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Abstract: Remote sensing–based forest aboveground biomass (AGB) estimation has been extensively
explored in the past three decades, but how to effectively combine different sensor data and modeling
algorithms is still poorly understood. This research conducted a comparative analysis of different
datasets (e.g., Landsat Thematic Mapper (TM), ALOS PALSAR L-band data, and their combinations)
and modeling algorithms (e.g., artificial neural network (ANN), support vector regression (SVR),
Random Forest (RF), k-nearest neighbor (kNN), and linear regression (LR)) for AGB estimation in
a subtropical region under non-stratification and stratification of forest types. The results show
the following: (1) Landsat TM imagery provides more accurate AGB estimates (root mean squared
error (RMSE) values in 27.7–29.3 Mg/ha) than ALOS PALSAR (RMSE values in 30.3–33.7 Mg/ha).
The combination of TM and PALSAR data has similar performance for ANN and SVR, worse
performance for RF and KNN, and slightly improved performance for LR. (2) Overestimation for
small AGB values and underestimation for large AGB values are major problems when using the
optical (e.g., Landsat) or radar (e.g., ALOS PALSAR) data. (3) LR is still an important tool for AGB
modeling, especially for the AGB range of 40–120 Mg/ha. Machine learning algorithms have limited
effects on improving AGB estimation overall, but ANN can improve AGB modeling when AGB
values are greater than 120 Mg/ha. (4) Forest type and AGB range are important factors that influence
AGB modeling performance. (5) Stratification based on forest types improved AGB estimation,
especially when AGB was greater than 160 Mg/ha, using the LR approach. This research provides
new insight for remote sensing-based AGB modeling for the subtropical forest ecosystem through a
comprehensive analysis of different source data, modeling algorithms, and forest types. It is critical
to develop an optimal AGB modeling procedure, including the collection of a sufficient number
of sample plots, extraction of suitable variables and modeling algorithms, and evaluation of the
AGB estimates.
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1. Introduction

Forest biomass is one of the important variables needed to quantify the structure and function
of forest ecosystems [1]. A large number of studies using different technologies such as field
measurements, remote sensing, and process-based ecosystem models have been conducted to estimate
forest biomass at local, regional, and global scales [2]. Remotely sensed imagery can characterize
land surface features over large areas and it has been extensively used for estimating forest biomass,
especially aboveground biomass (AGB). However, the data limitations (e.g., data saturation for optical
and radar data, and the limitations in spectral and spatial resolutions) and the complex relationships
between AGB and spectral variables make AGB estimation inaccurate, especially when AGB values
are higher than 150 Mg/ha or lower than 40 Mg/ha [3].

In remote sensing-based biomass modeling, the collection of a sufficient number of high-quality
sample plots, the selection of suitable variables, and the selection of modeling algorithms are three
critical steps [2]. Sample plots provide fundamental data for accurately estimating AGB. Once sample
plot data are collected, research mainly focuses on the identification of suitable variables and modeling
algorithms. Many previous studies have examined the importance of selecting suitable variables
(e.g., spectral bands, vegetation indices, texture measures, and subpixel features) in improving AGB
estimation [4–6]. Stepwise regression analysis is often used for the identification of variables for AGB
modeling [2]. Previous research has indicated that the combination of spectral responses and texture
variables can improve AGB estimation compared with using a single kind of imagery alone, especially
in the tropical and subtropical regions with complex forest stand structure and composition of tree
species [3,4]. Texture measures are especially valuable for sites with complex forest stand structures [4].
Another common approach to identify variables for AGB modeling is Random Forest (RF) because it
can provide the ranks of importance of variables [7–10]. The stepwise regression is simple and easy
to use but the identified variables are only those having a linear relationship with AGB, while the
selected variables using RF can have nonlinear relationships with AGB.

In AGB modeling, in addition to the selection of variables, another critical step is to identify an
appropriate algorithm to establish AGB estimation models. Lu et al. [2] summarized the major AGB
modeling algorithms, covering regression and machine learning algorithms. Regression has been
widely used for AGB estimation [3,4,6]. Because of its simplification and relatively good performance,
this method is often used in AGB estimation for different ecosystems such as tropical, subtropical, and
temperate forests [3,4,6,9]. However, linear regression (LR) methods are based on linear relationships
of AGB with predictors or independent variables, thus, may not provide satisfactory results due to the
complex relationships between remote sensing variables and AGB [1,3,11]. In this case, nonparametric
and machine learning algorithms, such as artificial neural network (ANN), support vector regression
(SVR), k-nearest neighbor (kNN), and RF, can deal with nonlinear relationships. Thus, these algorithms
have gained increasing attention in the past decade [2,9,12–14] and have been widely employed in forest
AGB estimation [15–17]. For example, when AGB is nonlinearly related to remote sensing variables, LR
models cannot provide reliable AGB estimation; instead, machine learning algorithms such as ANN
can establish nonlinear relationships and provide more accurate AGB estimates [18,19], especially
when ancillary variables such as topographic factors (e.g., elevation, slope, aspect) are used [20]. ANN
has the advantages of distributed parallel processing and nonlinear and adaptive learning and may
outperform LR models in AGB estimation [13], but its characteristics as a black box that result in
difficult variable explanation [2] and inability in training convergence and function approximation [19]
are often criticized. Compared to traditional LR, SVR has become an important approach for AGB
modeling in the past decade [21,22] because of its capability in dealing with a relatively small number
of sample plots. Through the selection of a kernel function to realize the data space projection from a
low dimension to a high dimension, SVR solves the problems of linear inseparability in sample plots,
reduces the structural risk, and leads to a greater ability for processing nonlinear data. In addition,
SVR can be highly generalized for dealing with high dimensional data [23,24].
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The RF algorithm is an extension of the traditional decision tree method through combining
multiple decision trees [8], having the advantage of dealing with a large amount of data with high
speed and efficiency, and the ability to rank the importance of variables [7,25,26]. Previous research
has shown that RF can lead to higher estimation accuracies and smaller errors than LR [21,24,27,28].
Another commonly used method for AGB estimation is kNN [14,29–35]. This method calculates the
weighted average of forest AGB values of k nearest sample plots based on spectral distances between
the plot locations and the estimated pixel using Euclidean or Mahalanobis distance. The more similar
the sample plots are to the estimated pixel, the greater the weights. Without the assumptions of normal
distribution and linear relationship, kNN can be utilized to estimate both continuous and discrete
forest variables. Moreover, the predictors used in kNN can be any remote sensing and environmental
variables, including spectral bands, vegetation indices, soil properties, and topographic features [33,34].
Previous research showed that the kNN method may produce poor AGB estimates at the pixel scale
but can improve estimation at a coarser scale [14,36,37]. Considerable research for the use of kNN has
been conducted to improve the accuracy of estimating forest variables by optimizing the selection of
kNNs and using different distances and weighting methods [32–35].

The advantages of using nonparametric and machine learning algorithms for AGB estimation have
been recognized, but their estimation accuracy highly depends on the optimization of the parameters
used in the relevant algorithms and representativeness of the samples. For example, ANN requires a
large number of sample plots, and a small number of sample plots may lead to poor predictions [19].
SVR is found to have poor performance due to the lack of a standard approach to optimize the model
parameters [38]. RF algorithm might have poor generalization and large estimation errors when the
number of variables with low correlation to AGB in the model increases [25]. For a specific study area
and a set of remote sensing data, it is unclear which algorithm may produce the most accurate results.
It is necessary to conduct a comparative analysis of different modeling algorithms for AGB estimation.

