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Abstract: Deformation monitoring of structures is a common application and one of the major
tasks of engineering surveying. Terrestrial laser scanning (TLS) has become a popular method
for detecting deformations due to high precision and spatial resolution in capturing a number of
three-dimensional point clouds. Surface-based methodology plays a prominent role in rigorous
deformation analysis. Consequently, it is of great importance to select an appropriate regression
model that reflects the geometrical features of each state or epoch. This paper aims at providing
the practitioner some guidance in this regard. Different from standard model selection procedures
for surface models based on information criteria, we adopted the hypothesis tests from D.R. Cox
and Q.H. Vuong to discriminate statistically between parametric models. The methodology was
instantiated in two numerical examples by discriminating between widely used polynomial and
B-spline surfaces as models of given TLS point clouds. According to the test decisions, the B-spline
surface model showed a slight advantage when both surface types had few parameters in the first
example, while it performed significantly better for larger numbers of parameters. Within B-spline
surface models, the optimal one for the specific segment was fixed by Vuong’s test whose result was
quite consistent with the judgment of widely used Bayesian information criterion. The numerical
instabilities of B-spline models due to data gap were clearly reflected by the model selection tests,
which rejected inadequate B-spline models in another numerical example.

Keywords: terrestrial laser scanning; surface modeling; B-spline; polynomial; Gauss-Markov model;
simulation-based Cox’s test; Vuong’s test

1. Introduction

Deformation monitoring of engineering structures such as bridges, tunnels, dams, and tall buildings
is a common application of engineering surveying [1]. As summarized in Mukupa et al. [2], deformation
analysis can be based on different comparison objects, namely, point-to-point, point-to-surface, or
surface-to-surface. The point-to-point-based analysis is a common approach to describe deformations
that are captured by conventional point-wise surveying techniques. Examples of such techniques are
the total station and the global navigation satellite system; however, in many cases, these have been
surpassed by the use of LiDAR technology, especially terrestrial laser scanning (TLS) [3,4]. Although
the single-point precision of TLS is in the sub-centimeter range (±2 to±25 mm), the high redundancy of
the scanning observations facilitates a higher precision via the application of least-squares based curve
or surface estimation and, hence, an adequate precision of the estimated deformation parameters [5].
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A point-to-surface-based analysis is carried out to represent a deformation by the distance between
the point cloud in one epoch and the surface estimated from measurements in another epoch.
Such a surface can be constructed as a polygonal model (mesh) [6–8] or as a regression model
(e.g., a polynomial or B-spline surface model) [9–13]. The procedure of a surface-to-surface-based
deformation analysis, which is appropriate in certain situations, is to divide the point clouds into
cells and to compare the parameters of fitted planes based on cell points in two epochs. This method
is applied in Lindenbergh et al. [14], where the different positions of the laser scanner and strong
wind contribute to the change of the coordinate system. The aforementioned three approaches to
deformation analysis are complemented by the “point-cloud-based” approach, in which a deformation
is reflected by the parameters of a coordinate transformation between sets of point clouds in various
epochs. The common algorithm for determining the transformation matrix is the iterative closest
point algorithm. The authors of Girardeau-Montaut et al. [15] presented three simple cloud-to-cloud
comparison techniques for detecting changes in building sites or indoor facilities within a certain time.

Aiming at rigorous deformation detection from scatter point clouds, it is crucial to describe
the geometrical features of the object accurately by an appropriate curve or surface regression
model, and emphasis is put on the latter model in this paper. The purpose of surface fitting is
to estimate the continuous model function from the scatter point samples, which can be implemented
by approximation in the case of redundant measurements. There are many approximation approaches
for working with surfaces based on an implicit, explicit, or parametric form. Parametric models are
usually employed to fit point cloud data in applications such as deformation monitoring and reverse
engineering. Different parametric models perform differently in terms of accuracy and number of
coefficients when fitted to a dataset. Among the many methods utilized in various applications for
approximating point clouds, polynomial model fitting is usually applied to smooth and regular objects
due to its simple operation. In [16], the authors assumed a concrete arch as regular and analyzed
the deformation behavior through comparing fitted second-degree polynomial surfaces. The more
involved fitting of B-splines and non-uniform rational basis splines is often preferred for modeling
geometrically complicated objects. In this context, much research has focused on the optimization of
the mathematical and stochastic models. In Bureick et al. [17], the authors optimized free-form curve
approximation by means of an optimal selection of the knot vector. Furthermore, in Harmening and
Neuner [18], the authors improved the parametrization process in B-spline surface fitting by using
an object-oriented approach instead of focusing on a superior coordinates system, thereby enabling
the generated parameters to reflect the features of the object realistically. Moreover, in Zhao et al. [19],
the authors suggested a new stochastic model for TLS measurements and used the resulting covariance
matrix within the least-squares estimation of a B-spline curve.

The need for model selection and statistical validation was emphasized in Wunderlich et al. [20],
the authors of which described the deficiencies in current areal deformation analysis and presented
possible strategies to improve this situation. Typically, the selection of surface model depends on the
object features—for example, whether the surface is regular or irregular. However, in most cases, it is
unclear whether the object is smooth enough to be described by a simple model (e.g., as a low-order,
global polynomial surface) or not. This limitation serves as the motivation for discriminating between
estimated surface models in order to select the most appropriate one. In the context of model selection,
Harmening and Neuner [21,22] investigated statistical methods based on information criteria and
statistical learning theory for selecting the optimal number of control points within B-spline surface
estimation. Another possibility is to compare the (log-)likelihoods of competing models directly
by means of the general testing principle by D.R. Cox [23]. In Williams [24], the authors improved
the Cox’s test based on the use of Monte-Carlo simulation, which is straightforward to implement.
This kind of test has already been used in Zhao et al. [19] to select the best fitting stochastic model
for B-spline curve estimation. In Vuong [25], the authors use likelihood-ratio-based statistics to
discriminate the competing models based on Kullback–Leibler information criterion. Such hypothesis
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tests offer the advantage that significant probabilistic differences between models can be detected,
which is information that has not been provided by the methods mentioned previously.

The motivation of this paper lies in the selection of the most parsimonious, yet sufficiently
accurate, parametric description of structure based on TLS measurements, whose model is applied to
reflect the surface-based deformation of measured objects. Different from standard model selections
procedures based on information criteria, we introduce two likelihood-ratio tests from D.R. Cox and
Q.H. Vuong, which are instantiated in numerical examples to discriminate statistically between
widely used polynomial and B-spline surfaces as models of given TLS point clouds. The selected
surface model’s performance in reflecting deformation is compared with the result of the block-means
approach. The paper is organized as follows. In Section 2, the methodology of surface approximation
and model selection is reviewed and explained. This methodology is instantiated in two numerical
examples by discriminating between widely used polynomial and B-spline surfaces. The evaluation of
approximated surface models as well as their performance in deformation analysis are given as results
in Section 3. The subsequent Section 4 provides a further discussion on the results and a comparison
with results obtained by some well-known penalization information criterion approaches. Finally,
conclusions are drawn in Section 5.

