1 = 0.035 m, and the neighboring region
around it was 0.385× 0.385× 0.385 m, and focused on the details. The coarest scale was r5 = 0.56 m,
and the spatial context within the neighborhood was 6.16× 6.16× 6.16 m3.

For the ALS point cloud with lower density and larger objects, the side length of the finest scale
was set as r1 =0.07 m. Similar to the experiment of the MLS point cloud, five scales were applied
for point cloud voxelization, and n was fixed as 11. The side length of the next scale was set as
two times that of the current scale. Therefore, the side lengths of the other four scales were r2 = 0.14 m,
r3 = 0.28 m, r4 = 0.56 m, and r5 = 1.12 m, and the side lengths of the neighboring regions at each
scale were calculated as R1 = 0.77 m, R2 = 1.54 m, r3 = 3.08 m, R4 = 6.16 m, and R5 = 12.32 m,
with Rs = nrs, s = 1, 2, . . . , 5.

The ground truths and the corresponding classification results with the proposed method are
shown in the first and last columns of Figure 8. It can be seen from the first two rows of Figure 8
that the MLS point clouds containing vegetation, buildings, cars, lamps, and fences were correctly
classified, despite their different sizes and shapes. Due to the multi-scale and discriminative feature
extraction capability of the proposed MSNet, the spatial context of the objects in Figure 8 were
well characterized. Objects, such as lamps in vegetation, cars with incomplete shapes, and fences
under trees in Figure 9, were also correctly classified, although they were partially occluded. For the
sparse ALS point cloud, the proposed method also exhibited a satisfactory classification result.
The predicted classification results without global label optimization are shown in the second column
of Figure 8. The comparison results show that even though the CRF did not significantly improve the
classification result, it efficiently suppressed the influence of noise, and guaranteed the smoothness of
the classification result, which was beneficial for further object detection, reconstruction, etc.

However, there were some situations that still were difficult to classify. These situations involved
uncommon structures (e.g., the gatehouse and flower bed in region A, and the spheroidal roof in
region D), and insufficient sampling (e.g., glass refraction in region B and the distant scanning of
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cars in region C). As shown in Figure 10, they were mistakenly classified due to the lack of sufficient
training samples or scanning coverage.

Figure 8. Classification results of test data. The first column shows the ground truth of the test data
of blocks I, II, and III; the second column represents the predicted classification result without global
label optimization; and the third column is the corresponding classification result with the proposed
method. A, B, C, and D of the last column represent the typical cases that were mistakenly classified.

Figure 9. Details of some correctly classified objects. (a–c) show the lamp in the vegetation, the car
with an incomplete shape, and the fence under the trees, respectively.

Figure 10. Actual situations corresponding to the typical cases that were mistakenly classified.
The first row and the second row are the ground pictures and the point cloud details, respectively.
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3.2.2. Assessment

Three metrics were used to quantitatively evaluate the performance of the proposed method.
Precision is defined as the percentage of correctly classified points in the classification results, which is
sensitive to the number of spurious points. Recall is defined as the percentage of correctly classified
reference points, which is sensitive to the number of missed points. To further give a global assessment,
the accuracy, which is the percentage of reference point cloud labels that are correctly predicted,
was also considered in this paper. The three metrics are defined as:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

where TP is the number of true positives (i.e., the number of points both in the reference and
classification), FP is the number of false positives (i.e., the number of classified points not found
in the reference), FN is the number of false negatives (i.e., the number of reference points not found in
classification), and TN is the number of true negatives (i.e., the number of points not found both in the
reference and the classification). Similar to Li. et al. [11], precision/recall were used to represent the
classification quality in this paper.

Quantitative evaluations of the experimental results are provided in Table 2. The classification
accuracies of the MLS point clouds of blocks I and II were almost identical, at 83.18% and 82.98%,
respectively; and the classification accuracy of the ALS point cloud of block III was relatively higher at
94.06%, due to its sparser point density and simpler object types (i.e., vegetation, buildings, and cars).
Additionally, compared with the small-size objects (e.g., cars and lamps), the large-size objects
(e.g., vegetation and buildings) were easier to classify. The incomplete objects caused by occlusion
did not influence the classification of the large-size objects, while the shape of the small-size objects
were easily obscured by the occlusion. Moreover, Table 2 shows that the recalls of vegetation and cars
were higher than their precisions. Since the building walls and lamps were easily obscured by the
surrounding trees, the precisions of the buildings and lamps were higher than their recalls.

