
remote sensing  

Article

Pushbroom Hyperspectral Data Orientation by
Combining Feature-Based and Area-Based
Co-Registration Techniques

Kévin Barbieux ID

Geodetic Engineering Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
kevin.barbieux@epfl.ch

Received: 26 March 2018; Accepted: 19 April 2018; Published: 22 April 2018
����������
�������

Abstract: Direct georeferencing of airborne pushbroom scanner data usually suffers from the
limited precision of navigation sensors onboard of the aircraft. The bundle adjustment of
images and orientation parameters, used to perform geocorrection of frame images during the
post-processing phase, cannot be used for pushbroom cameras without difficulties—it relies on
matching corresponding points between scan lines, which is not feasible in the absence of sufficient
overlap and texture information. We address this georeferencing problem by equipping our aircraft
with both a frame camera and a pushbroom scanner: the frame images and the navigation parameters
measured by a couple GPS/Inertial Measurement Unit (IMU) are input to a bundle adjustment
algorithm; the output orientation parameters are used to project the scan lines on a Digital Elevation
Model (DEM) and on an orthophoto generated during the bundle adjustment step; using the image
feature matching algorithm Speeded Up Robust Features (SURF), corresponding points between the
image formed by the projected scan lines and the orthophoto are matched, and through a least-squares
method, the boresight between the two cameras is estimated and included in the calculation of the
projection. Finally, using Particle Image Velocimetry (PIV) on the gradient image, the projection
is deformed into a final image that fits the geometry of the orthophoto. We apply this algorithm
to five test acquisitions over Lake Geneva region (Switzerland) and Lake Baikal region (Russia).
The results are quantified in terms of Root Mean Square Error (RMSE) between matching points
of the RGB orthophoto and the pushbroom projection. From a first projection where the Interior
Orientation Parameters (IOP) are known with limited precision and the RMSE goes up to 41 pixels,
our geocorrection estimates IOP, boresight and Exterior Orientation Parameters (EOP) and produces
a new projection with an RMSE, with the reference orthophoto, around two pixels.

Keywords: pushbroom; georeferencing; correction; particle image velocimetry; orientation;
hyperspectral; co-registration; correlation

1. Introduction

Pushbroom cameras prevail in hyperspectral remote sensing because they usually offer much
better spectral resolution and much higher number of bands than frame cameras. The usual method
to collect and georeference pushbroom data is to equip the aircraft with navigation sensors like GPS
and Inertial Measurement Units (IMU), fuse the data from both of these sensors via Kalman Filtering,
and perform direct georeferencing [1]—knowing the position and attitude of the vehicle at the time of
acquisition, data can be projected on a constant height field or a Digital Elevation Model (DEM) using
the collinearity equation, which relates the pixel coordinates of the data to the ground coordinates
of the points where they were acquired, in a geographic or projected reference system. However,
the precision obtained by this method is affected by the quality of the navigation data [2], as well as
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the intrinsic calibration of the imaging sensor [3]. Due to this, the ground error of the georeferencing
can be several metres to tens of metres, depending on the altitude of the aircraft and the Ground
Sampling Distance (GSD) [4,5]. To improve the quality of the georeferencing, several ancillary data
can complement the navigation data. The measurement, on the field, of Ground Control Points (GCP)
helps correcting the absolute orientation of the airborne images [6,7]. They can be input to a bundle
adjustment algorithm to correct the navigation data of all images as well as build an orthomosaic of
the whole area flown. Manually input tie points for given pairs of images can refine the adjustment
and improve the relative orientation of the images. The bundle adjustment theory is, however, of little
help in the case of pushbroom imagery: three GCPs per scan line would be required to georeference
them properly [8]; the automatic tie points matching between scan lines is extremely difficult because
it usually relies on variations of the SIFT algorithm [9] and consequently the 2D neighbourhoods of
the points, which are not necessarily available in a 1D acquisition. To bypass these constraints, extra
assumptions can be made about the trajectory of the vehicle. More specifically, assuming smoothness
of the orientation parameters, the complexity of the problem can be reduced down to the determination
of Gauss-Markov processes for such parameters [10,11].

Another possible approach is the use of an existing georegistered reference image. One then
attempts to match features from a grayscale version of the hyperspectral scan lines to the grayscale
reference image. While the literature reports attempts of such matching solely based on the correlation
criteria (without any navigation data) [12], having a first orthoimage by projecting the scan lines using
the navigation parameters, and then applying matching algorithms, is a much more robust and reliable
procedure. The most noticeable example is a work carried out by Cariou & Chehdi [13]: an image
is formed from the pushbroom scan lines and georeferenced using the navigation parameters from
the GNSS/IMU system. The reference image values at the ground points where the scan lines were
projected are backward projected to image coordinates, and matching from the backward projection to
the image formed by the scan lines is performed with a mutual information criterion.

In the following, we present a new method, based on the co-registration onto a RGB reference,
that uses both feature matching and area matching methods. We first introduce, in Section 1.1,
the scientific context of the study, namely the Leman-Baikal project, the technical setup, and the
problem we wish to solve. Section 1.2 references important known contributions in the domain of
pushbroom data georeferencing and co-registration to RGB data. Section 2 details the processing we
use to perform and improve the co-registration of our RGB data and pushbroom hyperspectral data:
a bundle adjustment—including all the RGB images and the filtered exterior orientation parameters—is
processed, allowing the creation of a reference orthomosaic and a DEM, and a first correction of the
orientation parameters for the pushbroom scanner. The scan lines are then co-registered on the
orthomosaic, thus producing an orthoimage that is distorted, compared to the reference. Then,
the use of Speeded Up Robust Features (SURF) to find tie points between the reference orthomosaic
and the projection allows compensating for the systematic error. To further refine the quality
of the co-registration, local distortions are estimated by finding the maximum of a normalised
cross-correlation criterion. Based on the estimated distortions, a least-squares optimisation algorithm
computes the best fitting EOP; the final projection is obtained by projecting the scan lines with the
newly estimated parameters. Results, in terms of quality of the co-registration (measured with RMSE)
and new orientation parameters, are analysed in Section 3.

