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Abstract: Time series from Landsat and Sentinel-2 satellites have great potential for modeling
vegetation seasonality. However, irregular time sampling and frequent data loss due to clouds,
snow, and short growing seasons, makes this modeling a challenge. We describe a new method for
modeling seasonal vegetation index dynamics from satellite time series data. The method is based
on box constrained separable least squares fits to logistic model functions combined with seasonal
shape priors. To enable robust estimates, we extract a base level (i.e., the minimum dormant season
value) from the frequency distribution of clear-sky vegetation index values. A seasonal shape prior
is computed from several years of data, and in the final fits local parameters are box constrained.
More specifically, if enough data values exist in a certain time period, the corresponding local
parameters determining the shape of the model function over this period are relaxed and allowed to
vary freely. If there are no observations in a period, the corresponding local parameters are locked to
the parameters of the shape prior. The method is flexible enough to model interannual variations,
yet robust enough when data are sparse. We test the method with Landsat, Sentinel-2, and MODIS
data over a forested site in Sweden, demonstrating the feasibility and potential of the method for
operational modeling of growing seasons.

Keywords: time series; vegetation index; Landsat; Sentinel-2; separable least squares; seasonality;
shape prior; robust statistics; data quality; gap filling

1. Introduction

The Sentinel-2 (S2) satellites from the European Union Copernicus program generate an
unprecedented amount of data at high spatial (10–60 m), temporal (5 days at the Equator with two
satellites), and spectral (13 bands) resolution. The Landsat constellation provides imagery at 30–120 m
spatial resolution, and in many locations provides sufficiently dense time series data to permit seasonal
modeling [1]. In addition, Landsat data cover multiple decades, and therefore enable accurate land
monitoring across a range of biomes and application fields. While most current seasonality and
phenology mapping efforts based on satellite data rely on coarse-resolution sensors—primarily the
National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer
(NOAA AVHRR) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) at
250–1000 m spatial resolution [2–6]—the higher spatial resolution data from Landsat and S2 permits
more precise matching of time series parameters with ground-observed data [7,8].
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The potential for using moderate-spatial resolution (i.e., ~30 m) time series data for change
detection has been demonstrated by the use of freely available Landsat data time series records [9–11].
Landsat can also be used for extracting the average seasonality parameters for each pixel, e.g., start and
end of growing seasons, by combining data from several years [12,13], and for studies of interannual
seasonality in areas of dense Landsat time series, e.g., the Landsat sidelap areas [8,14]. These data are
proving to be increasingly valuable for improving understanding of phenological responses to climate
change [15,16]. However, in data-sparse regions, the extraction of seasonality based on the 16-day
time step of Landsat is challenging, and in many cases, not possible. The increased frequency of S2
over Landsat radically increases the possibilities for extracting seasonality parameters. Nevertheless,
even at the higher frequency provided by S2, accurately estimating seasonal dates in the presence of
clouds and seasonal snow remains a challenge. It is therefore necessary to apply methodologies that
provide robust estimates of seasonality in the presence of data gaps of varying length. Furthermore,
in order to obtain robust results from S2 time series, it may be helpful to integrate them with historical
Landsat data.

Here we present a data processing method based on box constrained separable least squares
fits combined with seasonal shape priors, that can exploit the long time series data from Landsat,
as well as the higher temporal frequency data provided by S2. The method is flexible when data
are sufficiently dense, yet robust with respect to data gaps. In contrast to many other processing
methods—such as the current TIMESAT ver. 3.3 [17,18], the Harmonic Analysis of Time Series
(HANTS) [19], and Phenolo [20]—the method we describe handles the irregular time sampling of
S2 and Landsat without any prior interpolation. The aim of this article is to present a feasible data
processing methodology for generating seasonal data from moderate resolution data (e.g., Landsat and
S2), but which is also applicable to coarse resolution data (e.g., MODIS). We illustrate the effectiveness
of the method using time series data over a data-sparse region.

2. Materials and Methods

2.1. Study Area and Data Description

The study area, dominated by coniferous needle-leaf forest, mainly Scots pine (Pinus sylvestris)
and Norwegian spruce (Picea abies), is located in central Sweden at around latitude 60◦05′N, longitude
17◦28′E (Figure 1). The area was specifically chosen to be challenging for seasonality modeling because
it has weak annual NDVI amplitude, and is strongly influenced by winter darkness, snow dynamics,
and clouds. In addition, it is located in a region where the number of Landsat observations is relatively
low [1].