Zhao et al. [6] used LR and explored the role of using Landsat TM images, ALOS PALSAR data,
and their combination, plus data fusion to improve AGB estimation performance with and without
classification of forest types. The authors found that the combination of TM and PALSAR data as
extra bands increased the estimation accuracy of AGB, and the stratification of vegetation types also
improved AGB estimation performance, but LR led to significant overestimation and underestimation
for the small and large AGB values (e.g., less than 40 Mg/ha and greater than 160 Mg/ha), respectively.
It is unknown whether the conclusions are upheld when other AGB modeling methods are used.
We also have to answer the following questions: (1) Which modeling algorithm should be used for
different datasets, that is, can machine learning algorithms provide better AGB estimation performance
than LR? (2) Can stratification of forest types improve AGB estimation performance in the case of
using machine learning and nonparametric algorithms? There are rare reports on comprehensively
comparative analysis of modeling algorithms based on different datasets under non-stratification
and stratification of forest types. Therefore, the objective of this research is to understand the AGB
modeling algorithms that are appropriate for the subtropical region by using Landsat TM and ALOS
PALSAR L-band data and by conducting a comparative analysis of different algorithms (e.g., RF, ANN,
SVR, kNN, LR) under non-stratification and stratification of forest types. In addition, we attempt to
examine which modeling method can improve the overestimation and underestimation that often takes
place for small and large AGB values, respectively, when LR is used. Through this comprehensive
comparison, we can better understand the AGB modeling mechanisms by employing suitable remote
sensing variables and modeling algorithms under non-stratification and stratification of forest types.

2. Study Area

Zhejiang province has complex topographic conditions with mountainous and hilly areas in
the southwest and plain and basin areas in the northeast. Mountainous and hilly areas account for
approximately 70%, the plain and basin areas for 23%, and water for 7%. The mountains having
elevation of greater than 1000 m are mainly located in southwestern Zhejiang, the hilly areas in the
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central part, and the differently sized basins are dispersed in different regions (Figure 1). This province
has a subtropical moist monsoon climate with average annual temperatures of 15–18 ◦C and average
annual precipitation of 980–2000 mm. This province has forested areas of 6680 Kha with forest coverage
of approximately 60%. The dominant forest types include coniferous forests (pines and firs as the
dominant trees with nearly uniform forest stand structure), broadleaf forests (dominated by evergreen
broadleaf trees with complex forest canopy layers), mixed needle and broadleaf forests (two or more
dominant tree species, usually with a pine overstory, broadleaf middle layer, and shrub lower layer),
and bamboo forests (usually pure bamboo species).
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Figure 1. (a) Zhejiang Province in Eastern China; (b) elevations of the study area; and (c) forest
classification map for the study area based on the 2010 Landsat 5 Thematic Mapper and spatial
locations of sample plots.

3. Materials and Methods

The framework of conducting a comparative analysis of AGB modeling approaches is illustrated
in Figure 2. The major steps include (1) data preparation of different sources (i.e., geometric
registration between Landsat, ALOS PALSAR, and digital elevation model (DEM); atmospheric and
topographic corrections); (2) selection of the variables from Landsat, ALOS PALSAR, and DEM data;
(3) development of AGB estimation models using different algorithms (i.e., LR, RF, ANN, SVR, and
kNN) based on stratification and non-stratification; and (4) comparison and evaluation of the AGB
modeling results.
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Figure 2. Strategy of identifying suitable biomass modeling approaches through a comparative analysis
of modeling algorithms using different source data under non-stratification and stratification of forest
types (Note: HH, horizontally transmitted and received; HV, horizontally transmitted and vertically
received; RF, Random Forest; ANN, artificial neural networks; SVR, support vector regression; kNN,
k-nearest neighbor).

3.1. Data Collection and Preprocessing

The datasets used in this research are summarized in Table 1. All these data were registered in the
Universal Transverse Mercator coordinate system (zone 50 north). For Landsat TM imagery, the dark
object subtraction approach was used to convert digital numbers of pixels to surface reflectance [39,40]
and the C-correction approach was used to conduct topographic correction [41]. The global digital
elevation model (GDEM) data with 30 m spatial resolution from the United States Geological Survey
were used in the topographic correction. For ALOS PALSAR data, we downloaded the 2010 global
mosaic data with cell size of 25 m. The PALSAR data were co-registered to Landsat imagery. During
the image-to-image registration, the PALSAR data were resampled from a 25 m to 30 m cell size using
the nearest neighbor algorithm so that both TM and PALSAR data had the same cell size. Because
of the speckle problem, the enhanced Lee filtering approach with a window size of 3 × 3 pixels was
used to reduce the speckles inherent in the PALSAR data [42]. The forest (coniferous, broadleaf, mixed,
and bamboo) classification image, which was developed from the 2010 Landsat image using a hybrid
approach [3], was directly used in this research. A detailed description of this classified image is
provided in [3].
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Table 1. Datasets used in this research.

Dataset Description

Landsat 5 TM imagery
Two scenes of TM images (Path/row: 119/39 and 119/40) with a 30-m spatial
resolution were acquired on 24 May 2010. Six spectral bands were used to develop
the forest classification map [3] and for AGB estimation in this research

ALOS PALSAR L-band

The FBD (fine beam double polarization, HH/HV) L-band 1.5 product with 25-m cell
size was downloaded from the global mosaic data with a time interval of 1 year. This
downloaded image was produced using the 2010 PALSAR images. The cell size of
25-m was resampled to a 30-m cell size during the PALSAR-to-TM image registration

ASTER GDEM data Global digital elevation model (GDEM) data with a 30-m spatial resolution were
downloaded from the United States Geological Survey website

Forest classification image

The forest types in this study area included pine and fir (coniferous forest), broadleaf
forest, mixed forest, and bamboo. The forest distribution map was developed from a
Landsat TM image using a hybrid approach [3] with an overall classification accuracy
of 78%. Forest classes had user’s accuracy between 71 and 87% and producer’s
accuracy between 72 and 87%. More details are provided in [3].

Field measurements A total of 664 sample plots covering coniferous, broadleaf, mixed, and bamboo
forests were inventoried in 2010 and 2011 [3]

Note: HH, horizontally transmitted and received; HV, horizontally transmitted and vertically received.

The field inventory work was conducted at county level. Based on the forest distribution map
at the subcompartment scale, sample plots were systematically allocated on this map according to
the number of subcompartments, sampling interval, and proportion of samples. The sampling ratio
depends on the number of subcompartments; for example, the ratios were designed as 3%, 2.5%, 2%,
1.5%, and 1% for the number of compartments of less than 1000, 1000–2000, 2000–4000, 4000–6000,
and greater than 6000. Taking the number of subcompartments of 901 as an example, the number of
sample plots is 30; thus, the coding of sampling subcompartment is 1, 31, 61, . . . , and 901. Figure 3
illustrates the concept of the sampling approach used in this research. After a subcompartment was
selected, one plot with 20 m by 20 m and three nested subplots with 2 m by 2 m were allocated near
the central area of this subcompartment, representing the forest type. Sample plots were inventoried
in 2010 and 2011. Within each plot, diameters at breast height (DBH) of all trees greater than 5 cm
were measured [43]. Three nested subplots were used to measure trees and shrubs with DBH less than
5 cm and grass cover [43]. Tree AGB was calculated using the allometric equations provided by [44].
In remote sensing-based AGB modeling research, the representativeness of sample plots is critical for
accurate AGB estimation. In order to make sure that all plots for analysis were representative of the
forests, we overlaid all sample plots on the Landsat color composite to visually examine the geometric
accuracy. A total of 664 sample plots were collected and used in this research. The statistics of the
sample plot data based on different forest types are summarized in Table 2. The AGB values of all
sample plots ranged from 25.7 Mg/ha to 180.7 Mg/ha with an average AGB of 95.9 Mg/ha. The sample
plots were randomly divided into two groups: a dataset of 498 plots (75%) for model development
and a dataset of 166 plots (25%) for validation of AGB estimates under non-stratification. Because we
would examine the role of stratification of forest types in improving AGB modeling performance, we
needed to have a sufficient number of validation samples for each forest type. Thus, 30% of the total
samples for each forest type was adopted. The numbers of modeling and validation samples are also
summarized in Table 2.
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Table 2. Statistics of sample plot data used in this research.