1.1. Scientific Context

1.1.1. The Leman-Baikal Project

From 2013 to 2015, several research laboratories of the École Polytechnique Fédérale de Lausanne
(Switzerland) and the Lomonosov Moscow State University (Russia) collaborated to study the water
quality of both Lake Geneva (Switzerland), also called “Lac Léman” in French, and Lake Baikal
(Russia). One of the main goals of this project, named the Leman-Baikal project, was to develop
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a hyperspectral sensing system to be embedded on a ultralight plane, to collect and use hyperspectral
data to measure parameters like concentration of chlorophyll-α or turbidity. The system used for the
acquisition consisted in an SBG Ekinox2-N Integrated GPS+IMU system, a Headwall Micro Hyperspec
VNIR-A hyperspectral camera, an IDS-Imaging USB 2 uEye SE UI-2280 SE RGB camera, and an Intel
NUC to handle the communication between devices. To allow proper use of the hyperspectral data
collected, the post-processing chain contains two stages:

• Geometric correction: the scan lines collected by the pushbroom scanner shall be
properly georeferenced.

• Radiometric correction: the output spectra shall be filtered for inherent noise, and corrected for
atmospheric and water-surface reflection effects.

The present article deals with the geometric correction problem. For any further information
about the Leman-Baikal project, the reader may refer to [14].

1.1.2. Problem Formulation

Considering the setting given in Section 1.1.1 and illustrated in Figure 1, we wish to:

• Compute a georeferenced orthomosaic composed with the scan lines collected by the hyperspectral
pushbroom sensor.

• Retrieve the corrected orientation parameters. They include Interior Orientation Parameters
(IOP: principal distance, principal point of the pushbroom camera, and potentially the distortion
parameters of the lens) and Exterior Orientation Parameters (EOP: roll, pitch, yaw, and three
position parameters) for all the scan lines.

• Estimate the boresight between the IMU and the pushbroom sensor.
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The latitude, longitude and altitude, relatively to the WGS84 Geoid, and attitude as roll, pitch
and yaw output by the GPS+IMU system are considered as initial estimates, which our geocorrection
algorithm should refine. Additionally, we want the algorithm to not depend on the measure of GCPs:
measuring GCPs is a time consuming task, and using the information they provide for pushbroom
scan lines would imply to make assumptions on the trajectory of the aircraft to reduce the complexity
of the problem.

1.2. State of the Art

Georeferencing scan lines from a pushbroom sensor can be achieved with various setups
and assumptions on the motion of the scanner. The most common approach is Integrated Sensor
Orientation (InSO), involving the use of GCPs together with a model of the trajectory of the airborne
vehicle/satellite. Such contributions include [10], assuming constant biases of roll, pitch and yaw
angles across the scan lines, and estimating these biases using control points and Aerotriangulation
(AT). In [15], the EOP of either a satellite or an airborne vehicle are modelled by piecewise polynomials,
and optimised together with ephemeris or GPS/IMU data and GCPs using a least squares method.
Some additional parameters like the lever-arm between the GPS antenna and the pushbroom scanner,
the boresight between the IMU and the scanner, or the non-uniform geometry of the CCD array can
also be optimised by a least square method [16]. Rigorous models, including the effects of atmospheric
refraction and potential cartographic transformation, help the georeferencing of satellite data to be more
robust to GCP outliers [17]. Using the co-registration to pre-existing reference orthoimages, relying
on point features or linear features, can replace the measurements of GCPs [18]. Simple methods,
like the identification of a straight line, coupled with GCPs, even allow the ability to obtain a decent
mosaic from the scan lines [19], though such method obviously does not provide any information
on the vehicle’s trajectory. However, if no assumption on the smoothness of the trajectory is made,
estimating the EOP for each scan line would imply to measure an unrealistically high number of
GCPs [8]. To alleviate reliance on GCPs, a significant amount of contributions make use of the
co-acquisition of frame images, and develop methods to co-register the frame images and the scan
lines. The most sophisticated algorithm seems to be given by [20]: the interior orientation of the
pushbroom scanner is calibrated and the sensor is aligned with the frame camera using a target
not parallel to the plane of the CCD array, and then the stitching of the frame images allows the
construction of the hyperspectral mosaic. Additionally, this method does not require any navigation
data, however, it supposes either the calibration with the triangle target prior to every flight, or the
stability of the relative orientation of the two sensors. The ultralight plane flights operated during the
Leman-Baikal project were typically two to three hours long, therefore such stability cannot be assumed.
Approaches involving the co-acquisition of frame images, scan lines and navigation data perform
well [21]. The existence of frame images avoids the problem of weak geometry of the scan lines; the
bundle adjustment of frame images outputs better orientation for said images, which in turn can be
used as orientation for the pushbroom scanner, by estimating the boresight between the two cameras
and defining an interpolation scheme to compensate for the difference of acquisition frequencies [22].
Among other contributions, [13] proposes a co-registration to an existing referencing using a mutual
information criterion, and explores different scenarios of missing/inaccurate orientation data.

Considering the existing contributions, the originality of the work presented in the following
sections is that the problem of georeferencing pushbroom scan lines is solved using navigation data
and co-acquired frame images, without needing:

• GCPs
• A model for the vehicle’s trajectory
• A priori knowledge on the misalignment between the IMU and the pushbroom scanner, which is

important since, for low to average quality IMUs, the initial attitude alignment takes an arbitrary
wrong value at the beginning of each flight.
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Furthermore, the algorithm presented below leads to new estimates of EOP for every scan
line independently.