2. Methodology

2.1. Experiment Design

An experiment was conducted jointly with the Institute of Concrete Construction of the
Leibniz Universität Hannover to probe the load-caused behavior and ultimate bearing capacity of a
concrete arch structure with a length of about 2 m and thickness of 0.1 m. Loads were placed on top of
the arch’s surface for 13 epochs, within which the load was exerted with a uniform speed (2 kN/min)
of about 20 min followed by a break of approximately 10 min for data capture [9]. The weight of load
was increased continuously and reached 520 kN at the end of the 13th epoch.

A multi-sensor-system (MSS) consisting of a TLS (here Z+F Imager 5006), laser tracker
(here Leica AT960LR) and digital camera (here Nikon D750) were used to acquire the data from
the deformable arch structure. The positions of the MSS relative to the arch structure are shown in
Figure 1 (see also [16]). TLS data were acquired in “super high” resolution mode with normal quality.
The vertical and horizontal resolution was 0.0018◦ and vertical and horizontal accuracy was 0.007◦ rms.
The TLS scanned the top and the side surfaces of the arch. The laser tracker was used as a reference
sensor for the validation purpose, which allows sub-millimeter accuracy with a maximum permissible
error of 15 µm + 6 µm/m [26]. In addition, a digital camera was used to capture the feature points
with a high resolution (thus exploiting their strength in discrete feature point extraction). Targets
were mounted in the surroundings and on the arch (see Figure 1) to perform the external calibration
between the sensors.

Among various datasets, the focus of this literature lies in capturing the data by the TLS to use
a large number of 3D point clouds with a high accuracy in approximating a surface model, which is
important in rigorous deformation monitoring. In our experiment, the top surface of the arch is of
great interest since it is under load pressure in the consecutive 13 epochs and has obvious movements
compared to the other parts of the structure. However, as can be seen from Figure 1, the top surface is
partially occluded by the steel beams. Consequently, it is necessary to extract the top-surface points
in order to enable an accurate surface model. As a preliminary step to separate the obstructions and
the arch-shape part of the object, the reflectance image was generated by using the reflectivity values
of the raw TLS data. It was performed by assigning the reflectivity values of each point cloud to one
pixel based on the scan resolution [27] (see Figure 2). Since the occluded objects such as the beams
on top of the arc shape object were darker compared to the arc shape part, it could be discarded by
means of the OpenCV threshold function and by setting the threshold value manually to 80 from a
range of 0–255. Therefore, those values greater than 80 were set to 0. However, before performing the
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thresholding, OpenCV GaussianBlur function with a size of 5 was applied to reduce the image noise.
Next, the morphological opening and closing filters were applied to discard the very small segments.
As previously, the position and orientation of the global coordinate system was defined in Figure 1,
the Z-axis was in the zenith direction. Therefore, the Pass Through filter of the Point Cloud Library was
applied to cut off those 3D point clouds below or greater than the predefined threshold in the Z-axis
direction. Then the “setFilterLimits” member function of this filter was set to (−4.50 m, −3.75 m) to
select the 3D point clouds within the boundaries. Subsequently, the StatisticalOutlierRemoval filter of
the Point Cloud Library was applied to remove the outliers of the 3D point clouds. In this filter, the k
nearest neighbor points were used to estimate the mean distance. Therefore, its “setMeanK” member
function was set to 20. Next, the “setStddevMulThresh” member function of this filter was set to 3.0 to
reject the outliers by means of the 3σ test. The extracted arch surface data is shown in Figure 3. As an
example, only two representative segments of the point cloud within the red boundary are separately
investigated since the middle area has significant deviations compared to the other parts of the surface.
The same methodology is applicable in modeling other segments.

Figure 1. Sketch map of the experimental design concerning the locations of the instruments and
relevant targets in side view (upper) and top view (bottom) [16].

Figure 2. Reflectance image generated by reflectivity values of TLS data [16].
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Figure 3. Extracted Arc-shape object and the target segments in our numerical example (within the
red boundary) shown by the software CloudCompare.

2.2. Surface Approximation

In surface-based deformation analysis, an appropriate surface model is required as a
representation of each deformation status. Among the various parametric models, polynomial surface
fitting are the most common approach due to its easy implementation [9,16], while free-form surfaces,
especially B-splines, have become relevant to deformation analysis due to their capacity to accurately
model more detailed geometrical features including sharp edges, cusps, and leaps [28]. The functional
relationships behind B-splines and polynomials, as two of the most commonly used types of surface
model, as well as the corresponding approximation steps, are described in this subsection.

2.2.1. B-Spline Surface Approximation

The mathematical description of a 3D point

S = [X Y Z] =
n

∑
i=0

m

∑
j=0

Ni,p(ū)Nj,q(v̄)Pi,j (1)

on a B-spline surface is based on the bidirectional combination of basis functions Ni,p(ū), Nj,q(v̄) and
3D control points Pi,j = [PXi,j PYi,j PZi,j ], which are located on a bidirectional net with the number of
n + 1 and m + 1 in u- and v-directions.

B-spline surface approximation builds upon B-spline curve fitting in the two directions.
Following Bureick et al. [17], this procedure can be carried out in three steps:

1. Parametrization of the measurements with s rows and t columns with respect to the u- and
v-direction.

2. Determination of the knot vectors U and V in the u- and v-direction.
3. Estimation of the control points by means of a linear Gauss–Markov model.

The first two steps consist of the parameterization and computation of knot vectors, which serve
as input parameters for the final estimation. Since the calculation of B-spline parameters are beyond
the scope of this paper, the interested reader is referred to Bureick et al. [17] and Piegl and Tiller [29].

The final step of B-spline approximation is to estimate the positions of the control points, which is
done essentially by adjusting a linear Gauss–Markov model (cf. [29,30]). Given measured points
located on a grid defined by s rows and t columns, they also can be arranged in matrix form as



Remote Sens. 2018, 10, 634 6 of 22

l =

 l1
...

ls·t

 =

 X1 Y1 Z1
...

...
...

Xs·t Ys·t Zs·t

 . (2)

The addition of a corresponding matrix v of residuals to the observation matrix yields the adjusted
observations, which can be represented by the functional B-spline model in Equation (1). We thus have
for a particular observation the equation

lkukv + vkukv = S =
n

∑
i=0

m

∑
j=0

Ni,p(ūku)Nj,q(v̄kv)Pi,j (3)

where ku = 2, ..., s and kv = 2, ..., t. We can write all of the equations jointly in the form l + v = A0x
with a design matrix within which the basis functions Ni,p(ū), Nj,q(v̄) are calculated based on the
parameterization and knot vectors

A0 =

 N0,p(ū1) · N0,q(v̄1) · · · Nn,p(ū1) · Nm,q(v̄1)
...