Table 2. The precision/recall and accuracy of the test data with the proposed method.

Test Data Vegetation (%) Buildings (%) Cars (%) Lamps (%) Fence (%) Others (%) Accuracy (%)

With CRF
Block I 88.88/96.21 93.11/52.13 56.5/93.57 85.02/38.21 99.8/58.77 0/0 83.18
Block II 76.84/93.87 99.64/73.59 65.77/98.52 11.93/31.44 - 0/0 82.98
Block III 92.38/97.81 96.55/89.88 0/0 - - - 94.06

Without CRF
Block I 88.55/95.11 92.46/50.21 56.28/91.03 27.16/37.51 93.55/60.87 13.06/0.5 82.11
Block II 76.24/91.62 99.76/71.53 61.40/95.86 3.51/33.04 - 0/0 80.81
Block III 92.38/96.92 95.47/89.97 0/0 - - - 93.60

- Represents that there is no such kind of object in current block.

To evaluate the advantage of multi-scale voxelization over single-scale, three single-scale
voxelizations (finest, middle, and coarsest scales) with the neighboring sizes of 0.385 m, 1.54 m3,
and 6.16 m respectively, were compared and tested using the point cloud of block I. The quantitative
assessments of the experimental results are shown in Table 3. It can be seen that different voxelizations
had different classification successes for objects that were of different sizes. For the finest voxelization,
small-size objects, such as lamps, were classified satisfactorily, while it was difficult to distinguish
buildings and vegetation. Coarser voxelization was more appropriate for extracting the distinctive
feature of large-size objects. Comparing Table 3 with Table 2, it was concluded that multi-scale
voxelization adaptively characterized and classified all of the objects better, regardless of their types
and sizes.
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Table 3. The precision/recall and accuracy of block I with single-scale voxelization.

Scale Vegetation (%) Buildings (%) Cars (%) Lamps (%) Fence (%) Others (%) Accuracy (%)

Finest 92.60/1.06 21.30/96.87 33.94/73.52 66.34/35.02 95.57/6.85 0/0 25.79
Middle 81.07/91.50 86.64/38.65 51.34/72.52 38.43/5.36 91.78/65.26 30.18/21.61 76.31

Coarsest 82.05/96.19 92.73/45.40 56.50/88.48 13.83/10.20 34.74/5.27 2.01/0.36 76.69

4. Discussion

To further determine the performance of the proposed MSNet, comparison experiments with
other state-of-the-art methods and generalization capability analysis were conducted to accomplish
these experiments; another two data sets (terrestrial laser scanning [11,15] (TLS-Wang) and ALS [21]
(ALS-Zhang)) point clouds were utilized. The TLS-Wang point cloud was obtained with a single
terrain scanner, in which the majority of the objects were buildings, trees, cars, and pedestrians.
The ALS-Zhang point cloud was acquired by a Leica ALS50 system with a mean flying height 500 m
above ground, which contained three kinds of objects (vegetation, buildings, and cars). The details
of the TLS-Wang and ALS-Zhang data sets can be found in Wang et al. [15] and Zhang et al. [21],
respectively. Each data set included two scenes (i.e., scene I and scene II), as shown in Figure 11. Scene I
was used for comparison experiments, and scene II was used for generalization capability analysis.
Additionally, their ground points were removed prior to the analysis.

Figure 11. Ground truth of the terrestrial laser scanning (TLS-Wang) and ALS-Zhang point clouds.
(a,b) are TLS-Wang scene I and II, while (c,d) represent ALS-Zhang scene I and II respectively.

4.1. Comparision with Other Methods

Considering the similarity of point cloud density and object size, the parameter settings for
the TLS-Wang and ALS-Zhang point clouds in this section were the same as for the experiments on
the MLS (MLS-WHU) and ALS (ALS-WHU) point clouds respectively. The number and size of the
multi-scale voxelization were also the same. Additionally, there were only a few training samples
in the data sets, which were insufficient for network training. To enrich the diversity of the samples,
we randomly selected 50,000 samples, which accounted for 25% of the total amount, and rotated them
with two arbitrary angles around a vertical axis. Together with the original samples in Wang et al. [15]
and Zhang et al. [21], a total of 400,000 training samples were ultimately used for both the TLS-Wang
and ALS-Zhang point clouds. The classification results of scene I are shown in Figure 12, and their
corresponding ground truths are provided in Figure 11a,c. It can be seen that the proposed method
successfully classified most of the objects in the TLS-Wang and ALS-Zhang point clouds.
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Figure 12. Classification results of comparative test data. (a,b) are the classification results of TLS-Wang
scene I and ALS-Zhang scene I with the proposed method, respectively.