2. Proposed Methodology

The geocorrection method proposed consists in five steps. First, we process a bundle adjustment
of the frame images to retrieve corrected EOP for the frame camera and the navigation sensors; the
adjustment allows the creation, in parallel, of a DEM of the area. Second, using these EOP for the
pushbroom camera, a first mosaic is created by projecting the scan lines on the DEM. Third, points are
matched between the orthophoto from the frame images and the pushbroom mosaic; these matches
allow the estimation of the systematic error in the pushbroom georeferencing, in the form of the
boresight between the IMU and the pushbroom scanner, and the IOP of the scanner. The projection
of the scan lines is updated using the estimated boresight parameters. Fourth, the residual errors
are compensated for by computing the local normalised cross correlations between the reference
orthophoto and the mosaic. The mosaic is elastically deformed into a new mosaic which fits the
orthophoto better. Fifth, these deformations allow better estimation of the EOP for each scan line and
computation of a final mosaic that is well co-registered onto the reference orthophoto. The flowchart
of this method is given in Figure 2.
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2.1. Pre-Processing Step: Radiometric Matching

Knowing the later steps of our algorithm (Sections 2.4 and 2.5) rely on matching features or areas
of the RGB images to the pushbroom hyperspectral images, the radiometric properties of both sources
need to match accordingly. The hyperspectral camera is calibrated (spectrally and radiometrically)
using a Spectralon panel, which is Lambertian and has a nearly unit-reflectance across the spectral
range of our camera (400–850 nm). The band-wise quantum efficiency for each band of the RGB
camera is provided by the manufacturer; to produce comparable RGB data from our hyperspectral
camera, we integrate the quantum efficiency of one band of the frame camera, times the spectral signal
delivered by the hyperspectral camera. Concretely, let λ be the wavelength variable, and QEb(λ)

the quantum efficiency of the frame camera in the band b (red, green or blue). Let λn be the central
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2.1. Pre-Processing Step: Radiometric Matching

Knowing the later steps of our algorithm (Sections 2.4 and 2.5) rely on matching features or areas
of the RGB images to the pushbroom hyperspectral images, the radiometric properties of both sources
need to match accordingly. The hyperspectral camera is calibrated (spectrally and radiometrically)
using a Spectralon panel, which is Lambertian and has a nearly unit-reflectance across the spectral
range of our camera (400–850 nm). The band-wise quantum efficiency for each band of the RGB camera
is provided by the manufacturer; to produce comparable RGB data from our hyperspectral camera, we
integrate the quantum efficiency of one band of the frame camera, times the spectral signal delivered
by the hyperspectral camera. Concretely, let λ be the wavelength variable, and QEb(λ) the quantum
efficiency of the frame camera in the band b (red, green or blue). Let λn be the central wavelength of the
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nth band of the hyperspectral camera. Then, hb, the data in band b synthesised from the hyperspectral
image h, is given by Equation (1).

hb =
∑
n

QE(λn)h(λn)

∑
n

QE(λn)
(1)

A three-bands image is then created by applying Equation (1) to the three bands of the frame
camera. Images of both cameras are then converted to greyscale for the following steps of the algorithm.

2.2. Bundle Adjustment of Frame Images

In the first stage of the geocorrection, the information available in frame imagery is used to refine
the estimates of the EOP given by the navigation sensors. Using the commercial software Agisoft
Photoscan, we perform a bundle adjustment of frame images (Figure 3). Each image is associated
with a set of EOP, initialised with the values output by the GPS+IMU system. Photoscan handles
the stitching of the RGB images by finding tie points; EOP are optimised in the process and can be
exported from the software. However, these parameters correspond to the frame camera. To retrieve
corrected parameters for the IMU, two additional steps must be completed: the interpolation of the
corrected parameters, since the acquisition frequency of the frame camera is much lower than the one
of the navigation system; and the computation of the boresight between the frame camera and the
IMU. Our solutions to both of these problems are described in [22]. However, the boresight from frame
camera to IMU can be also be estimated using recently developed methods involving the use of raw
inertial measurements [23]. Alongside the optimisation, the bundle adjustment allows to build and
export an orthophoto and a DEM (Figure 3).
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latitudes 52.164◦N, 52.176◦N and the longitudes 106.385◦E, 106.410◦E. The RMSE between this DEM
and the SRTM DEM was 7.24 m, which falls in the typical range of errors of the SRTM [24].

2.3. Initial Ortho-Projection of the Scan Lines

With the set of optimised orientation parameters for the navigation system derived in Section 2.2,
we create an orthomosaic composed with the scan lines collected by the pushbroom sensor. From the
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computation of the orthophoto; and (b) computation of the DEM of the area (Selenga Delta Village).

The DEM generated was compared to co-localised data from the Shuttle Radar Topography
Mission (SRTM). Since the DEM produced had a sub-meter resolution, we down-sampled it to fit
the resolution of the SRTM data. The result was a 34× 45 tiles DEM in the region delimited by the
latitudes 52.164◦N, 52.176◦N and the longitudes 106.385◦E, 106.410◦E. The RMSE between this DEM
and the SRTM DEM was 7.24 m, which falls in the typical range of errors of the SRTM [24].