...
N0,p(ūs) · N0,q(v̄t) · · · Nn,p(ūs) · Nm,q(v̄t)

 (4)

and (unknown) parameter matrix x. We assume all of the measured point coordinates to have identical
accuracies and to be uncorrelated, so that we obtain for the least squares estimates of these parameters:

x̂ =


P̂X0,0 P̂Y0,0 P̂Z0,0

...
...

...
P̂Xn,m P̂Yn,m P̂Zn,m

 = (AT
0 A0)

−1AT
0 l. (5)

2.2.2. Polynomial Surface Approximation

Denoting a generic surface point by S = (X, Y, Z), the Z-component can be expressed as the
two-fold linear combination

Z =
p

∑
i=0

q

∑
j=0

ai,jXiY j = a0,0 + a1,0X + a0,1Y + a2,0X2 + a1,1XY + a0,2Y2 + . . .

+ ap,0Xp + ap−1,1Xp−1Y + . . . + a1,q−1XYq−1 + a0,qYq (6)

where a = [a0,0, a1,0, . . . , ap,q] is the coefficient vector having (p + 1)(q + 1)− 1 elements, and where
p and q represent the polynomial degrees with respect to the X- and Y-components, respectively.

Polynomial surface fitting consists of the estimation of the coefficient vector a, which we carry out
again in the least-squares sense by minimizing the sum of squared (“vertical”) residuals

Ω2 =
N

∑
n=1

(ln −
p

∑
i=0

q

∑
j=0

ai,jXi
nY j

n)
2 (7)

where l = [l1, l2, ..., lN ] is now an observation vector consisting of the N measured Z-coordinates.
The design matrix

A1 =


X0

1 ·Y0
1 · · · Xi

1 ·Y
j
1 · · · Xp

1 ·Y
q
1

...
...

X0
N ·Y0

N · · · Xi
N ·Y

j
N · · · Xp

N ·Y
q
N

 (8)



Remote Sens. 2018, 10, 634 7 of 22

is computed by exponentiation (where i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) and multiplication of
the X- and Y-components, which are considered as error-free. Under the assumption again of
homoskedastic and uncorrelated measurements, the estimated parameters are given by

x̃ =

 ã0,0
...

ãp,q

 = (AT
1 A1)

−1AT
1 l. (9)

2.2.3. Parameter Number of Competing Models

The approximation quality of a surface model is related to its complexity embodied in the number
of parameters. Hence, when choosing pairs of models to be compared, we should pay attention to the
parameter numbers.

In the initial comparison, the target segments of the point cloud of the first epoch are modeled
by means of polynomial and B-spline surface functions with similar numbers of parameters in order
to minimize the effect of model complexity. As the most basic description of a surface, the second
degree polynomial function (p = q = 2) with six unknown parameters is approximated. A B-spline
surface with the same parameter number (n = 1, m = 2) is modeled as a competitor. In order to
facilitate a comprehensive analysis, polynomial functions of higher degrees are adjusted and compared
to other estimated B-spline surface models. According to the general polynomial model Equation (6),
a third-degree polynomial model is based on the specification of p = q = 3, resulting in 10 unknown
parameters to be estimated. It is reasonable to compare this model with the adjusted B-spline surface
involving nine parameters (m = n = 2). Further comparisons are carried out between the fourth-degree
polynomial and B-spline surface models with 15 and 16 unknown parameters, respectively. Table 1
lists the candidate surface models mentioned above, where Npoly and NB represent the number of
parameters of the polynomial and of the B-spline models, respectively.

Table 1. The numbers of parameters for the various employed polynomial and B-spline surface models.

Pairs
Polynomial Model B-Spline Model

Degree Npoly n, m NB

I 2nd 6 n = 1, m = 2 6
II 3rd 10 n = 2, m = 2 9
III 4th 15 n = 3, m = 3 16

It should be mentioned that polynomial functions of degrees higher than four are useless in
our numerical example, since the resulting normal equation matrices within parameter estimation
Equation (9) would be ill-conditioned. In this case, on the one hand, it is quite interesting to compare
the best-fitting fourth-degree polynomial model with a higher-quality yet more complex B-spline
surfaces when considering the complexity of models as penalization. It is predicted that the latter
would be superior to the former in initial comparison pairs, but the superiority is expected to be offset
by penalization due to increasing parameters. The comparison results of Segment I will be presented
in Section 3.1 in Table 3 and in Appendix in Table A1. It helps to judge in which situation the B-spline
models are recommended compared with the polynomial model. On the other hand, in practice,
among the recommended B-spline models, we need the optimal one for further deformation analysis,
which motivates the comparison within B-spline models. The comparison results of Segment I will be
shown in Section 3.2 in Table 5 and in Appendix in Table A2.

2.3. Model Selection Method

The aim of model selection is to find a balance between the parsimony of the model and its
approximation quality [21]. Unlike the trial-and-error procedures and information theoretic criterion
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model selection approaches, we adopt the likelihood-ratio-based hypotheses testing framework to
discriminate between the competing models. The likelihood ratio tests are generally used to compare
two nested models; however, in our case, the polynomial surface model and B-spline model are
non-nested because neither model can be reduced to the other by imposing a set of parametric
restrictions or limiting process.

Regarding the non-nested models selection problem, in Cox [23] and Vuong [25], the authors
proposed respective approaches to extend the likelihood ratio test into non-nested cases. In this
subsection, both a simulation-based version of Cox’s test and Vuong’s test, which will be instantiated
later with the experiment data, are explained.

2.3.1. Simulation-Based Version of Cox’s Test

Under the assumption of normally distributed, uncorrelated and homoskedastic random
deviations, the observation models can be defined in terms of the generic log-likelihood function

L(x, σ2; l) = ln
N

∏
n=1

1√
2πσ2

exp

{
−1

2

(
ln −Anx

σ

)2
}

= −N
2

ln(2π)− N
2

ln(σ2)− 1
2

N

∑
n=1

(ln −Anx)2

σ2 (10)

where the variance factor σ2 is treated as an unknown parameter alongside the functional parameters.
Let us define L0(x, σ2; l), and L1(x, σ2; l) to be the specific log-likelihood functions with respect to the
design matrices Equations (4) and (8), respectively. Both types of design matrix define different types
of functions where neither is a special case of the other one. Thus, the two sets of multivariate normal
distributions defined by L0 and L1 are non-nested, so that the likelihood ratio test cannot be applied in
its usual form ([31] cf.) (pp. 276–278).