For the TLS-Wang point cloud classification, we compared the proposed method to other
state-of-the-art methods (sLDA model [46], LDA model [15], object-oriented decision tree [11],
and PointNet++) [41]. The precision/recall of each kind of object and the overall accuracy are listed
in Table 4. In general, the proposed method achieved the highest accuracy at 98.24%, which was
far higher than for the other methods. Moreover, its classification accuracy was also higher than the
experimental results of the WHU data, as the TLS-Wang scene was relatively simpler. Similar to the
experiments of the WHU point cloud, large-size objects (vegetation and buildings) were relatively
easier to classify, as they were not sensitive to part of the occlusion and incompleteness.

For the ALS-Zhang point cloud classification, some other methods, including Guo et al. [47],
Zhang et al. [21], and PointNet++ [41] were compared with the proposed method. Table 5 shows the
precision/recall for each kind of object and the overall accuracy. It is noted that our proposed method
did not only work well on a TLS point cloud, it also achieved the highest accuracy for ALS point
cloud classification. The classification accuracy with our proposed method was 97.02%, which was
far higher than the results achieved by other methods. For all of the comparison methods, cars were
the most difficult to classify, due to the discretize error of the insufficient sampling effect. Moreover,
some piecemeal and low vegetation was mistakenly classified, because the overhead view of the shape
was confused with the cars and buildings.

Table 4. The precision/recall and accuracy of TLS-Wang scene I [15] with different methods.

Cars (%) Vegetation (%) Pedestrians (%) Buildings (%) Accuracy (%)

sLDA model 42.9/18.1 91.9/97.7 68.4/33.5 84.1/80.7 89.7
LDA model 52.9/45.4 95.4/98.3 82.9/62.7 89.9/86.7 93.4

Object-oriented decision tree 91.38/93.76 96.86/97.47 80.37/67.82 90.46/93.68 95.17
PointNet++ [41] 86.87/71.56 96.30/94.61 91.99/69.28 79.14/89.66 92.59

MSNet 75.07/89.75 98.68/99.32 91.86/82.5 99.46/96.64 98.24

Table 5. The precision/recall and accuracy of ALS-Zhang scene I [21] using different methods.

Cars (%) Vegetation (%) Buildings (%) Accuracy (%)

Guo et al. [47] 44.1/34.8 86.8/91.2 96.81/95.5 92.2
Zhang et al. [21] 53.9/60.5 94.7/94.5 98.1/97.7 95.5
PointNet++ [41] 38.49/1.21 98.43/96.13 80.99/96.13 95.16

MSNet 70.32/99.98 96.71/94.53 98.7/98.04 97.02

4.2. Genegralization Capability Analysis

This section primarily focuses on the generalization capability of the proposed MSNet. In our
previous experiments, it was necessary to collect training samples before the classification step.
However, to manually collect enough samples for each classification would be cumbersome
and unacceptable. Therefore, the cross-scene generalization capability of the proposed MSNet,
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which measures the applicability of the pre-trained MSNet over one scene to other scenes of point
clouds, was also an important aspect for network assessment.

For the TLS point cloud, we tested the TLS-Wang scene I with two different MSNets, which were
trained with the MLS-WHU and TLS-Wang scene II point clouds, respectively. The classification results
are provided in Figure 13a,b. Although there were some incorrect classifications (marked in black
circles), both achieved satisfactory classification results. The incorrect classifications were attributed to
the lack of similar samples in the training step.

For the ALS point cloud, we tested the ALS-Zhang scene I with two different MSNets that were
trained with the ALS-WHU and ALS-Zhang scene II point clouds, respectively. The classification
results are shown in Figure 14a,b. Part of the cars were mistakenly classified, because the point density
of WHU and Zhang et al. [21] were different (the ALS-Zhang point cloud was about three times denser
than the WHU point cloud). Besides the density, the collected types of vegetation also varied with the
experimental scenes, and led to classification errors regarding unknown vegetation types.