We used four remotely sensed data sets for developing and testing our processing method
(Table 1): (1) Normalized Difference Vegetation Index (NDVI) time series generated from Landsat 5
and 7 sensors [1]. These data were pre-processed using FMASK (Function of Mask) [21] to generate
quality assessment (QA) data (clear, water, cloud, cloud shadow and low quality for other reasons);
(2) S2 data, pre-processed into level 2A top-of-canopy reflectance values using Sen2Cor [22]. The data
were categorized into 11 classes by Sen2Cor, of which we regarded “vegetation” and “bare soils” as
belonging to the clear-sky quality class; (3) Landsat 8 OLI NBAR 30m data from the Harmonized
Landsat Sentinel-2 (HLS) surface reflectance product, which consists of Landsat and S2 observations,
processed to have compatible radiometry and geometry [23]. The data include quality flags with labels
identifying clouds, cirrus clouds, adjacent cloud, cloud shadow, snow or ice, water, and aerosol quality.
All Landsat 8 scenes recorded at solar zenith angles >75◦ were labelled as low quality (non-clear)
to exclude some unrealistically high NDVI values during winter that we observed in the product;
(4) daily NDVI time series generated from the MODIS MOD09GA 500 m spatial resolution daily land
surface reflectance dataset [24]. We used the 1 km Data State QA descriptors to exclude areas flagged
as cloudy, cloud shadow, water bodies, aerosol-, cirrus-, fire-, or snow-contaminated.
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Landsat data extracted over the test area frequently show a large proportion of poor-quality
observations (Figure 2). The time series in the example shows very weak seasonal dynamics,
and estimating seasonality parameters from such data requires a very robust fitting method.
Furthermore, the method should generate an output quality indicator that indicates if the data
frequency is sufficient for generating reliable seasonal functions and parameters.

Figure 1. Study area in Central Sweden. The image to the left is a false color composite from Sentinel-2,
acquired on 8 July 2016. The white line marks the area of the MODIS data used, and the blue line marks
the area of the Sentinel-2 and Landsat data used.

Figure 2. Landsat observations for 2006–2014 extracted for a pine forest pixel (60.0863◦N, 17.4795◦E)
denoted as “Clear” or “Other” (i.e., assigned another QA class than clear-sky in the FMASK algorithm).
Note the large proportion of non-clear observations and the weak seasonal dynamics for this pixel.

Table 1. Data sources used in the study.

No. Source Time Period No. of Scenes/Tiles

1 Landsat 5 and 7 January 2000–December 2014 452
2 Landsat 8 (HLS) March 2013–April 2017 352
3 Sentinel-2 July 2015–July 2017 109
4 MODIS MOD09GA 500 m January 2011–December 2016 2190

2.2. Assumptions and Modelling Principles

For simplicity, we assume that pixels that have undergone rapid transformation, i.e., due to
clear cutting or fire, have been identified and excluded (e.g., using the Continuous Change Detection
and Classification (CCDC) algorithm [21]). We also assume that variation in vegetation properties,
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and thus NDVI, is basically periodic, i.e., with one or more well-defined seasons per year. From these
general principles, we desire a seasonal model that provides proper separation between clear and
non-clear observations (cf. [11]), that is faithful to available data, and that considers the distribution
bias inherent to vegetation index data due to e.g., undetected cloud contamination [25]. Our approach
is based on the assumption that when data are scarce or lacking, an optimal fitting method should fall
back on a seasonal shape prior, which we define here as a pre-computed time-profile that captures
the average or climatological seasonal shape. This shape prior is especially useful when imputing
values during periods of missing data, i.e. when linear interpolation, for example, might lead to
erroneous results. The idea of lending stability from a pixel-based climatology has previously been
shown to be useful [26]. A final principle underlying our approach is that statistics characterizing the
quality of successful fits should be generated. Below we discuss the implementation of these modelling
principles based on box constrained separable least squares fits to double logistic functions, combined
with seasonal shape priors.