According to Cox [23], we may, however, use the logarithmized likelihood ratio

L0,1 = L0(x̂, σ̂2; l)− L1(x̃, σ̃2; l)

= −N
2

ln(σ̂2)− 1
2σ̂2

N

∑
n=1

(ln −A0nx̂)2 +
N
2

ln(σ̃2) +
1

2σ̃2

N

∑
n=1

(ln −A1nx̃)2 (11)

for testing the adequacy of the polynomial model against the B-spline model. Note that the substituted
least squares solutions Equations (5) and (9) are identical to the maximum likelihood estimates;
furthermore, the two occurring maximum likelihood estimates of the variance factor σ2 are given by
σ̂2 = 1

N ∑N
n=1(ln −A0nx̂)2 and σ̃2 = 1

N ∑N
n=1(ln −A1nx̃)2 ([31] cf.) (pp. 161). The statistic L0,1 follows

approximately a normal distribution

1. with certain expectation µ0 and standard deviation σ0 if the polynomial model is true, and
2. with certain expectation µ1 and standard deviation σ1 if the B-spline model is true.

Thus, we may calculate the approximately standard normally distributed statistics T0 = (L0,1− µ0)/σ0

and T1 = (L0,1− µ1)/σ1 for carrying out two separate tests of the hypotheses—

1. H0 : the polynomial model is true;
2. H1 : the B-spline model is true—

at significance level α. We may determine the means µ0 and µ1 as well as the standard deviations
σ0 and σ1 conditionally on the two parameter solutions (x̂, σ̂2), and (x̃, σ̃2) through a Monte Carlo
simulation in analogy to the approach taken in Williams [24].

According to that approach, we start by generating a large number M of observation vectors
l(1), . . ., l(M) randomly from the N-dimensional Gaussian distribution N(Ax̂, σ̂2IN). Based on these
samples, we compute the corresponding solutions (x̂(1); σ̂(1)), . . ., (x̂(M); σ̂(M)) with respect to the
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polynomial model and (x̃(1); σ̃(1)), . . ., (x̃(M); σ̃(M)) with respect to the B-spline model. We use the first
solution set to evaluate the corresponding log-likelihood functions L(1)

0 , . . ., L(M)
0 , and the second set

to evaluate L(1)
1 , . . ., L(M)

1 , so that we may compute the realizations L(1)
0,1 , . . ., L(M)

0,1 of Equation (11).
Thus, the arithmetic mean and empirical standard deviation of these sampled logarithmized likelihood
ratios serve as estimates of µ0 and σ0, leading to the standardized Gaussian test statistic T0 under the
currently assumed polynomial model.

The second test statistic T1 (with respect to the test of the B-spline model) is computed in analogy
to the first one, sampling now M observation vectors from N(Ax̃, σ̃2IN), and using the two new sets of
parameter solutions (regarding the polynomial and B-spline model) to compute the M realizations of
the log-likelihood ratios, as well as the resulting estimates of µ1 and σ1.

Since Cox [23] suggests applying the one-sided decision rules,

1. reject H0 if T0 < kN(0,1)
α , and

2. reject H1 if T1 > kN(0,1)
1−α

(where kN(0,1)
α is the α-quantile and kN(0,1)

1−α the 1− α-quantile of the standard normal distribution),
the execution of the two tests may result in four mutually exclusive decisions:

1. The polynomial model is rejected and the B-spline model is not rejected in the case of

T0 < kN(0,1)
α ∧ T1 ≤ kN(0,1)

1−α . (12)

2. The B-spline model is rejected and the polynomial model is not rejected in the case of

T0 ≥ kN(0,1)
α ∧ T1 > kN(0,1)

1−α . (13)

3. Both the polynomial and the B-spline models are rejected in the case of

T0 < kN(0,1)
α ∧ T1 > kN(0,1)

1−α . (14)

4. Neither the polynomial nor the B-spline model is rejected in the case of

T0 ≥ kN(0,1)
α ∧ T1 ≤ kN(0,1)

1−α . (15)

2.3.2. Vuong’s Non-Nested Hypothesis Test

Vuong’s test is based on the Kullback–Leibler information criterion (KLIC), which measures the
closeness of two models and uses the likelihood-ratio-based statistics to test the null hypothesis that
the competing models are equally close to the true data generating process against the alternative
hypothesis that one model is closer [25]. Specifically, the two competing models are given as Fθ =

{ f (l; θ); θ ∈ Θ} and Gγ = {g(l; γ); γ ∈ Γ}, l denotes variables, and θ and γ are their respective
parameters. As defined by Vuong, the two models’ Kullback–Leibler distances from the true density
h0(l) are E0[ln h0(l)]− E0[ln f (l; θ∗)] and E0[ln h0(l)]− E0[ln g(l; γ∗)], respectively, where E0 denotes
the expectation under the true model, and θ∗ and γ∗ are the pseudo-true values of θ and γ. It is clear
that the model with a minimum KLIC value is closer to the truth, which is, however, hard to quantify.
Thus, an equivalent selection criterion can be based on the quantities E0[ln f (l; θ∗)] and E0[ln g(l; γ∗)],
the better model being the one with larger quantity.

There are three possible cases when comparing, and we propose the null hypothesis, as the
two models have equal expectation values so that they are equivalent. One alternative hypothesis is
E0[ln f (l; θ∗)] > E0[ln g(l; γ∗)], which means Fθ is the better model. The other alternative hypothesis is
E0[ln f (l; θ∗)] < E0[ln g(l; γ∗)], meaning Gγ is better. Since the quantity E0[ln f (l; θ∗)]− E0[ln g(l; γ∗)]

is still hard to quantify, Vuong consistently estimates it by (1/n) times the likelihood ratio statistic.
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In our specific case to discriminate between the polynomial and B-spline surface models, with
independent and identically distributed observations l, the probability density functions of competing
models are given as Px,σ = {p(l; x, σ2)} and Bx,σ = {b(l; x, σ2)}, in which the parameter matrix x is
estimated in its respective Gauss–Markov models and the variance factor σ2 for competing models is
calculated in the same way as in Cox’s test: σ̂2 = 1

N ∑N
n=1(ln −A0nx̂)2 and σ̃2 = 1

N ∑N
n=1(ln −A1nx̃)2.

Thus, we propose the hypothesis in discriminating between models as follows:

1. H0: the polynomial and B-spline models are equally close to the truth;
2. Hp: the polynomial model is better since it is closer to the truth than the B-spline model is;
3. Hb: the B-spline model is better since it is closer to the truth than the Polynomial model.

Similar to Cox’s test, the statistic of Vuong’s test is also based on likelihood ratio. If we define
L0(x̂, σ̂2; l) and L1(x̃, σ̃2; l) as log-likelihood functions for competing polynomial and B-spline surface
models, the logarithmized likelihood ratio L0,1 is calculated as (11). Vuong’s test is potentially sensitive
to the number of estimated parameters on condition that the logarithmized likelihood ratio L0,1 is
adjusted by a correction factor K.