No. of Total
Samples

AGB Range
(Mg/ha)

Mean
(Mg/ha)

Standard
Deviation

No. of Training
Samples

No. of Test
Samples

Stratification based on forest type

Coniferous 329 32.1–180.1 101.7 31.8 230 99
Broadleaf 143 26.5–175.7 94.7 34.6 100 43
Mixed 117 41.6–180.7 105.0 32.2 82 35
Bamboo 75 25.7–123.9 61.2 18.4 53 22

Non-stratification 664 25.7–180.7 95.9 33.9 498 166

Note: Under non-stratification conditions, test samples were randomly selected from the total sample population at
a proportion of 25%. Under stratification of forest types, test samples were randomly selected from the total sample
population corresponding to each forest type at a proportion of 30%.

3.2. Extraction and Selection of Variables from Landsat TM and ALOS PALSAR Data

The remote sensing variables, including spectral responses (vegetation indices and transformed
images in addition to spectral bands), spatial features (textures, segments), and subpixel features
(fraction images using spectral mixture analysis), can be used for AGB modeling [2]. Previous
research has indicated that vegetation indices and transformed images have similar performance
as the spectral bands [45], but the incorporation of spatial features into spectral responses improved
AGB modeling performance [3,4]. Therefore, the following variables were extracted in this research:
(1) Landsat spectral bands (five spectral bands, excluding the blue band due to serious atmospheric
impacts on this band); (2) textural images using gray-level co-occurrence matrix (GLCM) measures
(e.g., mean, variance, second moment, dissimilarity, homogeneity, contrast, entropy, correlation)
with window sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels based on the Landsat five spectral
bands; (3) ALOS PALSAR L-band horizontally transmitted and received (HH) and horizontally
transmitted and vertically received (HV) data; (4) textural images using the same GLCM measures and
window sizes based on HH and HV imagery. Three datasets—Landsat TM-based variables, ALOS
PALSAR-based variables, and their combination—were utilized.

The selection of suitable variables is one of the critical steps in the AGB modeling procedure [2].
Because a large number of potential variables are available, but not all variables are needed in AGB
modeling, it is necessary to use proper approaches to identify the optimal variables for AGB modeling,
depending on the different kinds of modeling algorithms, such as linear regression and nonparametric
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algorithms [2]. AGB may have linear, nonlinear, or no relationships with remote sensing variables.
Because of the high correlations among some explanatory variables, it is critical to identify the variables
that have a high correlation with AGB but weak correlations among themselves [2]. Thus, correlation
analysis can be used to examine the relationships between AGB and remote sensing variables to
remove the variables without significant correlation. Meanwhile, the correlation analysis was used to
analyze the correlation coefficients between the remote sensing variables to remove the variables that
have very high coefficients (e.g., >0.9) but relatively low standard deviations. The stepwise regression
method was then used to identify the variables for AGB modeling because it introduces the variables
into the model one by one and tests their significance. When the original explanatory variable is no
longer significant due to the introduction of a new explanatory variable, it is deleted to ensure that
only the significant variables are included in the regression equation before each new variable is added.
This process is repeated until no significant variables can be added to and no insignificant variables
can be removed from the model. Thus, the final variables are guaranteed to be optimal and not have
serious multicollinearity. During the stepwise regression analysis, the F-statistical test was used to
decide whether one variable was included or not, based on the F test level of 0.1 and significance test
level of 0.05.

The LR approach assumes linear relationships between explanatory variables and a response
variable, specifically remote sensing-derived predictors and AGB. However, in reality, this assumption
is not always met, especially when multisource data include different kinds of remote sensing variables
(e.g., spectral and spatial features, radar) and DEM-derived data are used. The nonparametric and
machine learning algorithms such as RF, ANN, SVR, and kNN can handle the complex nonlinear
relationships and were especially useful when multisource data were used [2,9,22,27,46]. However,
except for RF, most nonparametric algorithms cannot provide a variable selection method and are not
able to identify the optimal variables for AGB modeling. Thus, the variables selected by RF were also
used in SVR, ANN, and kNN for AGB modeling.

The principle of using RF is that the k samples are extracted from the training set using the
bootstrap sampling method and the k decision tree models are set up for the extracted k sample sets,
and then each sample is used to obtain the predicted values of the k group. Finally, the predicted
values are averaged to obtain the final prediction value for each sample [7,15,25]. The RF algorithm has
three parameters: the number of decision trees (Ntree), the minimum number of observations per tree
leaf (mtry), and the number of repetitions in the calculation of importance (nperm). The nperm is often
assigned as a default value of 5. In this research, the mtry and ntree were modified by repeating the
setting, and the root mean square errors (RMSEs) of test samples were compared. In the RF approach,
a backward feature elimination method was often used to eliminate relatively less important variables
from all variables and to keep the most important variables after many iterations. A variable was
removed at each iteration, and the parameters of RF were optimized. When the RMSE reached the
minimum, the most appropriate mtry and ntree were obtained. This process led to an importance rank
of the independent variables. Based on the rank, the least number of the variables for producing the
most accurate estimates of AGB was determined.

3.3. Biomass Modeling Algorithms

Different algorithms including LR, RF, ANN, SVR, and kNN were used for AGB modeling in this
study. LR can be expressed as model (1):

y = a0 + a1x1 + a2x2 + . . . + anxn + ε (1)

where a0 is a constant, x1, x2, . . . , xn are the explanatory variables, a1, a2, . . . , an are the regression
coefficients associated with the corresponding variables, y is the value of the plot’s AGB, n is the
number of explanatory variables, and ε is the error term.
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The advantages of using discrete or continuous datasets—less influenced by noise, high efficiency
in using large datasets, no need for a priori probability distribution, flexibility, and robustness—have
made RF an important tool in land cover classification and AGB estimation in the past decade [47–52].
As described in the variable selection using the RF approach, the optimal RF model was used to map
AGB for the entire study area.

SVR is based on the Vapnik–Chervonenkis (VC) dimension theory and structural risk
minimization, seeking the best compromise between the complexity of the model (the learning accuracy
of specific training samples) and learning ability (the ability to identify any sample without error)
in order to achieve the best promotion ability based on a limited number of samples. In the high
dimension feature space, the “curse of dimensionality” phenomenon is prone to occur; therefore, it is
necessary to transform the calculation in the high dimension feature space, which requires the kernel
function to replace the inner product [21–23]. The choice of the kernel function is a core problem in
SVR research. At present, there is no way to construct a suitable kernel function for a specific problem.
The commonly used kernel functions are the linear, polynomial, and radial basis function and the
sigmoid kernel function. In SVR, one critical step is to optimize three parameters: the kernel function,
SVR type, and penalty parameters [38]. In this research, we used a grid-search approach to determine
the best penalty parameters and modified the kernel function and SVR type by repeating the setting.
Similar to RF, the RMSEs of test samples were compared and the optimal parameters were determined
when reaching the minimum.