2.3. Implementation

2.3.1. Model Function and Shape Priors

The model function ym is a sum over n basis functions, one for each season

ym = c0 + ∑n
i=1 cib(xi, t). (1)

As basis functions we take double logistic function [27]

b(xi, t) =
1

1 + exp
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xi

2

) − 1
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3−t
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4

) , (2)

although other functions, such as asymmetric Gaussians [28], are also possible. In Equation (1) the c0

parameter determines the base level, and the linear parameters c1, . . . , cn define the amplitudes for
the seasons. The non-linear parameters xi

1 and xi
3 determine the left and right inflexion points for

season i, whereas xi
2 and xi

4 determine the time period of increase and decrease (hereafter, rise and
fall time) respectively. The model function depends on the base level, n linear parameters and 4× n
non-linear parameters, and is flexible enough to encompass interannual seasonal shifts and variations.
Under the assumption that all seasons have the same amplitude, the same rise time, the same fall time,
and inflexion points shifted by multiples of 365 days, i.e., xi

1 = x1
1 + 365(i− 1) and xi

3 = x1
3 + 365(i− 1),

where i = 1, . . . , n, the model function gives an average description of data for all seasons. With the
parameters fixed, as described above, we can interpret cib(xi, t) as a shape prior for season i.

2.3.2. Base Level

Data acquired during the dormant (i.e., winter at northern latitudes) period define the level
from which the NDVI values increase during the growing season. This base level depends on the
snow-free reflectance of the soil background or perennial ground vegetation cover. If pixels that
have undergone rapid transformations have been excluded, as discussed above, the base level should
be constant or slowly varying. The base level could be established from field measurements or
from satellite observations acquired directly prior to or after the growing period (to avoid snow,
if present) [29,30]. However, in boreal forests, for example, these time periods are often characterized
by cloudy conditions, and relatively few clear Landsat and S2 observations are generally available.
To ensure sufficient data sampling of low-value vegetation observations, we suggest using a low
percentile of the clear observation histogram for the complete time period, e.g., 5%. To generate
more stable statistics, histograms can be generated from all observations in a spatial neighborhood of
pixels with the same land cover class. To allow for gradual changes in base level, arising e.g., due to
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changes in understory vegetation cover, histograms could also be estimated from shorter periods
where sufficient data are available.

2.3.3. Determining the Shape Prior

Once the base level c0 has been established, the remaining five parameters—the common
amplitude, the common rise time, the common fall time, and the shifted inflexion points—are
determined, using an iterative upper envelope adapted separable least squares fit requiring a minimum
of five high-quality data values [28,31]. In practice, to establish the shape prior firmly, more values are
needed; the exact number depends on the distribut ion of the values in time. If desired, the procedure
can be generalized and the parameters determined from all observations in a spatial neighborhood
using pixels of the same land cover. The obtained function, as illustrated in Figure 3, gives a stable
average global description of all data with a good separation between clear and non-clear observations.
However, note that the shape prior function is not meant for describing intra-seasonal variations
in NDVI.

Figure 3. Shape prior for time series data from Landsat NDVI 2000–2005. The base level has,
after analyzing the histogram for this pixel, been fixed to NDVI = 0.59. As the shape prior does not
describe individual years, its main use is for stabilizing the fitting procedure during data-sparse periods.

2.3.4. Determining a Model Function that Accounts for Intra-Seasonal Variations

Similar to the shape prior, we define a model function that accounts for intra-seasonal variation
and that is determined using an iterative upper envelope adapted separable least squares fit. For this
case, however, each season has its own set of parameters that is independent of the parameters from
the other seasons. The fitting accuracy depends on the number of high-quality data values and their
distribution in time. When insufficient high-quality data are available during the beginning and end
of the growing season, the resulting function fits can be unrealistic (Figure 4a). In these cases, one or
more free seasonal parameters are assigned the values of the corresponding parameters of the shape
prior, the effect of which is illustrated in Figure 4b.

Please note that although the parameters are allowed to vary independently from each other
to account for intra-seasonal variations, there is, due to the global nature of the fit, an interaction
between them. The resulting model function is not identical to the one obtained by doing a sequence of
separate fits to the different years and merging the individual fits to a model for all years. The model
function from a global fit, whether or not it falls back on shape priors, is always continuous and smooth,
whereas the function obtained by merging functions from a number of individual fits is, in general,
discontinuous. The degree of discontinuity in the latter depends on the shape of the underlying NDVI
curve as well as on the quality of the data.