2.3. Initial Ortho-Projection of the Scan Lines

With the set of optimised orientation parameters for the navigation system derived in Section 2.2,
we create an orthomosaic composed with the scan lines collected by the pushbroom sensor. From the
bundle adjustment, we already have a georeferenced orthophoto and the corresponding DEM;
the orthomosaic is obtained by projecting the scan lines on the DEM using the collinearity equation.
Let us call Renu

ned the rotation matrix from the North-East-Down (NED) local-level frame (l-frame)
to the East-North-Up (ENU) l-frame, both centred at the optical centre of the pushbroom camera.
Let Rned

IMU be the rotation matrix from the IMU frame to the NED l-frame, and RIMU
pb the rotation matrix
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corresponding to the boresight from the pushbroom camera to the IMU. At this stage, Rned
IMU is given by

the estimates of the roll, pitch and yaw obtained in Section 2.2, and noted R̊ned
IMU . Initially, the boresight

is unknown and supposed to be negligible, hence R̊IMU
pb is the identity matrix. The total rotation from

the pushbroom camera to the ENU l-frame is given by Equation (2).

R̊enu
pb = Renu

ned × R̊ned
IMU × R̊IMU

pb (2)

We can georeference the pushbroom data according to the collinearity equation Equation (3).

µRenu
pb




0− upp + δu
v− vpp + δv

f


 =




XG
YG
ZG


−




XoC
YoC
ZoC


 (3)

In Equation (3), µ corresponds to the collinearity coefficient, v is the metric coordinate of the
pixel of interest in the body frame of the pushbroom camera.

(
upp, vpp

)
are the coordinates of the

principal point of the camera in the same frame, f is the focal length of the camera, (XG, YG, ZG) are
the coordinates of the corresponding ground point in the ENU l-frame and (XoC, YoC, ZoC) are the
coordinates of the optical centre in the same frame. Considering the radial distortion parameters
K1, K2, K3 . . ., the decentring coefficients P1 and P2, u′ = 0− upp and v′ = v− vpp, Brown’s model for
lens distortion [25] gives the expressions of δu and δv (Equation (4) and (5)).

δu = u′
(

K1r2 + K2r4 + K3r6 + . . .
)
+ P1

(
r2 + 2u′2

)
+ 2P2u′v′ (4)

δv = v′
(

K1r2 + K2r4 + K3r6 + . . .
)
+ P2

(
r2 + 2v′2

)
+ 2P1u′v′ (5)

Equation (3) gives the most generic form of the collinearity equation for our problem. However,
at this stage, Renu

pb = R̊enu
pb , the position of the optical centre is the one output by the bundle adjustment,

the optical centre’s coordinates and the distortion parameters are unknown and the focal length
is known with limited precision. Therefore, XoC = X̊oC, YoC = Y̊oC, ZoC = Z̊oC, ůpp = v̊pp = 0,
the distortion parameters are all set to zero, f = f̊ ( f̊ = 0.012m in our case) and the collinearity
equation turns into Equation (6).

µR̊enu
pb




0
v
f̊


 =




XG
YG
ZG


−




X̊oC
Y̊oC
Z̊oC


 (6)

We use ray casting to find the ground coordinates (XG, YG, ZG). The intersection of the rays
with the DEM is computed using the following algorithm [26]: from the optical centre of coordinates

(X̊oC, Y̊oC, Z̊oC), trace the ray driven by the vector R̊total × (0, v, f̊ )
T

. The candidate 2D pixels are the
pixels that are crossed by the ray, and where the ray is between the lowest and the highest altitude of
the DEM. The projection pixel is the first pixel below which the ray passes.

This process is applied to all the pixels of all the scan lines collected, and the resulting ground
pixels form an image that is superimposed on the reference mosaic. Since the resolution of our
reference mosaic is much higher than the one of our pushbroom camera, the image produced is
sparse, with important gaps between the projected points. Around each of these pixels, we leave
a marker of size n× n (where n is the number of pixels; we choose n = 5 here) to compute a dilated
footprint of the pushbroom projection. Inside this footprint, the isolated pixel values projected using
the collinearity equation are interpolated with a 2D bilinear interpolation to produce the final projected
image. An example of such image can be seen on Figure 4.
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Figure 4. Orthoprojection of the scan lines (cyan) on top of the reference orthomosaic (red) above
a village near the Selenga Delta of Lake Baikal. (a) is the orthoprojection of the pushbroom pixels
(without interpolation) and (b) is the image as seen after bilinear interpolation of the projected values.

2.4. Systematic Error Correction

As can be seen on Figure 4b, the georeferencing is far from perfect, as the co-registration between
the reference orthophoto and the scan lines exhibit significant discrepancies. However, the error made
seem quite coherent across the image, suggesting that is mainly comes from systematic errors:

• Bad intrinsic camera calibration (inaccurate focal length, principal point coordinates, or lens
distortion parameters).

• Non-negligible boresight between the IMU and the pushbroom camera.

To compensate for these errors, we proceed in two steps: we first identify tie points between the
reference and the pushbroom mosaic, and then use these tie points as observations to adjust the IOP
and the boresight parameters using a least-squares method.

2.4.1. Matching Points with SURF

We use the Speeded Up Robust Features (SURF) [27] to find corresponding points between
the RGB reference and the pushbroom mosaic. SURF is a powerful tool for point matching that
determines points of interest from multiple Gaussian-filtered version of the image, and matches them
according to local-orientation descriptors computed with Haar wavelets. Provided that our images are
radiometrically similar (which was discussed in Section 2.1), SURF is very suitable to find matching
points between our reference orthophoto and the scan lines mosaic. The only obstacle is the use of
bilinear interpolation when creating the mosaic: SURF relies on properties of the neighbourhoods of
the points of interest, which are synthetic data in the case of an interpolation. However, as discussed
further in the results section (Section 3), this was a problem only when the aircraft’s motion was
significant, in which case the interpolation had to fill important gaps between scan lines.

The SURF algorithm is applied to our reference orthophoto and the current pushbroom mosaic.
The pairs of points chosen are filtered in two ways: first, the points too close to the border of the
footprint of the mosaic are removed. Indeed, no-data (dark) points outside of the footprint might
influence their neighbourhoods. Second, absurd matches found by SURF must be discarded. Although
methods could be considered at this stage to discard these outliers, they will be dealt with at the least
squares adjustment step.