ANN (back-propagation neural network here) is also used for AGB estimation [18]. ANN is
divided into two phases: the learning stage and the prediction phase. The learning stage is the process
of finding the rule between the input variable and the output variable. Through training to modify
the weight matrix, the output value is kept close to the target value. In this process, the weights and
thresholds of the network are deterministic. From the structural point of view, the network weights
and thresholds are consistent with the coefficients and constants in the model and the learning process
is consistent with the process of solving the coefficients and constants of the model. Two important
parameters—the number of neurons and the transfer function—can greatly affect the accuracy of
modeling prediction. In this research, numbers from 3 to 50 neurons and 13 transfer functions were
examined. The optimal parameters were determined when the RMSE reached the minimum.

The kNN algorithm is a typical nonparametric algorithm, which is widely used in forestry survey
and forest parameter estimation [14,30,32–35,46,53]. kNN is based on the similarity between the
observation plots and predicted pixels using univariate or multiple variables. In terms of AGB
estimation, the Mahalanobis distances between the estimated pixels and the sample plots were
calculated using the factors that had significant effects on AGB:

D(x,y) =

√
(x − y)TΣ−1(x − y) (2)

where x =
(
x1, x2, . . . , xp

)
and y =

(
y1, y2, . . . , yp

)
, x and y represent p-dimension variable vectors in

the spectral space between two AGB sample plots. In addition,

Σ =

 cov(x1,y1) · · · cov
(
x1,yp

)
...

. . .
...

cov
(

xp,y1
)

· · · cov
(

xp,yp
)
 and cov(xi,yi) =

∑
p
i=1(xi − x)(yi − y)

p − 1
, (3)

where i = 1, 2, . . . , p; x and y represent mean values of the x and y variables. T represents matrix
transpose. D(x,y) is the Mahalanobis distances between two sample plots at p-dimension variable
vectors x and y. The closer the sample plot is to the target pixel, the greater the weight of the sample
plot. The estimate of AGB for each pixel was created by calculating a weighted mean of AGB values
from k nearest plots based on their inverse distances. In this research, we examined different values of
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k from 1 to 30, depending on different scenarios. When the prediction accuracy reached the maximum,
the optimal parameter was selected.

3.4. AGB Modeling Based on Different Scenarios

Various scenarios were designed based on three datasets, five modeling algorithms, and
stratification and non-stratification of forest types: (1) AGB models were developed based on three
data sources with five modeling algorithms without stratification of forest type, which led to a total of
15 scenarios being examined; (2) AGB models were developed for each of four forest types based on
three datasets and five modeling algorithms, which resulted in a total of 60 scenarios being examined.

3.5. Evaluation of AGB Estimates

In AGB modeling research, the RMSE and relative RMSE (RMSEr) are often used to assess the
prediction performance [2,9]:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
and RMSEr =

RMSE
y

× 100, (4)

where ŷi and yi are the predicted AGB and corresponding AGB at the sample plot i; y is the mean AGB
of the test sample plots (total number of n), depending on the non-stratification (all test samples) or
stratification of forest types (the samples for each forest type, respectively). In general, the smaller
RMSE or RMSEr values indicate better model estimation performance. The scatterplots showing
the relationships between AGB estimates and reference data were also used to evaluate the model
performance. Considering the number of sample plots for evaluation, 25% of the sample plots were
randomly selected as test samples for the non-stratification scenarios. However, for the stratification of
forest types, we needed to make sure that a sufficient number of sample plots within each forest type
were available for the evaluation of each scenario. Therefore, 30% of the sample plots were randomly
selected from the sample population corresponding to each forest type for evaluation of AGB estimates.
The number of test samples under non-stratification and stratification of forest types is provided in
Table 2.

4. Results

4.1. Comparative Analysis of AGB Modeling Results under Non-Stratification Scenarios

The established models based on non-stratification scenarios are summarized in Tables 3 and 4,
indicating the important role of textural images. For Landsat TM imagery, the spectral band 7 (SWIR2)
played the most important role. Overall, the models based on ALOS PALSAR data contained more
variables than Landsat data alone but Landsat imagery had better performance than ALOS PALSAR
data, using either LR or RF. The combination of Landsat TM and ALOS PALSAR data improved
the modeling performance for LR but not for RF. The selected variables (Table 4) using RF were
also used for the AGB model using ANN, SVR, and kNN. The statistics (e.g., maximum, minimum,
mean, and standard deviation) of the AGB estimates from the AGB prediction maps (Table 5) clearly
indicate that PALSAR produced higher mean values than Landsat or the combination of Landsat and
PALSAR data using the modeling algorithms, except RF. However, the inverse was observed for the
standard deviation values, implying that PALSAR data alone could not effectively predict the AGB
distribution when the AGB value was very high or very small. Table 5 indicates that the predicted
mean values using all these models were smaller than the mean from the sample plots, implying the
overall underestimation using these models. The much larger minimum values and smaller maximum
values from the RF and kNN models, compared to those from ANN, SVR, and LR, imply that the RF
and kNN modeling algorithms were not able to properly predict AGB when the values of AGB were
small or large.
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Table 3. The regression models for AGB estimation based on the non-stratification scenario.

Datasets Models R2

Landsat TM YTM = 111.058 − 24.186Tb7w3ME + 4.549Tb7w3CON + 23.233Tb4w5EN + 9.641Tb7w3COR
+ 9.132Tb3w3ME

0.36

ALOS PALSAR
YSAR = 44.761 + 13.553THVw5ME + 43.273THVw7DI − 44.889THVw3VA +
15.513THHw3COR − 35.278THHw7COR + 17.115THVw3CON − 4.315THHw9CON +
23.215THVw7VA

0.19

Combination
Ycomb = 179.760 − 23.772Tb7w3ME + 12.772Tb7w3VA + 51.012THVw7DI −
33.133THHw9COR + 12.233THHw3COR − 31.541Tb4w5HO + 8.998Tb2w5ME −
5.177THHw9CON + 2.989THHw5CON − 16.234THVw3VA

0.41

Table 4. The identified variables for AGB estimation modeling using the RF approach based on the
non-stratification scenario.

Datasets The Identified Variables from Different Remote Sensing Data R2

Landsat TM Sb7, Tb7w3ME, Tb3w5SM, Tb4w5HO, Tb7w5DI, Tb3w7VA, Tb7w7EN, Tb5w9ME 0.87

ALOS PALSAR THHw3ME, THHw7ME, THHw5HO, THHw9SM, THHw9VA, HV, THVw7ME, THVw5HO,
THVw9CON, THVw9EN, THVw9VA

0.62

Combination Sb7, HH, THHw5ME, HV, THVw7ME, THVw7CON, THVw9EN 0.60

Note: Sbi, spectral band i; Tbiwjxx, a texture image developed using the texture measure xx (xx can be such texture
measures as ME (mean), VA (variance), HO (homogeneity), CON (contrast), DI (dissimilarity), EN (entropy), SM
(second moment), COR (correlation)) on spectral band i (bi) with a window size of j × j pixel (wj); HH (horizontally
transmitted and received) and HV (horizontally transmitted and vertically received) represent two polarization
options of the PALSAR image.

Table 5. Summary of statistical results of the predicted AGB images.