L̃0,1 ≡ L0,1 − K. (16)

Vuong [25] suggests that K corresponds to either Akaike’s information criteria (AIC) or Bayesian
information criteria (BIC). According to the former, K = p0 − p1, and, according to the latter, K =

(p0/2) ln N − (p1/2) ln N, where p0 and p1 are numbers of parameters in competing models. The BIC
generally penalizes free parameters more strongly than AIC. Here, we prefer the BIC correction factor
in order to avoid an over-fitting problem.

Then, the adjusted likelihood ratio L̃0,1 is rescaled in statistic as TV = N−1/2 L̃0,1/ŵ, where ŵ2 is
the variance calculated as

ŵ2 =
1
N

N

∑
n=1

[
ln

p(ln; A0nx̂, σ̂2)]

b(ln; A1nx̃, σ̃2)

]2

−
[

1
N

N

∑
n=1

ln
p(ln; A0nx̂, σ̂2)]

b(ln; A1nx̃, σ̃2)

]2

. (17)

According to Vuong [25], when N is reasonably large, the statistic TV converges, asymptotically
to a standard normal distribution, N(0, 1). In the decision-making process, practically, we compare
TV against the quantiles of a standard normal distribution, CN(0,1)

α/2 , for significance level α. The models
are discriminated through the following decision rules:

1. The polynomial and B-spline models are equally close to the truth in case of

CN(0,1)
α/2 ≤ TV ≤ CN(0,1)

1−α/2. (18)

2. The polynomial model is better since it is closer to the truth than B-spline model in case of

TV > CN(0,1)
1−α/2. (19)

3. The B-spline model is better since it is closer to the truth than Polynomial model in case of

TV < CN(0,1)
α/2 . (20)

2.4. Deformation Analysis

To probe the selected surface model’s performance in deformation analysis, each target segment
of the 1st and 13th epochs are approximated by surface models. In the specific application, loads were
exerted perpendicular to the ground (in the Z-direction) so that the deformation (∆) is defined as the
difference in approximated Z-coordinates of the two epochs (Ẑ13, Ẑ1), that is,

∆ = Ẑ13 − Ẑ1. (21)
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The evaluation criterion of surface models’ performance is whether they are able to reflect
the actual deformation, which are recorded by the point cloud. Since it is impossible to get an
exact mutual spatial referencing of points in the different epochs, we compared the point clouds
through the block-mean approach used in Paffenholz et al. [32]. In this application, the blocks had
a size of 5 mm × 5 mm involving 2–9 points, for which the medians of the Z-coordinates were
computed as representative values. The high-density block-means between the two epochs were used
to approximate the point-wise changes.

3. Results

3.1. Evaluation of Competing Polynomial and B-Spline Models

In order to statistically discriminate between the aforementioned polynomial and B-spline surface
models listed in Table 1, the result of Cox’s and Vuong’s test for the two segments are given in
Tables 2 and 4, respectively. It is noticeable that the observations are assumed to be following identical
and independent normal distribution, which satisfy the prerequisite of both tests. In addition, Figure 4
demonstrates that the 10,000 log-likelihood ratio values of Equation (11) sampled with respect to
Cox’s test follow approximately a Gaussian distribution under both the polynomial and B-spline
surface models. Thus, it is justified to standardize the log-likelihood ratio computed from the actual
measurements by means of the sample mean and standard deviation under each of the two stochastic
models (resulting in the values for T0 and T1 shown in Tables 2 and 4).

Figure 4. Histogram of the sampled log-likelihood ratio L0,1 under the polynomial (left) and B-spline
(right) surface model, approximated by a Gaussian density functions (in red).

The statistics are compared to the critical value at type-I error rate α = 0.05. In Cox’s test,
the critical values are kN(0,1)

0.05 = −1.64 for statistic T0, and kN(0,1)
0.95 = 1.64 for statistic T1. In Vuong’s test,

the critical values are CN(0,1)
0.025 = −1.96 and CN(0,1)

0.975 = 1.96.
It can be clearly seen in Table 2 that, within the first pair of models, the B-spline surface model

with six parameters is preferred over the second-degree polynomial model, since, in Vuong’s test, the
former is better verified, and, in Cox’s test, the latter is rejected. This result indicates, with minor
parameters, B-spline models are superior to the equivalent polynomial one. This conjecture is validated.
In the second pair of models, neither the third-degree polynomial model nor the B-spline model is
rejected or selected by tests, whose findings indicate that there is no significant difference between
the two models. Next, further comparisons are carried out within Pair III between a fourth-degree
polynomial and B-spline models with 15 and 16 unknown parameters, respectively. According to
the tests results, Vuong’s test indicates there is no significant superiority between the two, while the
polynomial model is rejected by the Cox’s test.

As mentioned before, polynomial functions of degrees greater than four become numerically
unstable due to the appearance of singular matrices, so that they cannot be recommended. By contrast,
approximated B-spline surface models for Segment I can describe the target segment of the point cloud
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increasingly well when the parameters are increased, without producing such numerical difficulties.
When comparing the increasingly accurate B-spline models with the fourth-degree polynomial surface
model of Segment I by means of both hypothesis tests, as previous predicted, we find that the
Cox’s test always rejects the models with fewer parameters, which leads to the problem of over-fitting.
By contrast, Vuong’s test initially tends to prefer B-spline models due to higher approximation quality
until Pair 36, in which large quantities of parameters are set (NB = 1600). Table 3 offers the last five
comparison pairs to show the aforementioned change in test decision. The complete test results for
discriminating between fourth-degree polynomial and B-spline surface models are shown in Table A1.

Table 2. Results for Segment I of Cox’s test for discriminating between polynomial and B-spline surface
models at type-I error rate α = 0.05.

Pair
Cox’s Test Vuong’s Test

T0 Rejected T1 Rejected TV Preferred

I −39.93 polynomial −23.44 no −29.95 B-spline
II −0.68 no 1.44 no 0.19 no
III −14.85 polynomial −1.21 no 0.37 no

Table 3. Partial results for Segment I of Vuong’s test and Cox’s test for discriminating between
fourth-degree polynomial and B-spline surface models at type-I error rate α = 0.05.

Pair
Competing Models Cox’s Test Vuong’s Test

Polynomial B-Spline T0 Rejected T1 Rejected TV Preferred

32 Npoly = 15 NB = 1296 −236.65 polynomial −70.33 no −8.99 B-spline
33 Npoly = 15 NB = 1369 −213.58 polynomial −72.86 no −9.28 B-spline
34 Npoly = 15 NB = 1444 −199.14 polynomial −70.94 no −5.00 B-spline
35 Npoly = 15 NB = 1521 −192.05 polynomial −84.49 no −3.14 B-spline
36 Npoly = 15 NB = 1600 −180.07 polynomial −80.21 no −0.36 no

The testing results for Segment II are listed in Table 4. It is indicated by the first comparison pair
that both the polynomial and the B-spline surface models are rejected by Cox’s test, while Vuong’s test
considers the polynomial model to be closer to the truth than its competitor. Within the second and
third pairs, B-spline models are judged as insufficient by Cox’s test, whereas the polynomial models
are preferred by Vuong’s test.