The matches for the same flight are shown on Figure 5b.

Figure 4. Orthoprojection of the scan lines (cyan) on top of the reference orthomosaic (red) above
a village near the Selenga Delta of Lake Baikal. (a) is the orthoprojection of the pushbroom pixels
(without interpolation) and (b) is the image as seen after bilinear interpolation of the projected values.

2.4. Systematic Error Correction

As can be seen on Figure 4b, the georeferencing is far from perfect, as the co-registration between
the reference orthophoto and the scan lines exhibit significant discrepancies. However, the error made
seem quite coherent across the image, suggesting that is mainly comes from systematic errors:

• Bad intrinsic camera calibration (inaccurate focal length, principal point coordinates, or lens
distortion parameters).

• Non-negligible boresight between the IMU and the pushbroom camera.

To compensate for these errors, we proceed in two steps: we first identify tie points between the
reference and the pushbroom mosaic, and then use these tie points as observations to adjust the IOP
and the boresight parameters using a least-squares method.

2.4.1. Matching Points with SURF

We use the Speeded Up Robust Features (SURF) [27] to find corresponding points between
the RGB reference and the pushbroom mosaic. SURF is a powerful tool for point matching that
determines points of interest from multiple Gaussian-filtered version of the image, and matches them
according to local-orientation descriptors computed with Haar wavelets. Provided that our images are
radiometrically similar (which was discussed in Section 2.1), SURF is very suitable to find matching
points between our reference orthophoto and the scan lines mosaic. The only obstacle is the use of
bilinear interpolation when creating the mosaic: SURF relies on properties of the neighbourhoods of
the points of interest, which are synthetic data in the case of an interpolation. However, as discussed
further in the results section (Section 3), this was a problem only when the aircraft’s motion was
significant, in which case the interpolation had to fill important gaps between scan lines.

The SURF algorithm is applied to our reference orthophoto and the current pushbroom mosaic.
The pairs of points chosen are filtered in two ways: first, the points too close to the border of the
footprint of the mosaic are removed. Indeed, no-data (dark) points outside of the footprint might
influence their neighbourhoods. Second, absurd matches found by SURF must be discarded. Although
methods could be considered at this stage to discard these outliers, they will be dealt with at the least
squares adjustment step.

The matches for the same flight are shown on Figure 5b.
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(a) Initial projection with uncalibrated IOP.
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(b) Feature matching using SURF.
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(c) Projection with calibrated IOP and boresight.
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(d) PIV performed on the gradient images.
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(e) Deformation of the scan lines, following the PIV.
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(f) Projection after correction of the EOP.

Figure 5. Illustrations of the various steps of our algorithm for a test flight over a village of the Selenga
Delta (Russia, 17 August 2014). All images show the superimposed scan lines (in cyan) on top of the
reference orthophoto (in red).

2.4.2. Interior Orientation and Boresight Estimation

The matched points act as measures that can be used to perform a least squares adjustment and
estimate the IOP and the boresight. Since the mosaic of scan lines is derived from an interpolation,

Figure 5. Illustrations of the various steps of our algorithm for a test flight over a village of the Selenga
Delta (Russia, 17 August 2014). All images show the superimposed scan lines (in cyan) on top of the
reference orthophoto (in red).

2.4.2. Interior Orientation and Boresight Estimation

The matched points act as measures that can be used to perform a least squares adjustment and
estimate the IOP and the boresight. Since the mosaic of scan lines is derived from an interpolation,
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not every point matched corresponds to an actual pixel from the pushbroom scanner; for each point
matched, we simply compute the closest point which did not derive from the interpolation, and get
the index of its scan line l as well as the index k of its pixel in the scan line. We wish to find the
best parameters so that Equation (3) is verified. Ideally, the functions gk,l,1, gk,l,2 and gk,l,3 given by
Equation (7) should equal zero for all matches.




gk,l,1(rb, pb, yb, f , K1, K2, P1, P2)

gk,l,2(rb, pb, yb, f , K1, K2, P1, P2)

gk,l,3(rb, pb, yb, f , K1, K2, P1, P2)




= µk,l Renu
pbk,l

(rb, pb, yb)




0 + δuk,l(K1, K2, P1, P2)

vk + δvk,l(K1, K2, P1, P2)

f




−




XGk,l

YGk,l

ZGk,l


+




XoCl

YoCl

ZoCl




= 0

(7)

The boresight roll, pitch and yaw are noted respectively rb, pb and yb in Equation (7). The planar
coordinates of each corrected ground point, (XGk,l , YGk,l ) are the ones output by the SURF; ZGk,l is the
value of the DEM at coordinates (XGk,l , YGk,l ). From the third line of Equation (7), µk,l can be computed,
leaving the first two lines as two constraints that ideal parameters should satisfy. The input system of
our least squares optimisation is given by Equation (8).

g(rb, pb, yb, f , K1, K2, P1, P2)

=




gk1,l1,1(rb, pb, yb, f , K1, K2, P1, P2)

gk1,l1,2(rb, pb, yb, f , K1, K2, P1, P2)

gk2,l2,1(rb, pb, yb, f , K1, K2, P1, P2)

gk2,l2,2(rb, pb, yb, f , K1, K2, P1, P2)
...

gkNM ,lNM ,1(rb, pb, yb, f , K1, K2, P1, P2)

gkNM ,lNM ,2(rb, pb, yb, f , K1, K2, P1, P2)




(8)

In Equation (8), NM is the number of matches and the indexes k are not necessarily distinct, neither
are the indexes j, as matches can occur in the same scan line, or for the same pixel in different scan lines.
Consider A to be the Jacobian matrix of g relatively to the eight parameters to optimise, and v̊ = −g̊
where g̊ = g(r̊b, p̊b, ẙb, f̊ , K̊1, K̊2, P̊1, P̊2) is the vector obtained with set initial parameters (Equation (9)).