Data Models Mean Std Dev Minimum Maximum Data Range

Landsat TM

RF 93.0 22.9 42.0 148.7 106.7
ANN 88.4 26.6 19.1 187.1 168.0
SVR 88.3 22.2 19.3 149.0 129.7
kNN 88.8 26.9 32.9 164.7 131.8
LR 90.6 26.2 1.7 180.0 178.3

ALOS
PALSAR

RF 92.4 15.2 39.8 153.8 114.0
ANN 91.8 17.0 1.6 150.5 148.9
SVR 91.5 11.3 19.6 122.1 102.5
kNN 93.7 14.7 55.8 127.1 71.3
LR 92.1 18.4 1.5 135.5 134.0

Combination

RF 93.0 22.9 41.9 148.8 106.9
ANN 90.2 26.3 0.7 181.3 180.6
SVR 86.6 24.5 0.7 176.1 175.4
kNN 92.0 16.6 43.2 137.7 94.5
LR 89.8 29.7 1.6 177.8 176.2

Sample plots Statistics 95.9 33.9 25.7 180.7 155.0

Note: RF, Random Forest; ANN, artificial neural networks; SVR, support vector regression; kNN, k-nearest neighbor;
LR, linear regression.

The performance of the predictions can be explained with the scatterplots showing the
relationships between the AGB estimates and reference data (Figure 4). It indicates that the
overestimation and underestimation problems were obvious for all the prediction results, no matter
which datasets and modeling algorithms were used. This situation especially became worse for the
PALSAR-based predictions. For Landsat imagery, when AGB was within 50–130 Mg/ha, the residuals
were relatively small, but for ALOS PALSAR data, the AGB ranges became narrower, only about
90–120 Mg/ha. The combination of Landsat TM and ALOS PALSAR did not improve the residuals
(Figure 4). The RMSE and RMSEr results (Table 6) quantitatively confirmed this situation; that is,
Landsat TM produced more accurate AGB estimates than ALOS PALSAR data no matter which
modeling algorithms were used. The combination of Landsat and ALOS PALSAR data provided
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slightly better performance for LR, similar performance for SVR and ANN, and worse performance for
RF and kNN. Overall, Landsat TM imagery had smaller RMSE values of 27.7–29.3 Mg/ha compared
with 30.3–33.7 Mg/ha for ALOS PALSAR.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 22 
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Figure 4. The relationships between AGB estimates from different models against plot reference values.
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Table 6. Summary of accuracy assessment results based on different scenarios.

Algorithms

Datasets Landsat TM ALOS PALSAR Combination

RMSE RMSEr RMSE RMSEr RMSE RMSEr

RF 28.4 29.5 33.2 34.5 30.3 31.5
ANN 27.7 28.8 30.3 31.5 27.6 28.7
SVR 28.2 29.3 32.1 33.4 28.2 29.3
kNN 28.3 29.4 33.7 35.0 30.8 32.0
LR 29.3 30.5 32.9 34.2 27.7 28.8

Note: RF, Random Forest; ANN, artificial neural networks; SVR, support vector regression; kNN, k-nearest neighbor;
LR, linear regression; RMSE, root mean squared error (Mg/ha); RMSEr, relative root mean squared error (%).

The above analysis was based on overall performance of different data sources and modeling
algorithms but cannot provide detailed information on how different forest types and AGB ranges
affected the AGB estimation under non-stratification scenarios. Table 7 summarizes the RMSE and
RMSEr results for different scenarios. These results indicate that in terms of RMSE, mixed forests and
the forests with an AGB range greater than 160 Mg/ha had the highest RMSE values for different
datasets. However, because of the different AGB average values for the forest types and AGB ranges,
bamboo forests and the forests with an AGB range less than 40 Mg/ha had the largest values of RMSEr.
Although ANN provided the best overall estimation results for different datasets, LR provided the
best estimation for broadleaf and bamboo forests and the forests with an AGB range of 40–120 Mg/ha
when Landsat data were used. For the ALOS PALSAR data, SVR provided the best estimation when
the AGB range was 40–160 Mg/ha. Table 7 indicates that no datasets and modeling algorithms can
be optimal for all forest types or for different AGB ranges, implying the necessity to develop AGB
estimation models according to specific forest types.

Table 7. Summary of RMSE (Mg/ha) and RMSEr (%) results from different scenarios under
non-stratification conditions.

Data Model
RMSE (Mg/ha)

Overall
Forest Type AGB Ranges (Mg/ha)

MXF BLF CFF BBF <40 40–120 120–160 >160

Landsat TM

RF 28.4 32.0 26.2 28.6 24.4 34.6 23.2 35.9 53.6
ANN 27.7 30.0 26.2 28.6 25.0 37.4 25.5 29.1 50.2
SVR 28.2 31.9 25.4 28.7 23.9 36.7 24.5 30.5 57.5
kNN 28.3 32.6 26.5 28.5 22.0 29.7 24.7 34.7 61.0
LR 29.3 32.6 24.4 28.7 21.3 35.0 22.4 34.2 61.0

ALOS PALSAR

RF 33.2 36.8 29.5 33.8 28.5 42.5 27.4 36.9 74.6
ANN 30.3 36.0 26.4 30.9 31.1 45.2 25.2 35.4 67.8
SVR 32.1 35.4 28.2 31.9 34.7 50.6 24.7 32.2 73.6
kNN 33.7 39.2 31.6 32.9 32.8 46.0 26.3 40.6 78.6
LR 32.9 37.0 31.0 32.4 32.0 47.5 27.3 37.1 70.3

Comb.

RF 30.3 35.6 26.1 30.4 28.5 39.3 23.5 37.8 68.3
ANN 27.6 31.7 24.0 28.2 23.4 35.5 23.7 31.6 53.6
SVR 28.2 33.3 23.9 29.0 21.6 34.0 23.9 32.7 56.3
kNN 30.8 35.2 28.7 30.6 28.1 35.9 25.3 36.1 68.3
LR 27.7 34.4 24.9 28.2 20.9 35.7 22.9 32.4 58.6
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Table 7. Cont.

Data Model
RMSEr (%)

Overall
Forest Type AGB Ranges (Mg/ha)

MXF BLF CFF BBF <40 40–120 120–160 >160

Landsat TM

RF 29.5 30.4 29.3 27.4 47.7 95.7 27.8 26.3 31.3
ANN 28.8 28.5 29.3 27.4 48.9 103.4 30.5 21.3 29.3
SVR 29.3 30.3 28.4 27.5 46.8 101.5 29.3 22.3 33.6
kNN 29.4 31.0 29.7 27.3 43.0 82.2 29.6 25.4 35.6
LR 30.5 31.0 27.3 27.5 41.7 96.8 26.8 25.0 35.6

ALOS PALSAR

RF 34.5 34.9 33.0 32.4 55.8 117.6 32.8 27.0 43.6
ANN 31.5 34.2 29.6 29.6 60.8 125.0 30.2 25.9 39.6
SVR 33.4 33.6 31.6 30.6 67.9 140.0 29.6 23.6 43.0
kNN 35.0 37.2 35.4 31.5 64.2 127.2 31.5 29.7 45.9
LR 34.2 35.1 34.7 31.1 62.6 131.4 32.7 27.2 41.1

Comb.

RF 31.5 33.8 29.2 29.1 55.8 108.7 28.1 27.7 39.9
ANN 28.7 30.1 26.9 27.0 45.8 98.2 28.4 23.1 31.3
SVR 29.3 31.6 26.8 27.8 42.3 94.0 28.6 23.9 32.9
kNN 32.0 33.4 32.1 29.3 55.0 99.3 30.3 26.4 39.9
LR 28.8 32.7 27.9 27.0 40.9 98.7 27.4 23.7 34.2

Note: RMSE, root mean squared error; RMSEr, relative root mean squared error; RF, Random Forest; ANN, artificial
neural networks; SVR, support vector regression; kNN, k-nearest neighbor; LR, linear regression; MXF, mixed forest;
BLF, broadleaf forest; CFF, coniferous forest; BBF, bamboo forest; AGB, aboveground biomass.