Table 4. Results for segment II of Cox’s test for discriminating between polynomial and B-spline
surface models at type-I error rate α = 0.05.

Pair
Cox’s Test Vuong’s Test

T0 Rejected T1 Rejected TV Preferred

I −3.96 polynomial 4.46 B-spline 5.95 polynomial
II −1.58 no 5.89 B-spline 7.43 polynomial
III 0.87 no 10.65 B-spline 11.31 polynomial

The testing result differs greatly between the two segments. These differences can be explained
by the fact that Segment II contains large data gaps, which substantially distort the B-spline model
estimation, in contrast to the polynomial model estimation.

3.2. Evaluation of Competing B-Spline Models with Various Parameters

The results in Table 3 motivate us to evaluate B-spline surface models with increasing parameters
by means of Vuong’s test in search of a balance between model complexity and its approximation
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quality. Two B-spline models with different degrees or control points (Model I and Model II) are
non-nested because the parameters in Model I are not a subset of the parameters in Model II.
The modification of the degree or the number of control points (see Equation (1)) leads to a change in the
number of knots, resulting in different basis functions. The comparison of pair setting and evaluation
results are shown in Table A2, where NB1 = (m1 + 1) · (n1 + 1) denotes the parameter number of the
first B-spline model and NB2 = (m2 + 1) · (n2 + 1) denotes that of the second model in the competing
pair. The statistic value and test decision are shown in the last two columns. Here, we present the
comparison results of B-spline models with m1 = n1 = i and m2 = n2 = i + 2 (i = 1, 2, 3...37) instead
of neighbor models (m1 = n1 = i, m2 = n2 = i + 1). There were large oscillations in the testing results
of the pairwise neighbor models. These oscillations, which were due to the similar parameter number
and model quality between neighbor models, served as noise and would confuse the result. The testing
results became stable when we chose comparison models as m1 = n1 = i and m2 = n2 = i + 2.

According to the results in Table A2, B-Spline Model II with more parameters is preferred
initially; however, due to the increasing penalized term, B-Spline Model I is preferred in the final pair.
The middle comparison pairs are considered to be in the overlapping region, where the test decisions
swing between the two competing models. Table 5 shows the comparison pairs in the overlapping
region. It can be considered that the balance sought of the model’s complexity and its approximation
quality is located in this region. Figure 5 offers a direct view of test statistic TV in comparison with
critics boundaries CN(0,1)

0.025 = −1.96 and CN(0,1)
0.975 = 1.96.

Table 5. Partial results of Vuong’s test for discriminating B-spline surface models at type-I error rate
α = 0.05 (overlapping region).

Pair
B-Spline Model I B-Spline Model II Vuong’s Test

m1,n1 NB1 m2,n2 NB2 TV Preferred

13 m1 = n1 = 14 225 m2 = n2 = 16 289 −0.57 no
14 m1 = n1 = 15 256 m2 = n2 = 17 324 −6.57 model 2
15 m1 = n1 = 16 289 m2 = n2 = 18 361 −4.06 model 2
16 m1 = n1 = 17 324 m2 = n2 = 19 400 −3.89 model 2
17 m1 = n1 = 18 361 m2 = n2 = 20 441 −4.15 model 2
18 m1 = n1 = 19 400 m2 = n2 = 21 484 3.02 model 1
19 m1 = n1 = 20 441 m2 = n2 = 22 529 9.09 model 1
20 m1 = n1 = 21 484 m2 = n2 = 23 576 0.41 no

We consider the B-spline model with 361 parameters (n = 18, m = 18), which lies roughly in the
middle of the overlapping region, as the optimal one. Figure 6 shows the side- and top-view of this
surface model.

Figure 5. Statistic values of Vuong’s test in comparison with critics.
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Figure 6. Side-view (a) and top-view (b) of approximated B-spline surface (n = 18, m = 18) with the
original measurements (blue points).

3.3. Performance in Deformation Analysis

3.3.1. Deformation of Segment I

According to the model evaluation results for Segment I, the fourth-degree model is best-fitting
among polynomial surface models, while the B-spline surface model with 361 parameters is optimal
among all candidate models. We approximate both types of surface models for the point cloud in the
13th epoch with the same number of parameters.

Because traditional polynomial models are still the most widely used regression method in
deformation analysis due to their simple operating, while the B-spline model has the potential
to describe geometrically complicated objects, it is of significance to compare the performance in
this numerical example between two surface models with their best-fitting parameters in reflecting
deformation. In Figure 7a shows the modeled fourth-degree polynomial surfaces for the 1st (upper)
and 13th (lower) epochs, while Figure 7b shows the equivalent epochs approximated by means of
B-spline surfaces with 361 parameters. It is obvious that the B-spline surfaces in Figure 7b describe
more detailed geometrical features than polynomial model in Figure 7a. The arch’s deformation
in Z-coordinates between the two epochs are shown in Figures 7c,d, by means of approximated
polynomial surfaces of Figure 7a and B-spline models of Figure 7b, respectively. In order to validate
that the reflected changes are the real arch’s deformation recorded by the points instead of regression
models, we compare the two epochs’ point cloud through the block-mean approach (see Figure 8
for the differences between the two epoch’s point clouds). By comparison, it is obvious that the
deformation shown in Figure 7d for B-spline models reflect these differences precisely, especially
in Areas A and B; in contrast, the fourth-degree polynomial surfaces in Figure 7c fail to show this
deformation due to their global smoothing effect. The preceding difference and model deformation
are also shown pointwise in Figure 9. The green asterisks denote the point-wise differences recorded
by block-means, while the red and blue asterisks are that reflected by the fourth-degree polynomial
and B-spline surfaces, respectively.
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Figure 7. Polynomial (a,c) and B-spline surface models (b,d) in terms of differences of the 1st and 13th
epochs in Segment I.

Figure 8. Deformation of segment I reflected by block means of the point cloud differences based on
the 1st and 13th epochs.

Figure 9. Deformation of Segment I between 1st and 13th epochs reflected by various approaches.
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3.3.2. Deformation of Segment II

In Figure 10a shows the modeled fourth-degree polynomial surfaces for the 1st (upper) and 13th
(lower) epochs, while Figure 10b shows the same epochs approximated by means of B-spline surfaces
with 16 parameters.

Figure 10. Polynomial (a,c) and B-spline surface models (b,d) in reflecting deformation of segment II
based on the 1st and 13th epochs.