To determine the feasibility of using free parameters, here we propose evaluating the point
distribution in time using seven regions of the seasonal curve (Figure 5). If no high-quality data
points are found in the specified regions, according to Table 2, the free parameter is replaced by the
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corresponding parameter of the shape prior. This important feature prevents unrealistic fits during
periods with sparse data.

Figure 4. (a) Double logistic fits with free seasonal parameters. Note the unrealistically short second
growing season due to lack of clear observations at the end of the season (arrow); (b) fit where the
right inflexion point and the parameter determining the fall time are constrained and taken as the
corresponding values of the shape prior.

Figure 5. Seven regions in which data points must exist, according to Table 2, to allow free parameters
to be used. Circles denote levels 0.01, 0.25, 0.75 and 0.99 of the amplitude to the left and right of
the center.

Table 2. Parameters in Equations (1) and (2), and the corresponding regions in Figure 5, in which at
least one point is required to allow the parameter to vary freely. If no points are found in a region,
the corresponding parameter from the shape prior is used.

Parameter Seasonal Region (Figure 5)

ci 4 OR (2 AND 3 AND 5 AND 6)
xi

1 2 OR (1 AND 3)
xi

2 1 AND 3
xi

3 6 OR (5 AND 7)
xi

4 5 AND 7

Poor fitting leading to unrealistic seasons could also be caused by high levels of undetected
noise in the data. Such periods are identified and handled by applying box constraints [32], in which
the seasonal parameters (the amplitude, inflexion points, and the parameters determining the rise
and fall time) are constrained within given intervals. This way, the fitted function can be prevented
from varying more than a certain distance away from the shape prior, e.g., preventing the estimated
spring or autumn dates from occurring more than a month before or after normal. The constraints
are knowledge-based and class-specific, and hence must be prescribed (see Section 4). The described
methods stabilize the fitting procedure, and have the added advantage that the shape prior can be
used for gap filling over extended periods of missing data.
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The use of shape prior parameters, rather than free parameters, can be recorded for each season,
and each such occurrence recorded as a quality indicator. The indicators for a season can then be
propagated to the seasonality parameters. Thus, for example, the start of season and length of season
would only be assigned the highest quality if xi

1 was computed with free parameters. Summing up
the seasonal quality indicators for a dataset provides a measure of the general product quality and
indicates its usefulness for seasonality estimation.

2.3.5. Data Storage and Compression

An added benefit of the model we describe is that it allows for a high degree of data compression.
Storing the shape prior requires six parameters, and storing the full model function requires five
parameters per season, plus the base level. Compared to storing daily data values and estimated
seasonality parameters, the proposed method only uses a small fraction of the storage required for the
full data set, depending on the chosen output time step. Using the estimated parameters, the model
function can be projected on any desired time grid, and seasonality parameters, such as the start and
end of growing seasons, can easily be computed.

2.3.6. Evaluating the Robustness of the Method

We evaluated the robustness of the fitting method, rather than analyzing its ability to estimate
actual ground-observed phenology. The latter is a function of several factors of which the mathematical
fitting method is only one. (It also depends on the remotely sensed data, the preprocessing methodology,
criteria for defining phenological parameters, and vegetation type). We hence focused our analysis on
a critical function for ensuring robustness: the use of shape prior. This is a key feature of the method
that strongly affects the fitted curves.

To test this we used the MODIS 500 m daily dataset for the period 2011–2016, and extracted a
30.5 km × 30.5 km (61 × 61 pixels) region overlapping the test area (Figure 1). We then generated
two datasets: one reference dataset based on all clear-sky daily MODIS observations, to which
we fitted double-logistic functions and extracted dates of start-of-season (SOS) and end-of-season
(EOS); and another dataset that was a sparse subset of the first one, simulating S2 by only including
the clear-sky MODIS observations that correspond exactly in time with the observations from S2.
For 2011–2015, i.e., prior to S2, we selected the same number of MODIS observations per year as in
2016. We then fitted double logistic functions to 2016 with and without 2011–2015 shape prior data,
and compared SOS and EOS parameters with those estimated from the daily MODIS data.