4.2. Comparative Analysis of AGB Modeling Results Based on Stratification of Forest Types

The AGB models derived using five algorithms and three datasets for four forest types were
compared (Tables 8 and 9). The texture measures mean, correlation, or both were involved in almost
all AGB models, implying that the textures had significant contributions in improving the predictions
of AGB. When Landsat TM images alone or their combination with PALSAR data were utilized, the
TM spectral bands 5 and 7 and textures were frequently included in the AGB models, implying the
significant roles of spectral variables in AGB estimation modeling. In the coniferous forest AGB
models, the relevant Landsat TM spectral variables were often selected, meaning that the variables had
a potential influence on the predictions of AGB mainly because in this study area the coniferous forests
consisted mainly of pine and Chinese fir plantations that were characterized by simple forest canopy
structures. This conclusion is similar to those in tropical forest regions of the Amazon where spectral
responses were more important than textures for the forest sites with relatively simple forest stand
structure [4,54]. On the other hand, the texture measures were involved in the models of other forests
types, including broadleaf forests and mixed forests that had multiple canopy layers and complex
canopy structures. This implies that the textures could account for the complicated forest structures [4].
If PALSAR data were used alone, the PALSAR-derived textures were added into almost all the models,
indicating they had great potential to improve the predictions of AGB models. In the AGB models of
broadleaf forests built using the PALSAR data and LR, only one texture was selected, which indicates
that the PALSAR data were not appropriate for use to develop AGB modeling of the broadleaf forests.

The AGB predictions of the aforementioned models were assessed based on the values of RMSE
and RMSEr according to forest types and AGB ranges (Table 10). Compared with those from the
models without stratification of forest types (Table 7), most of the RMSE and RMSEr values from
the models with stratification of forest types were considerably reduced (Table 10) for three datasets
and five methods, and this was especially true for the combination of Landsat TM and PALSAR
data. For example, the overall RMSE and RMSEr values decreased from 30.3 Mg/ha and 31.5% to
26.1 Mg/ha and 27.1%, respectively, for the RF method. For the AGB models of mixed forests, the
values of RMSE decreased from a range of 31.7–35.6 Mg/ha to a range of 24.7–26.5 Mg/ha, implying a
statistically significant reduction of RMSE due to the stratification of forest types. For the models of
bamboo forests, all the methods except LR generated significantly smaller values of RMSE and RMSEr
after the stratification of forest types than those without the stratification. The reduction of errors due
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to the stratification was also noticed in the AGB models of coniferous forests but not in the models of
broadleaf forests.

Comparison of the results between Tables 7 and 10 indicates that stratification of forest types
was effective in reducing RMSE or RMSEr in different AGB ranges using these modeling algorithms.
For both non-stratification and stratification situations, a similar conclusion is that AGB estimation
had the lowest RMSE or RMSEr when AGB was in the range of 40–120 Mg/ha, had the highest RMSE
values when AGB was greater than 160 Mg/ha, and had the highest RMSEr values when AGB was
less than 40 Mg/ha. The stratification was especially valuable when AGB was greater than 160 Mg/ha.
For example, for the Landsat TM image, RMSE values were reduced from 61 Mg/ha (see Table 7) to
53.4–53.9 mg/ha (see Table 10) when kNN or LR was used; and for ALOS PALSAR data, the RMSE
values were reduced from 67.8–78.6 Mg/ha to 58.5–64.3 Mg/ha for different modeling algorithms. For
the combined Landsat TM and ALOS PALSAR data, the stratification reduced RMSE from 58.6 Mg/ha
(Table 7) to 41.5 Mg/ha (Table 10) using LR when AGB was greater than 160 Mg/ha. This research
implies that stratification is especially valuable for forest sites having high AGB amounts.

Table 8. Linear regression models for AGB estimation based on different data sources under
stratification of forest type.

Data
Linear Regression Models for Different Forest Types

MXF BLF CFF BBF

Landsat TM

YTM = 71.008 +
40.317Tb3w9COR −
10.625Tb7w9ME +
52.797Tb2w3CON −
206.413Tb4w5HO +
109.316Tb5w5HO +
260.741Tb4w3SM +
104.65Tb3w9HO −
6.329Tb5w3ME

YTM = 177.747 −
0.165Sb7 + 0.151Sb3
− 28.648Tb5w5COR
− 20.974Tb2w9CON
+ 1.282Tb4w3VA

YTM = 183.858 − 0.021Sb5 −
118.949Tb5w5SM − 9.12Tb7w3ME

YTM = 96.657 +
23.498Tb2w7COR −
8.597Tb7w9ME

ALOS
PALSAR

YSAR=174.082 −
11.082THHw9ME

YSAR = 151.113 −
70.931THHw7COR −
144.26THHw7SM −
55.692THVw9CON

YSAR = 175.648 + 20.049THHw3COR−
41.359THHw7COR −
150.38THVw7HO+ 13.14THHw5ME −
38.094THHw9DI + 19.933THVw5COR

YSAR = 120.636 +
63.802THVw7CON −
38.269THHw9EN +
19.958THHw5COR −
39.861THVw3VA +
0.009HV −
164.441THHw9SM

Comb.

Ycomb=176.174 +
43.325Tb3w9COR −
11.337Tb7w9ME +
68.823Tb2w3CON −
205.811Tb4w5HO +
116.538Tb5w5HO +
315.581Tb4w3SM −
8.284THHw3ME −
52.339Tb3w7VA −
2.713Tb4w3ME +
36.675THHw3HO

Ycomb = 245.956 −
0.155Sb7 −
74.642THHw7HO −
50.144THHw9COR +
0.123Sb3

Ycomb = 179.245 − 0.044Sb5 +
23.818THHw3COR − 52.009Tb5w5HO
+ 11.293THVw5ME − 42.93THVw7COR
+ 25.813THVw5COR +
18.357Tb7w7COR + 7.282THHw3CON
− 31.22THHw5EN + 19.111THHw3EN

Ycomb = 199.125 +
123.557THVw7CON −
41.769THHw9EN +
25.32Tb2w7COR +
27.018THHw5COR −
40.484Tb4w3HO −
125.836THHw9HO +
35.594Tb7w3SM +
0.006Sb4 −
105.66THVw7DI
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Table 9. The identified variables using the RF approach based on different data sources under
stratification of forest types.

Data
The Selected Variables for Different Forest Types Using the RF Approach

MXF BLF CFF BBF

Landsat TM Tb3w7COR, Tb3w9COR,
Tb4w9ME, Tb5w3ME,

Tb4w9COR, Tb5w5VA,
Tb5w5COR, Tb5w9ME,
Tb7w3ME

Sb3, Sb5, Tb3w9VA, Tb4w7DI,
Tb5w5ME, Tb5w5DI, Tb5w7EN,
Tb5w7VA, Tb7w3ME,
Tb5w7ME,Tb7w9SM

Tb2w7VA, Tb3w7COR,
Tb3w9COR, Tb4w3ME,
Tb4w9ME, Tb5w3ME,
Tb5w9ME

ALOS
PALSAR

THHw9CON, THHw7HO,
THVw3SM, THVw5SM,
THVw7VA,THVw7HO
THVw9SM

HH, THHw5ME,
THHw7CON, THHw7COR,
THHw9SM, THVw7CON,
THVw9EN

HH, THHw3COR, THHw3VA,
THHw5DI, THHw7ME, THHw9CON,
THHw9VA, THHw9HO, THHw9SM,
THVw3SM, THVw5ME

HV, THHw3VA,
THHw5ME, THHw5EN,
THHw9EN, THVw7HO,
THVw9VA, THVw9SM

Comb.