The missing data lead to oscillation, especially at the edges of the data gap (see the bounded area
in Figure 11). Thus, it can be found from Figure 10d that the deformation reflected by B-splines is
far from the truth. Here, the estimated B-spline surfaces clearly show the aforementioned numerical
instabilities, which are caused by an inadequate specification of the knot locations with the applied
classical approach to knot vector determination in Piegl and Tiller [29].

Figure 11. Deformation of Segment II reflected by block means of the point cloud differences based on
the 1st and 13th epochs.
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4. Discussion

In our numerical example of Segment I, the different results between the two hypothesis tests
are caused by the penalized term regarding the parameter numbers. In Table 2, for example, Pair III
has various test results. In Cox’s test, the fourth-degree polynomial model is rejected because of the
relatively poor accuracy, while the Vuong’s test result recommends neither, because the improved
accuracy is offset by the punishment of increasing parameters. In parallel, in Table 3, the test decision
initially shows in the consistency of both tests that the B-spline models are better compared to the
fourth-degree polynomial model. However, as the number of parameters increase, the improvement
of model accuracy declines. Finally, in Voung’s test, the advantage of the model’s quality is offset
again by the large penalized value and, consequently, shows results that are different from Cox’s test
in Pair 36.

Although Cox’s test without penalized term is limited to discriminate models with similar
parameters, it is practically very straightforward to implement and are able to offer more reliable
decisions by simulating the test distribution, especially when the sample size is small [33]. We expect
to improve the simulation-based version of Cox’s test by adding a proper correction factor similar to
that in Vuong’s non-nested hypothesis test, which would be one of our future research projects.

Since previous geodetic literatures [21,22,28] has solved the model selection problem through
well-known penalization information criteria: the AIC and BIC, it is necessary in this section to
compare Vuong’s non-nested hypothesis test with this widely used approach. It is noticeable that there
are close connections between AIC, BIC, and Vuong’s test. Taking the BIC as an example, the value of
model 1 is calculated as

BIC1 = −2 ln L1 − p1 · ln N (22)

where L1 is the maximum value of the likelihood function for Model 1, p1 denotes the parameter
quantity, and N is the number of measurements. The different BIC value between two models is
calculated as

BIC12 = −2 ln
L1

L2
− (p1 − p2) · ln N (23)

where the first term in the right part contains logarithmized likelihood ratio L0,1 in Equation (16),
so that BIC12 is equal to the (un-normalized) adjusted test statistic L̃0,1 for Vuong’s test. The main
difference is that Vuong’s test makes judgments in a framework of likelihood ratio hypothesis testing,
which offers the advantage that significant probabilistic differences between models can be detected,
which is not provided by classical penalization information criterion methods. We compared the
Vuong’s test results with both the AIC and BIC to discriminate between B-spline surface models,
and the result is shown in Figure 12. According to the BIC’s curve, the B-spline model with 361
parameters (n = 18, m = 18) is optimal, since it is associated with the smallest value. This result is quite
consistent with the judgment of Vuong’s test, because the BIC penalized term is used in our adjusted
test statistic. By contrast, the AIC tends to prefer much larger models.

Furthermore, the performance of best-fitting polynomial and B-spline surfaces in reflecting
deformation were compared. The superior model was the one able to reflect the deformation details
recorded by the point clouds. In order to get an exact mutual spatial referencing of points in the different
epochs, we used the block-mean approach to approximate the point-wise changes. The comparison
results of Segment I indicated that the selected B-spline surfaces can reflect the actual deformation,
especially in Areas A and B of Figure 8, while the best-fitting polynomial model failed to offer this
information due to its global smooth effect. However, in the case of Segment II, B-spline models failed
to reflect the actual deformation values, especially at the edges of the data gap.
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Figure 12. AIC (red) and BIC (green) values with an increasing number of parameters.

5. Conclusions

In this paper, we approximated point cloud data of a surveyed arch structure by two common
surface models: polynomials and B-splines. Subsequently, we compared different adjusted surface
models via Cox’s test and Vuong’s test to select an appropriate parametric model, which was sufficient
to describe the geometrical features of the two target segments.

Regarding Segment I, in the initial comparison between lower degree polynomial and B-spline
models, none of the B-spline models investigated was rejected, but only the polynomial model
with degree 3 was found to be adequate in Cox’s test, while Voung’s test indicated no significant
difference in Pairs II and III. However, none of these models could reflect detailed geometrical features
of target segments. Since it was not possible to increase the degree of polynomial approximation
(due to numerical instability of the normal equations) for modeling geometrical details, B-splines
were recommended in the field of applications presented. That motivated us to search for an optimal
model balancing between approximation quality and its complexity. According to Voung’s test
decisions, the B-spline surface model with NB = 361 was considered as the optimal one in the specific
numerical example.

The model selection testing results of Segment II were quite different from that of Segment I.
All the B-spline models were rejected by Cox’s test, while in Pairs II and III, the equivalent polynomial
surfaces were preferred by Voung’s test, as a consequence of the aforementioned numerical instabilities
with the knot vector determination and the resulting oscillation effects. Such deficiencies were clearly
reflected by the model selection tests, which rejected inadequate B-spline models.

A consistent model selection result was obtained by comparing Vuong’s test decision with the
widely used BIC in discriminating B-spline surface models. Thus, it is concluded that the alternative
model selection methodology elaborated in this paper, in parallel with well-known penalization
information criteria, can effectively guide practitioners in selecting a parsimonious and accurate model
for structures, such as the arch in the numerical example presented. The main difference is that Vuong’s
test makes judgments in a framework of likelihood ratio hypothesis testing, which can detect the
significant probabilistic differences between models. It was proved here that the models selected by
the model selection tests have good performance in reflecting actual deformation.

The model selection methodology is applicable not only to TLS data but also to point clouds
obtained by other LiDAR technology, such as airborne laser scanning and mobile laser scanning. There
are also distribution-free hypothesis tests, such as Clarke’s test [34], available for mixed distribution
observations.
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Appendix A

Table A1. Results for Segment I of Vuong’s test and Cox’s test for discriminating between fourth-degree
polynomial and B-spline surface models at type-I error rate α = 0.05.