r̊b= 0

p̊b= 0

ẙb= 0

f̊= 12 mm

K̊1= 0

K̊2= 0

P̊1= 0

P̊2= 0

(9)



Remote Sens. 2018, 10, 645 11 of 21

Then the increment of the parameters is given by
(

AT A
)−1 AT v̊, according to the theory of least

squares optimisation. It should be noted that we do not estimate the coordinates of the optical centre.
Ideally, using as parameters all the IOP (focal length, principal point, distortion parameters) and the
three boresight parameters, computing the least squares adjustment would bring corrected values for
all these parameters. However, this is not possible, as the position of the optical centre and the couple
(boresight roll, boresight pitch) are strongly correlated and prevent the algorithm from converging.
Indeed, in a linearised model, a discrepancy in roll results in a shift of the ground points orthogonally
to the direction of the vehicle, and so does an error on the vpp. A similar correlation exists between
the boresight pitch and the second coordinate of the optical centre. Consequently, we have studied
all the existing correlations between compensated parameters, for the images and tie points given in
Figure 5b, in three different optimisation scenarios. Significant correlations were reported in Table 1.

Table 1. Maximum correlations of compensated parameters observed in different scenarios at first
iteration of the least squares optimisation.

Parameters Maximum
Correlation

Correlated
Parameters

Boresight, upp, vpp, 1; Roll and vpp;
f, K1, K2, P1, P2 −1 Pitch and upp

Boresight, f, K1, K2, 0.71; Roll and P2;
P1, P2 0.69 Pitch and P1

Boresight, f, K1, K2 0.68 K1 and K2

From the correlations given in Table 1, we have decided to optimise the boresight, f, K1, K2, P1

and P2. It is to be noted that, due to the one-dimensional nature of pushbroom sensors (u = 0), P1 and
P2 are significantly correlated to respectively the boresight pitch and the boresight roll. We have not
observed convergence problem when optimising P1, P2 and the rest of the parameters, however, such
problems might occur when the tie points found all have similar v coordinates.

In order to discard outliers output by SURF, we compute the standard deviation σ(ǧ) of the
residuals after compensation, ǧ = g(řb, p̌b, y̌b, f̌ , Ǩ1, Ǩ2, P̌1, P̌2). We discard any matched pixel k, l for
which ǧk,l > 3σ(ǧ), and compute the least squares adjustement with the remaining matches. Figure 6
shows an example of outliers removal for the flight of Selenga village.
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correspond to the pairs kept after removing outliers.

Figure 6. Scatter of the difference vectors for the pairs of points matched by the SURF , for a flight
over a village of the Selenga Delta. All the matches are represented by red crosses. Tilted blue crosses
correspond to the pairs kept after removing outliers.
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The uncertainty on the estimated values of the boresight and IOP need to be known for a second
least squares adjustment used later in our algorithm (Section 2.6). They are given as the square root of
the diagonal elements of

(
AT A

)−1. In Table 2, we have reported the values and standard deviations
obtained for our Selenga village flight.

Table 2. Values and standard deviations of boresight parameters and IOP estimated by the least
squares adjustment.

Parameters Value σ

Roll 1.1◦ 9.3× 10−3◦

Pitch −0.54◦ 8.8× 10−3◦

Yaw −0.17◦ 5.2× 10−2◦

Focal length 11.4 mm 1.5× 10−2 mm

K1 294.2m−2 44.8m−2

K2 −1.6× 108m−4 350.7m−4

P1 0.54m−1 0.57m−1

P2 0.74m−1 0.22m−1

The values obtained for P1 and P2 are high: since the principal point coordinates cannot be
estimated at this step, the error made by setting them to zero are compensated by other parameters.
In particular, since u′ = 0 and v′ = v, δu = P1r2 and the tangential distortion term of δv is limited to
P2
(
r2 + 2v2). As a result, the error made on vpp propagates mainly to the roll and P2, and the error

made on upp propagates mainly to the pitch and P1. The optimised boresight and IOP are used in the
projection process described in Section 2.3, resulting in a new mosaic that fits the reference orthophoto
better (see Figure 5c).

2.5. Geocorrection Using Particle Image Velocimetry

In this section, we introduce the concept of Particle Image Velocimetry (PIV) and explain how we
use it to perform geocorrection and retrieve better estimates of the orientation parameters.

2.5.1. PIV Theory

Particle Image Velocimetry is a technique primarily designed to quantify the movements of
fluids [28]. It is an image processing algorithm that computes local instantaneous velocities between
two images. The algorithm proceeds in two steps:

• Split the two images into a grid of cells, which sizes are given by the user.
• Find the new location of each cell of the first image into the second image, by finding the

maximum of the cross-correlation of the cell (normalised in mean and standard deviation) and its
neighbourhood in the second image (also normalised).

Two sizes have to be input: the size of the cells in the first image, and the size of the interrogation
areas in the second image. Interrogation areas are sub-images of bigger size than the cells of the first
image, in which the algorithm will try to match the cell. Considering a cell as a 2D function c(x, y) from
one image, and the corresponding interrogation area i(x, y) in the second image, the estimated position
of c in i is the 2D vector (a, b) that maximises the cross-correlation between c and the sub-image found
following the vector (a, b) from the origin of i (see Equation (10)).

(a, b) =

max
j,k

{
1
n ∑

x,y

1
σcσijk

(c(x, y)− c)
(

i(x− j, y− k)− ijk

)} (10)
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In Equation (10), n refers to the number of pixels in the cell c, c and σc are respectively the
mean and the standard deviation of the intensity inside c, ijk and σijk are the mean and the standard
image of the subset of the interrogation area shifted by (j, k). In practice, Equation (10) is computed
in the Fourier domain (where the calculation is more efficient). The 2D Fourier transform of the
cells/interrogation areas is performed with the Fast Fourier Transform (FFT) [29].