Sb5,Tb2w7VA, Tb3w7COR,
Tb3w9COR, Tb4w3ME,
Tb4w9ME, Tb5w5ME,
Tb6w7ME

Sb5, Tb5w9ME, Tb5w3ME,
THHw7COR, THVw7HO

Sb3, Sb6, Tb5w3ME, Tb4w7DI,
Tb6w5ME, Tb6w5HO, Tb6w5COR,
THHw3COR, THHw3VA, THHw7ME

Tb4w3ME, Tb4w7VA,
Tb5w5ME, HV,
THHw3ME, THVw7HO

Note: MXF, mixed forest; BLF, broadleaf forest; CFF, coniferous forest; BBF, bamboo forest; Sbi, spectral band i; Tbiwjxx,
a texture image that was developed using the texture measure xx (xx can be such texture measure as ME (mean), VA
(variance), HO (homogeneity), CON (contrast), DI (dissimilarity), EN (entropy), SM (second moment), COR (correlation))
on spectral band i (bi) with a window size of j × j pixel (wj); HH (horizontally transmitted and received) and HV
(horizontally transmitted and vertically received) represent two polarization options of the PALSAR image.

Table 10. Summary of RMSE (Mg/ha) and RMSEr (%) results from different scenarios under
stratification of forest types.

Data Model
RMSE (Mg/ha)

Overall
Forest Type AGB Range (Mg/ha)

MXF BLF CFF BBF <40 40–120 120–160 >160

Landsat TM

RF 26.8 28.8 24.5 27.3 20.4 34.5 23.0 28.8 50.4
ANN 25.5 28.8 24.2 26.4 19.9 31.6 21.6 29.1 50.4
SVR 25.8 28.4 25.1 26.9 20.8 35.4 24.0 28.7 51.5
kNN 28.0 28.9 26.5 29.1 21.9 28.1 24.5 33.7 53.4
LR 27.4 28.7 25.4 26.7 21.4 35.4 22.6 33.6 53.9

ALOS PALSAR

RF 30.2 30.7 29.5 30.8 24.6 39.3 25.1 36.5 63.8
ANN 28.0 28.1 29.3 27.6 21.0 41.1 23.6 34.1 60.0
SVR 29.1 29.8 30.3 28.8 22.5 46.9 23.7 31.8 60.1
kNN 29.9 31.9 30.6 29.0 23.7 47.1 24.6 37.5 64.3
LR 29.8 31.7 31.1 29.5 22.1 48.5 25.4 36.6 58.5

Comb.

RF 26.1 27.1 24.8 28.5 23.4 35.3 23.0 33.3 62.8
ANN 24.7 26.8 23.5 25.9 19.1 30.4 21.6 25.1 52.0
SVR 25.7 27.8 24.4 27.1 20.3 32.1 23.2 31.9 49.6
kNN 26.5 27.3 25.2 27.7 20.7 33.9 34.1 33.5 59.4
LR 26.4 27.9 25.4 26.1 20.6 34.3 22.1 31.0 41.5

Data Model
RMSEr (%)

Overall
Forest Type AGB Range (Mg/ha)

MXF BLF CFF BBF <40 40–120 120–160 >160

Landsat TM

RF 27.9 27.4 27.4 26.2 39.9 97.1 27.7 21.2 29.9
ANN 26.5 27.4 27.1 25.3 38.9 88.9 26.0 21.3 29.9
SVR 26.8 27.0 28.1 25.8 40.7 99.6 28.9 21.1 30.6
kNN 29.1 27.4 29.7 27.9 42.8 79.1 29.5 24.8 31.8
LR 28.4 27.3 28.4 25.6 41.9 99.6 27.2 24.7 32.1

ALOS PALSAR

RF 31.4 29.2 33.0 29.5 48.1 110.5 30.2 26.8 37.9
ANN 29.1 26.7 32.8 26.5 41.1 115.6 28.4 25.1 35.7
SVR 30.2 28.3 33.9 27.6 44.0 131.9 28.5 23.4 35.7
kNN 31.1 30.3 34.3 27.8 46.4 132.5 29.6 27.6 38.2
LR 31.0 30.1 34.8 28.3 43.2 136.4 30.6 26.9 34.8

Comb.

RF 27.1 25.7 27.8 27.3 45.8 99.3 27.7 24.5 37.3
ANN 25.7 25.5 26.3 24.8 37.4 85.5 26.0 18.4 30.9
SVR 26.7 26.4 27.3 26.0 39.7 90.3 27.9 23.4 29.4
kNN 27.5 25.9 28.2 26.5 40.5 95.4 29.0 24.7 35.3
LR 27.4 26.5 28.4 25.0 40.3 96.5 26.6 22.8 24.7

Note: RMSE, root mean squared error; RMSEr, relative root mean squared error; RF, Random Forest; ANN, artificial
neural networks; SVR, support vector regression; kNN, k-nearest neighbor; LR, linear regression; MXF, mixed forest;
BLF, broadleaf forest; CFF, coniferous forest; BBF, bamboo forest.
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5. Discussion

5.1. Selection of Suitable Variables for AGB Modeling

Many remote sensing variables, such as spectral bands, vegetation indices, textures, and image
transformations (e.g., principal component analysis, tasseled cap, minimum noise fraction) [2] can
be used as potential predictors for AGB modeling. The variables can be extracted at pixel, subpixel,
and object levels. The pixel-level variables are commonly used. However, only a limited number
of the remote sensing variables are useful because of their high correlations. For example, near
infrared, normalized difference vegetation index and greenness from tasseled cap transform have
similar vegetation information. The inclusion of such variables cannot improve AGB modeling
performance [45]. In reality, the roles of spectral bands and textures in AGB modeling are dependent
on the complexity of forest structures [2,4]. For example, this research indicated that the SWIR bands
(e.g., Landsat TM spectral bands 5 and 7) play a more important role than visible and near-infrared
bands. This conclusion is similar to that from previous studies on the moist tropical forests in the
Amazon [4,45] and the Mediterranean forests [55]. The more important role of SWIR than near-infrared
and visible spectral bands in AGB modeling may be due to the fact that SWIR is more sensitive to
moisture and shade components inherent in the forest stand structure and that atmospheric conditions
have less impact on spectral signatures than other shorter wavelength (e.g., near-infrared and visible)
spectral bands. In particular, for the complex forest types in tropical and subtropical regions, SWIR
is more valuable in AGB modeling than shorter wavelength spectral bands due to the wide spectral
variation in the near-infrared band and being less sensitive to forest spectral signatures in the visible
bands [3,4]. The higher data saturation values of AGB in SWIR than visible and near-infrared spectral
bands further confirm the more important role of SWIR in AGB modeling (3). This research also implied
that textures are another group of important variables for AGB modeling; in particular, textures may
play more important roles than spectral bands in forest sites with complex forest stand structures. This
was also confirmed in the Brazilian tropical forests [54] and subtropical forests [3,6]. However, it is
critical to identify an optimal combination of textural images [5]. Because of the different features
between textural images and pixel-level spectral responses, the combinations of these variables have
proven helpful in improving predictions of AGB [3,4], and this research confirmed this conclusion no
matter which modeling algorithm (LR or machine learning) was used. This research also indicates
that AGB modeling requires multiple variables from remote sensing data, no matter which sensor
data and which modeling algorithms were used. This implies that a single variable alone cannot
effectively capture the complexity of forest stand structure and, thus, cannot provide satisfactory AGB
estimation performance.