Pair
Competing Models Cox’s Test Vuong’s Test

Polynomial B-Spline T0 Rejected T1 Rejected TV Preferred

1 Npoly = 15 NB = 25 −96.88 polynomial −6.31 no −14.92 B-spline
2 Npoly = 15 NB = 36 −82.69 polynomial −5.30 no −14.59 B-spline
3 Npoly = 15 NB = 49 −210.65 polynomial −17.54 no −13.99 B-spline
4 Npoly = 15 NB = 64 −324.26 polynomial −19.77 no −13.37 B-spline
5 Npoly = 15 NB = 81 −306.37 polynomial −31.21 no −12.58 B-spline
6 Npoly = 15 NB = 100 −323.49 polynomial −28.37 no −12.75 B-spline
7 Npoly = 15 NB = 121 −338.20 polynomial −33.64 no −13.23 B-spline
8 Npoly = 15 NB = 144 −359.43 polynomial −38.19 no −11.79 B-spline
9 Npoly = 15 NB = 169 −325.74 polynomial −42.33 no −10.44 B-spline
10 Npoly = 15 NB = 196 −341.49 polynomial −41.76 no −9.68 B-spline
11 Npoly = 15 NB = 225 −294.75 polynomial −48.19 no −11.53 B-spline
12 Npoly = 15 NB = 256 −333.69 polynomial −50.22 no −10.59 B-spline
13 Npoly = 15 NB = 289 −279.57 polynomial −46.54 no −11.23 B-spline
14 Npoly = 15 NB = 324 −318.33 polynomial −51.20 no −10.02 B-spline
15 Npoly = 15 NB = 361 −317.28 polynomial −52.92 no −9.90 B-spline
16 Npoly = 15 NB = 400 −275.54 polynomial −59.22 no −7.43 B-spline
17 Npoly = 15 NB = 441 −276.37 polynomial −52.10 no −8.55 B-spline
18 Npoly = 15 NB = 484 −313.79 polynomial −66.44 no −9.12 B-spline
19 Npoly = 15 NB = 529 −262.48 polynomial −54.70 no −7.99 B-spline
20 Npoly = 15 NB = 576 −270.20 polynomial −56.54 no −10.10 B-spline
21 Npoly = 15 NB = 625 −285.65 polynomial −49.27 no −6.99 B-spline
22 Npoly = 15 NB = 676 −268.69 polynomial −68.30 no −10.59 B-spline
23 Npoly = 15 NB = 729 −267.04 polynomial −62.88 no v8.99 B-spline
24 Npoly = 15 NB = 784 −241.21 polynomial −67.39 no −9.54 B-spline
25 Npoly = 15 NB = 841 −268.29 polynomial −68.11 no −8.99 B-spline
26 Npoly = 15 NB = 900 −280.65 polynomial −75.17 no −8.70 B-spline
27 Npoly = 15 NB = 961 −217.72 polynomial −69.20 no −6.99 B-spline
28 Npoly = 15 NB = 1024 −258.19 polynomial −84.32 no −7.37 B-spline
29 Npoly = 15 NB = 1089 −227.56 polynomial −80.89 no −8.67 B-spline
30 Npoly = 15 NB = 1156 −240.33 polynomial −82.54 no −9.77 B-spline
31 Npoly = 15 NB = 1225 −232.69 polynomial −72.30 no −7.59 B-spline
32 Npoly = 15 NB = 1296 −236.65 polynomial −70.33 no −8.99 B-spline
33 Npoly = 15 NB = 1369 −213.58 polynomial −72.86 no −9.28 B-spline
34 Npoly = 15 NB = 1444 −199.14 polynomial −70.94 no −5.00 B-spline
35 Npoly = 15 NB = 1521 −192.05 polynomial −84.49 no −3.14 B-spline
36 Npoly = 15 NB = 1600 −180.07 polynomial −80.21 no −0.36 no
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Table A2. Results of Vuong’s test for discriminating B-spline surface models at type-I error rate α = 0.05.

Pair
B-Spline Model I B-Spline Model II Vuong’s Test

m1,n1 NB1 m2,n2 NB2 TV Preferred

1 m1 = n1 = 2 9 m2 = n2 = 4 25 −20.46 model 2
2 m1 = n1 = 3 16 m2 = n2 = 5 36 −12.84 model 2
3 m1 = n1 = 4 25 m2 = n2 = 6 49 −23.72 model 2
4 m1 = n1 = 5 36 m2 = n2 = 7 64 −25.30 model 2
5 m1 = n1 = 6 79 m2 = n2 = 8 81 −21.23 model 2
6 m1 = n1 = 7 64 m2 = n2 = 9 100 −20.32 model 2
7 m1 = n1 = 8 81 m2 = n2 = 10 121 −12.28 model 2
8 m1 = n1 = 9 100 m2 = n2 = 11 144 −20.03 model 2
9 m1 = n1 = 10 121 m2 = n2 = 12 169 −8.31 model 2

10 m1 = n1 = 11 144 m2 = n2 = 13 196 −2.30 model 2
11 m1 = n1 = 12 169 m2 = n2 = 14 225 −7.92 model 2
12 m1 = n1 = 13 196 m2 = n2 = 15 256 −4.11 model 2
13 m1 = n1 = 14 225 m2 = n2 = 16 289 −0.57 no
14 m1 = n1 = 15 256 m2 = n2 = 17 324 −6.57 model 2
15 m1 = n1 = 16 289 m2 = n2 = 18 361 −4.06 model 2
16 m1 = n1 = 17 324 m2 = n2 = 19 400 −3.89 model 2
17 m1 = n1 = 18 361 m2 = n2 = 20 441 −4.15 model 2
18 m1 = n1 = 19 400 m2 = n2 = 21 484 3.02 model 1
19 m1 = n1 = 20 441 m2 = n2 = 22 529 9.09 model 1
20 m1 = n1 = 21 484 m2 = n2 = 23 576 0.41 no
21 m1 = n1 = 22 529 m2 = n2 = 24 625 3.21 model 1
22 m1 = n1 = 23 576 m2 = n2 = 25 676 9.23 model 1
23 m1 = n1 = 24 625 m2 = n2 = 26 729 1.97 model 1
24 m1 = n1 = 25 676 m2 = n2 = 27 784 10.03 model 1
25 m1 = n1 = 26 729 m2 = n2 = 28 841 16.27 model 1
26 m1 = n1 = 27 784 m2 = n2 = 29 900 4.23 model 1
27 m1 = n1 = 28 841 m2 = n2 = 30 961 12.7 model 1
28 m1 = n1 = 29 900 m2 = n2 = 31 1024 11.81 model 1
29 m1 = n1 = 30 961 m2 = n2 = 32 1089 10.33 model 1
30 m1 = n1 = 31 1024 m2 = n2 = 33 1156 18.17 model 1
31 m1 = n1 = 32 1089 m2 = n2 = 34 1225 14.05 model 1
32 m1 = n1 = 33 1156 m2 = n2 = 35 1296 18.83 model 1
33 m1 = n1 = 34 1225 m2 = n2 = 36 1369 24.62 model 1
34 m1 = n1 = 35 1296 m2 = n2 = 37 1444 22.86 model 1
35 m1 = n1 = 36 1369 m2 = n2 = 38 1521 24.40 model 1
36 m1 = n1 = 37 1444 m2 = n2 = 39 1600 22.14 model 1
37 m1 = n1 = 38 1521 m2 = n2 = 40 1681 24.68 model 1
38 m1 = n1 = 39 1600 m2 = n2 = 41 1764 24.86 model 1
39 m1 = n1 = 40 1681 m2 = n2 = 42 1849 27.61 model 1
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