Dates of SOS and EOS can be defined in many different ways, e.g., the time when the model
function reaches prescribed fractions of the seasonal amplitude above the base level (e.g., 10%) [17,18].
The exact choice of definitions is not relevant to the model development described in this paper;
we simply defined them based on the inflexion points of the fitted functions [5].

3. Results

The proposed processing method was successfully applied to Landsat and S2 data over the test
area. Time series plots for three selected pixels are shown in Figure 6. These plots serve to demonstrate
the seasonal fits and the effects of the difference in temporal sampling between Landsat and S2 for
representative deciduous, coniferous, and agricultural pixels.

Maps were generated over the test area to show phenological parameters estimated from fitted
functions for Landsat and S2a, e.g., the start of season date for 2016 (Figure 7). A false color composite
(FCC) from Landsat is provided for comparison, along with a map that identifies pixels where the
shape prior was used for estimating the parameter xi

1 (12.2% of pixels). The basic landscape features
are captured in the SOS maps estimated from both Landsat and S2, and the zoomed-in maps clearly
show the greater phenological detail available from S2 compared to Landsat.

The significance of using the shape prior for estimates of SOS and EOS is shown in Figure 8.
The left hand plot shows the bias when estimating SOS in 2016 from simulated S2 based on MODIS
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NDVI without shape prior (blue symbols), compared to the inclusion of shape prior data from
2011–2015 (red symbols). The shape prior estimates align well with the estimates from the daily
MODIS data (Root Mean Squared Error, RMSE = 8.5 days), whereas the estimates without shape prior
have a large RMSE of 24.5 days. For EOS in the right hand plot the difference is smaller; the RMSE is
reduced from 18.4 days to 13.2 days, however, again with a clearly visible bias away from the 1:1 line
when the shape prior data are not used.

Figure 6. Examples of time series over deciduous (top), coniferous (middle), and agricultural (bottom)
areas from Landsat (left) and S2 (right).

Figure 7. Phenology data from Landsat (top row) and Sentinel 2a (bottom row). Left hand images
show estimated start of season (unit: day-of-year, DOY), and the center images show zoom-ins over
an agricultural area. The right hand top image shows a false color composite (FCC) from Landsat 8
for comparison, and the bottom right image shows pixels where shape prior was used for estimating
parameter xi

1, determining the start of season. Coordinates of the study area are shown in Figure 1.
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Figure 8. Reduced RMSE and bias when estimating start of season (left) and end of season (right)
for 2016 from simulated S2 NDVI data by double logistic function fitting without shape prior (SP;
blue dots) as compared to fitting with shape prior (red dots). Parameters from simulated S2 data are
plotted against reference data of SOS and EOS from daily MODIS NDVI. Equations and statistics of the
linear relationships are printed in the graph in blue (no SP) and red (with SP).

4. Discussion

The combination of the shape prior and box constrained least squares fits provide stability to
the estimates, and reduce the risk of poor fitting due to sparse data. Pixel quality information can
be used as weights in the function fitting, or as in our case, to exclude low-quality observations.
In Figures 6 and 7 the shape prior for S2 was based on a short time series from 2015 through to
June 2017; data from more years would have been needed to estimate the shape prior parameters
accurately. Hence, for pixels in our test data where the shape prior was used, annual phenology
estimates are probably not accurate. However, it should be noted that we only used one of the S2
satellites, since S2b was not operational in 2016, and we anticipate considerable improvement when
data from both S2 satellites are included. An alternative to using time series data for determining the
shape prior is to base it on a larger domain of data, i.e., by spatial sampling. It may also be possible to
combine different satellite systems to achieve increased accuracy in the estimation. This, of course,
requires that the two data sources are spatially and radiometrically harmonized, such as in the HLS
dataset [23].