The result is a grid of 2D displacements vectors corresponding to the estimated movements for
each cell. For all the PIV processing tasks described in the following sections, we use an open-source
Matlab application, called PIVlab, by Thielicke & Stamhuis [30]. This application includes the
possibility of filtering the results by deleting the vectors which norms are higher by a threshold
proportional to their standard deviation. Vectors can also be manually deleted, or estimated by
interpolation of neighbouring vectors when the algorithm failed to find one, or when the vector
was filtered.

2.5.2. Application: Elastic Deformation

We use PIV to compute local distortions from the current mosaic to the reference orthophoto.
PIV only estimates local translations, and does not deal with rotations of rescaling transformations,
however, at this stage, the mosaic and the orthophoto should match well enough so that the differences
between the two images can be approximated be a set of local shifts.

At this stage, we have noticed that residual radiometric discrepancies between the two sensors
impact the co-registration significantly. To mitigate these effects, we have studied the possibility of
using gradient images. Let us call Grx and Gry the gradients of an image of interest along its x and y

axis: we use the gradient magnitude, Gr =
√

Gr2
x + Gr2

y; we have let an algorithm select 50 random
patterns of fixed size (30× 30 pixels) from the mosaic computed in the previous steps and shown
on Figure 5c. The 2D unbiased, normalised cross-correlation (which is the criterion maximised by
the PIV algorithm) of each pattern with a 90× 90 pixels pattern from the reference orthophoto was
computed both for the original patterns, and for their gradients. We have plotted on Figure 7 the
average cross-correlations along the vertical axis (the results along the horizontal axis were similar) for
the images and the gradients.
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Some examples of comparison between images co-registration and gradients co-registration are
shown on Figure 8.
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Figure 8. Examples of co-registered patterns using PIV on original images (a–c) and on gradient
images (d–f).

As can be seen on Figure 7, the use of PIV on original images suggests that they are well
co-registered with no further shift, while PIV applied to gradients images indicates that the best match
is for an average shift of eight pixels up. Consequently, we proceed with gradient images; PIV is
computed with the following parameters: the cell size is 128× 128 pixels, the interrogation area size
is 256× 256 pixels, and the output vector field is filtered to contain only vectors with norms within
the range [µ− 0.5σ, µ + 0.5σ], where µ and σ are, respectively, the mean and the standard deviation
of the norm of vectors output by the PIV algorithm. The resulting vector field is sparse compared to
the resolution of the mosaic, hence we interpolate the vector field so that a shift is assigned to every
pixel of the mosaic. By translating every pixel following its assigned shift, a new mosaic is created (see
Figure 5e).

2.6. Estimation of the Orientation Parameters

PIV results are considered as tie points: for each pixel projected on a ground point, corresponds
a corrected projection indicated by PIV. Using this information, we can perform a bundle adjustment to
retrieve the corrected exterior orientation parameters for each scan line. Considering NL and NP to be
respectively the number of scan lines and the number of pixels per line, (XoCi , YoCi , ZoCi ) and (ri, pi, yi)

Figure 8. Examples of co-registered patterns using PIV on original images (a–c) and on gradient
images (d–f).

As can be seen on Figure 7, the use of PIV on original images suggests that they are well
co-registered with no further shift, while PIV applied to gradients images indicates that the best match
is for an average shift of eight pixels up. Consequently, we proceed with gradient images; PIV is
computed with the following parameters: the cell size is 128× 128 pixels, the interrogation area size
is 256× 256 pixels, and the output vector field is filtered to contain only vectors with norms within
the range [µ− 0.5σ, µ + 0.5σ], where µ and σ are, respectively, the mean and the standard deviation
of the norm of vectors output by the PIV algorithm. The resulting vector field is sparse compared to
the resolution of the mosaic, hence we interpolate the vector field so that a shift is assigned to every
pixel of the mosaic. By translating every pixel following its assigned shift, a new mosaic is created (see
Figure 5e).

2.6. Estimation of the Orientation Parameters

PIV results are considered as tie points: for each pixel projected on a ground point, corresponds
a corrected projection indicated by PIV. Using this information, we can perform a bundle adjustment to
retrieve the corrected exterior orientation parameters for each scan line. Considering NL and NP to be
respectively the number of scan lines and the number of pixels per line,

(
XoCi , YoCi , ZoCi

)
and (ri, pi, yi)
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the EOP for line i, (XGi,j , YGi,j , ZGi,j) the real ground point for pixel j of line i and µi,j the collinearity
coefficient for pixel j of line i, we wish to minimise the squares of the set of Equation (11).

µi,jR(ri, pi, yi)




0− upp + δu
v− vpp + δv

f


−




XoCi − XGi,j

YoCi −YGi,j

ZoCi − ZGi,j


 = 0

XoCi − ˚XoCi = 0
YoCi − ˚YoCi = 0
ZoCi − ˚ZoCi = 0

ri − r̊i = 0
pi − p̊i = 0
yi − ẙi = 0

upp − ˚upp = 0
vpp − ˚vpp = 0
f − f̊SURF = 0

K1 − K̊1SURF = 0
K2 − K̊2SURF = 0
P1 − P̊1SURF = 0
P2 − P̊2SURF = 0

(11)