This research indicated that ALOS PALSAR data had poorer performance in AGB estimation
than Landsat TM data no matter which modeling algorithm was used and the combination of TM
and PALSAR could not improve or had limited effects in AGB estimation. A similar conclusion was
also obtained in tropical forests [56–58]; for example, Hame et al. found that ALOS AVNIR data had
better performance in AGB estimation than ALOS PALSAR data, and a combination of both data could
not improve AGB estimation in the tropical forests in Laos [56]. This conclusion seems against our
initial hypothesis that synthetic aperture radar (SAR) L-band data can provide the vertical structure
of the forest and thus should have better performance than the optical sensor data. This is because
SAR data represent the roughness of forest canopy and AGB is not directly related to the forest surface
roughness, resulting in poor AGB modeling performance [6]. The poorer performance in SAR data
than in optical sensor data was also confirmed in forest classification in the moist tropical regions
in the Amazon [57,58]. Because Landsat TM and ALOS PALSAR data characterize forest structure
differently, we expected that the combination of both data might improve AGB modeling performance.
However, this research indicated that the combination, as either extra bands or data fusion, has limited
effects in improving AGB modeling. The possible reasons may be that (1) the relatively coarse spatial
resolution in ALOS-1PALSAR data (25-m spatial resolution in this research) cannot effectively capture
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the forest stand structures of different forest types and (2) the data saturation in both Landsat and
PALSAR data impedes the improvement of estimation [3,6]. Compared to the ALOS-1 PALSAR data
used in this research, the current ALOS-2 PALSAR data with higher spatial resolution may provide
rich forest stand structure information and may improve AGB modeling performance.

5.2. Selection of Modeling Algorithms

LR is commonly used for AGB modeling [2] and this research indicated its good performance,
especially when AGB falls within 40–120 Mg/ha. This research also showed that not all machine
learning and nonparametric algorithms led to more accurate AGB estimates than LR, although they
have some advantages in data selection. The time for optimizing the parameters used in the relevant
models was much longer than that required by LR. In addition, the requirement for sample plots (e.g.,
number of sample plots and the data range) was much stricter than LR; this is especially true for RF
and kNN, which limited their extensions to the predictions of very low or very high AGB values, as
shown in Table 5. However, when AGB values are very large or very small, machine learning and
nonparametric algorithms can indeed improve AGB modeling performance. For example, this research
indicated that when AGB values were greater than 120 Mg/ha, especially greater than 160 Mg/ha,
ANN based on Landsat TM imagery improved AGB estimation by 3.7–6.3% of RMSEr compared with
LR. When AGB values were less than 40 Mg/ha, RMSEr was reduced from 96.8% using LR to 82.2%
using kNN. This implies that proper selection of modeling algorithms is also valuable in improving
AGB modeling, especially for the AGB values that are very low or very high.

5.3. Potential Solutions to Improve AGB Estimation

This research indicated that no single algorithm was optimal for all forest types, and that bamboo
forests were an important contribution resulting in poor estimation accuracy. Table 7 implies that
different remote sensing data and modeling algorithms should be used for different forest types to
improve AGB estimation. That is, it is valuable to develop specific AGB models for various forest
types. However, this situation produces a big challenge in AGB modeling because of the requirement
in number of sample plots and the transfer of AGB models in a large area. Table 9 confirms the
value in improving AGB modeling using the stratification of forest types. This conclusion is similar
to our previous finding that stratification of forest types [3] was an effective approach to improve
AGB estimation. This research also indicated that AGB range was another factor influencing the AGB
estimation. Stratification based on AGB range was especially valuable for improving the predictions
of AGB with very high or very low values [9]. However, the challenge of using stratification is the
requirement of a sufficient number of sample plots, which is often difficult considering the cost and
intensive labor, especially when the AGB estimation is based on historical data [2].

Previous research and this case study indicate that small or large AGB values are the major factors
influencing AGB modeling performance. For the forest sites with small AGB values, the complex
composition of land cover type, such as bare soils, grass, and/or shrubs, is the major reason. Spectral
unmixing may be one solution [54]. For the forest sites with large values of AGB, the data saturation in
optical sensors such as Landsat imagery and in radar such as ALOS PALSAR [6] is the major reason
for considerable underestimation of AGB. To date, there are no effective approaches to solve the data
saturation problem, except the improvement of radiometric resolution and the use of stereo images
and lidar data [2]. In recent years, airborne lidar and space-borne stereo images have become easily
available, as well as other high spatial resolution images such as Worldview, Pleiades, and Quickbird.
Therefore, more research should be directed toward integrating multiple remote sensing data for
improving AGB estimation.

The representativeness of sample plots is fundamental for AGB modeling. The uncertainty of
sample plot data could be from the sampling approach, plot size, the allometric equations for AGB
calculation, and the measurements of tree attributes during fieldwork. Removal of the sample plots
that do not have good representativeness is needed. Compared to previous work by Zhao et al. [3,6],



Remote Sens. 2018, 10, 627 19 of 22

this research reduced the RMSEr for the forest sites with less than 40 Mg/ha, from 137 to 96.8%,
by the refinement of sample plots based on LR. The overall RMSEr was also reduced from 32% in
Zhao et al. [6] to 30.5% in this research. If a sufficient number of sample plots are collected for the
forest sites with high AGB or low AGB values, development of AGB estimation models based on AGB
ranges may considerably improve AGB estimation accuracy.

6. Conclusions

This research selected a subtropical forest region in Zhejiang Province, China, as a case study
to explore the AGB estimation through a comparative analysis of different modeling algorithms
(i.e., RF, ANN, SVR, kNN, and LR) based on Landsat TM, ALOS PALSAR, and their combination under
stratification and non-stratification of forest types. The results indicate the following: (1) Landsat
TM imagery provided more accurate estimates of AGB than ALOS PALSAR, and the combination
of TM and PALSAR had limited effects on improving AGB estimation. (2) Overestimation for small
AGB values and underestimation for large AGB values were major problems when using the optical
(e.g., Landsat) and radar (e.g., ALOS PALSAR) data. (3) LR was still an important tool for AGB
modeling, especially for the AGB range of 40–120 Mg/ha; machine learning and nonparametric
algorithms had limited effects on improving AGB estimation; however, ANN was relatively the best
model in this study. (4) Overall, RF and kNN were not suitable for AGB prediction for the forest
sites with relatively low (e.g., less than 40 Mg/ha) or high (e.g., greater than 160 Mg/ha) AGB values.
(5) Forest types and AGB ranges were important factors influencing AGB modeling performance;
stratification based on both forest types and AGB ranges might provide great potential for improving
AGB estimation if a sufficient number of sample plots were available. (6) More research should focus
on improving AGB estimation for forest sites with relatively low (e.g., less than 40 Mg/ha) and high
(e.g., greater than 120 Mg/ha) AGB values. However, purely Landsat or ALOS PALSAR data cannot
solve this problem. As multiple source data such as lidar, stereo images, SAR, optical sensors, and
ancillary data (e.g., DEM, climate, soil) become more easily available, more research should focus on
the effective integration of different source data for developing AGB estimation models under the
stratification based on both forest type and AGB range.
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