Besides the cross-scene tests of the same kind of point cloud, the ALS-Zhang scene I point cloud
was also tested with the MSNet that was trained with the MLS-WHU data. In this case, the training and
testing point clouds had totally different densities, perspectives, objects, and occlusions. As shown in
Figure 14c, most of the buildings that were relatively large in size were correctly identified, while some
small cars and piecemeal vegetation were not. Therefore, we concluded that the discriminative feature
learned by the MSNet was sufficiently robust.

Figure 13. Classification results of TLS-Wang scene I using MSNet trained with other data sets.
(a,b) are the classification results using MSNet trained with the MLS-WHU and the TLS-Wang scene II
point cloud, respectively.

Figure 14. Classification results of ALS-Zhang scene I using MSNet trained with other data sets.
(a–c) are the classification results using MSNet trained with the ALS-WHU, the ALS-Zhang scene II,
and the MLS-WHU point cloud respectively.
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Table 6 lists the quantitative precision/recall and accuracy of the aforementioned three tests.
Generally, for similar scenes with equivalent densities, the pre-trained MSNet performed well.
The accuracy of each of the tests was higher than 83%, and the best accuracy of approximate density was
92.74%. The accuracy with objects that were small in size, such as cars and pedestrians, was relatively
lower, as small objects are more sensitive to noise and occlusions in point clouds. Due to the multi-scale
voxelization and the weight sharing across different scales, similar context features are learned at
different scales. It is beneficial to the generalization capability of the proposed method to classify point
clouds of different resolutions such as MLS and ALS. However, for different resolutions, the size of
voxels should be set according to the size of objects that are to be classified in the point cloud.

Table 6. The precision/recall and accuracy of different scenes with different models.

Data Training Data for MSNet Cars (%) Vegetation
(%)

Pedestrians
(%)

Buildings
(%)

Accuracy
(%)

TLS-Wang scene I [15] MLS-WHU point cloud 45.15/28.93 90.65/99.35 12.45/0.27 99.27/70.62 90.27
TLS-Wang scene II [15] 73.47/30.37 91.99/99.78 70.88/23.21 98.84/78.57 92.74

ALS-Zhang scene I [21]
ALS-WHU point cloud 0.0/0.0 83.88/83.88 - 90.41/93.21 88.3
ALS-Zhang scene II [21] 51.53/70.73 94.31/82.37 - 94.27/98.34 92.74
MLS-WHU point cloud 0.0/0.0 98.76/55.92 - 80.95/99.98 83.8

- Represents that there is no such kind of object in current scene.

5. Conclusions

The method proposed in this paper provides an efficient point cloud classification approach,
which consists of two complementary parts. In the first part, the point cloud is represented as
multi-scale 3D voxels, and a corresponding MSNet is proposed to learn the multi-scale discriminative
local features and predict the class label of each point. In the second part, the coarse classification results
of MSNet are globally optimized using CRF with a spatial consistency constraint on the point cloud.

Compared with the existing point cloud feature extraction methods, which mainly focus on
designing and extracting features subjectively, the feature extraction in our method is adaptive and
learning-based. With the proposed multi-scale voxelization of MSNet, the multi-scale discriminative
feature of a point cloud is adaptively extracted and fused to comprehensively characterize the local
spatial context of each point in a concise way.

To address the MSNet classification inconsistency of one object cluster, which is caused by the
point-wise class prediction, CRF with spatial consistency is constructed based on the graph of the
point cloud to achieve a global optimization for all of the predicted class labels.

The experimental results show that the proposed method not only works well for MLS point
clouds, it also achieved a much higher classification accuracy on ALS and TLS point clouds compared
with the state-of-the-art methods, at 97.02% and 98.24%, respectively, thereby demonstrating the
strong generalization capability of the proposed network for point cloud classification under complex
urban environments.

However, the proposed solution also has its limitations. Although the multi-scale voxelization
of point clouds substantially reduced the computation expense compared with a traditional CNN,
further improvement is possible for the point-wise classification method. Therefore, a new convolution
kernel with angle parameters, which can adopt the manifold structure and efficiently handle the point
cloud within the linear computation, will be considered in our future work. Additional experiments
on larger data sets are also a possibility in the future.
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