The base level can be defined by several methods: by evaluating historical time-series data at
each pixel; by analyzing a large number of pixels from the same class in a spatial neighborhood;
by using spectral ground measurements [33]; or by sampling data during parts of the off-seasonal
period of the year (e.g., [30]). In a similar way, specifications of the constraints on the parameter values
should be supplied. These could be based on statistics for a sufficient number of pixels, or based on
heuristics developed from information about known phenological conditions (e.g., the maximum time
that a growing season in a certain area is expected to vary). Today, global databases of phenology
from coarse-resolution sensors exist that may be utilized for this purpose, e.g., the MODIS MCD12Q2
global land cover dynamics product (https://lpdaac.usgs.gov) [5]. For determining base level and
constraints, it is necessary to identify and avoid pixels with rapid land cover variations, i.e., by using
the method by Zhu et al. [11].

There is no consensus in the remote sensing literature as to the superiority of any particular
fitting method over others, and different methods have been found to be optimal under different
conditions (cf. comparisons in [4,34–37]). However, we argue that the choice of fitting method
ultimately depends on the frequency, distribution, and quality of the input data. Where the data
quality is sufficiently high for choosing methods that preserve intra-seasonal variations, like smoothing
filters (e.g., Savitzky-Golay [38]) or splines (e.g., the Whittaker smoother [39,40]), these methods should
be chosen. However, in the case of lower frequencies of data, as with current Landsat and Sentinel-2

https://lpdaac.usgs.gov
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data over most areas, function fitting may be the only option for achieving robustness. Fits to double
logistic functions are widely used for estimating phenology, and have been applied to both MODIS [5]
and Landsat data [8]. These functions are well tested for estimating phenology [5,8,29,41], and were
recently shown to be robust for phenological parameter estimation under a variety of conditions [34].

The logistic basis functions we use in this paper work well with data in many types of natural
systems. In cases with more abrupt seasonal changes, e.g., agricultural lands, it may be preferable to
use asymmetric Gaussian functions [28], which have the ability to capture rapid shifts with relatively
few parameters. In agricultural regions with annually shifting seasonality, it may also be necessary to
establish the shape prior from different pixels from the same field or crop, rather than from time-series
from the same field.

It may also be useful to add parameters that allow for more flexible representations of seasonality,
for example, to better model the green-down period after the seasonal maximum [13]. However,
since we model each year individually rather than pooling all data as in these studies, we have
fewer data points each year; this may cause overfitting or lack of stability. Hence, the use of more
complex fitting procedures probably requires evaluation using metrics such as the Akaike information
criterion [42]. Our method has several advantages compared to other methods based on only logistic
or similar functions: it handles all seasons simultaneously, yielding a smooth model and avoiding
unrealistic basis level discontinuities between the seasons; it provides quality indicators associated
with values estimated for model parameters; and it is numerically stable due to its formulation in
terms of separable least squares. The method is also flexible in the sense that it can work with or
without a shape prior depending on data frequency and quality, and no prior interpolation of data is
necessary. Furthermore, our method can be useful for generating fitting parameters when warping
data from one sensor or year onto another [43].

Further tests will have to be made in different environments and with different data types to
fine-tune the method. In addition, it may be necessary to define certain land-cover specific tolerances
with respect to the allowed growing season variation: A boreal evergreen forest is not expected to
vary with respect to seasonality events by more than a few weeks, whereas an agricultural field can
vary quite freely depending on agricultural practices. Further development to adapt to different
monitoring conditions and geographical areas will be necessary to enable operational implementation
of the method.

For full understanding of the accuracy of the method, and phenology estimation from medium
resolution data in general, it will be necessary to analyze obtained parameters against field
measurements of phenology, e.g., from phenological cameras [44], flux towers [45], or field spectral
measurements [33].

5. Conclusions

With the proposed method, which is based on a box constrained separable least squares fitting to
logistic model functions, we have developed a flexible and robust method for modeling the phenology
of growing seasons with data from medium-resolution optical satellites like Landsat and Sentinel-2.
We show that the use of the shape prior adds robustness to the function fitting. The method relies on
accurate labeling of pixel quality, and, in order to obtain stable parameters, on the availability of data
from long time series (or alternatively from a larger spatial domain). For Sentinel-2, this means that
extending the time series backwards using the Landsat record may be required during the first years
of operation. We also conclude that further testing will be necessary in different biomes to understand
better how to choose parameters for base level and parameter constraints. The proposed method is
implemented in the TIMESAT software package [17] and will be available in future releases.
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