The first line in the set of Equation (11) corresponds to the collinearity equation Equation (3),
and provides two constraints (three, one of which is used to determine µi,j) per pixel. Therefore,
collinearity equations provide 2× NL × NP constraints. The rest of the constraints ensure that the
final estimated parameters stay close to their initial estimates (noted with a circle) obtained either
in Section 2.2 or Section 2.4.2 (some IOP were estimated using SURF matching and were noted
with a “SURF” subscript). There are six EOP per line and seven IOP, in total, the least-square
algorithm estimates 6 × NL + 7 parameters from 2 × NL × NP + 6 × NL + 7 constraints. Calling
APIV the Jacobian matrix of the system of Equations (11) and v̊PIV the opposite of its residuals, the least
squares adjustment theory increments the parameters at each iteration by

(
AT

PIVWAPIV
)−1 AT

PIV v̊PIV .
Unlike the adjustment performed using SURF points, a weight matrix W must be used in this second
adjustment, as there are different types of observations. W is a diagonal matrix; its first 2× NL × NP
elements are related to the expected error of the matching operated by PIV. We consider the ground
points output by the PIV to have a standard deviation of 0.5 m , resulting in a weight 4 m−2 for the
first 2× NL × NP constraints (Equation (12)).

W1,1 = · · · = W2NL NP ,2NL NP = 4 m−2 (12)

The uncertainties of the position and attitude parameters for each line are given by the
manufacturer of the GPS+IMU system: 2 cm for position measurements, 0.02◦ for roll and pitch
angles, and 0.05◦ for yaw angles (Equation (13)).

∀l ∈ [0, NL − 1],
W2NL NP+6l+1,2NL NP+6l+1 = 2500 m−2

W2NL NP+6l+2,2NL NP+6l+2 = 2500 m−2

W2NL NP+6l+3,2NL NP+6l+3 = 2500 m−2

W2NL NP+6l+4,2NL NP+6l+4 = 8.2× 106 rad−2

W2NL NP+6l+5,2NL NP+6l+5 = 8.2× 106 rad−2

W2NL NP+6l+6,2NL NP+6l+6 = 1.3× 106 rad−2

(13)
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The standard deviations for the remaining parameters (IOP) are output by the least squares
adjustment following the SURF (Table 2), except for the principal point coordinates. From our
experience with digital cameras, we have set the initial standard deviation on the principal point
coordinates to be 20 pixels of the camera, which corresponds to 1.5× 10−4 m.

From the output orientation parameters, we produce a new orthorectified image of the scan lines
by using the same projection technique as described in Section 2.3. The result is shown on Figure 5f.

3. Results

Five test sites were chosen to illustrate the performance of our method. The five acquisitions
differed by the stability of the attitude, the homogeneity of the surfaces imaged, the altitude of the
aircraft during acquisition and the resulting Ground Sampling Distances (GSD) for the two cameras.
The GSD of the frame camera is unambiguously defined as the distance between the centres of two
adjacent pixels of the orthophoto. For the pushbroom scanner, two GSDs are given: the across-track
GSD, which mainly depends on the geometry of the sensor, the flight altitude and attitude, and the
along-track GSD, which depends on the speed of the aircraft, the acquisition frequency and the attitude.
Due to the varying altitude and attitude of the aircraft, the GSDs are not constant during the flights;
indicative GSDs without roll and pitch, and for the mean altitude and speed of each flight, are provided
with one significant figure. These characteristics are summarised in Table 3.

Table 3. Characteristics of the five test acquisitions.

Selenga Village 1 Selenga Village 2 Selenga Rivers Gremyachinsk Lake Geneva Shore

Flight
Altitude (m) 1000 1000 1000 1000 500

Flight
Attitude Stable U-turn Stable Stable Wavy

Surface
Homogeneity Heterogeneous Heterogeneous Heterogeneous Homogeneous Heterogeneous

Content Fields, built structures Fields, built structures Rivers, swamps Water, sand Built Structures

Frame
Camera GSD

(m)
0.28 0.28 0.28 0.31 0.14

Pushbroom
Across-Track

GSD (m)
0.6 0.6 0.6 0.6 0.3

Pushbroom
Along-Track

GSD (m)
0.6 0.6 0.6 0.6 0.5

Selenga areas and the area on the shore of Lake Geneva all contain many salient points that can be
recognised and used by the SURF/PIV algorithms. These four acquisitions differ by the global attitude
of the ultralight plane during the acquisition: the aircraft operated a U-turn over the Selenga village 2
and had a wavy motion above the shore of Lake Geneva; this last flight was also performed at a lower
altitude (500 m), compared to the other flights. The Gremyachinsk area did not contain many salient
points: the image essentially consists in water, sand and forest, making the use of feature-based and
area-based matching techniques unreliable. We have decided to include this area among our tests to
give an idea of the behaviour of our algorithm in difficult conditions. For each of the five test areas,
the original mosaic produced with the scan lines (before geocorrection) and the corrected mosaic (after
geocorrection) were superimposed on the reference orthophoto. For Selenga village 1, the results are
already visible on Figure 5a,f; for the other areas, the results are shown on Figures 9 and 10.
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corresponding to each step of our algorithm (first projection, after boresight/IOP calibration, after PIV
and after estimation of the EOP). The results are given in Table 4.
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Figure 9. Superposition of the reference orthophotos and the mosaic produced with the scan lines: (a),
(c) before geocorrection and (b), (d) after geocorrection. (a,b): Selenga Village 2; (c,d): Selenga Rivers.

Figure 9. Superposition of the reference orthophotos and the mosaic produced with the scan lines: (a),
(c) before geocorrection and (b), (d) after geocorrection. (a,b): Selenga Village 2; (c,d): Selenga Rivers.
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Figure 10. Superposition of the reference orthophotos and the mosaic produced with the scan lines: (a,c)
before geocorrection and (b,d) after geocorrection. (a,b): Gremyachinsk; (c,d): shore of Lake Geneva.

Figure 10. Superposition of the reference orthophotos and the mosaic produced with the scan lines: (a,c)
before geocorrection and (b,d) after geocorrection. (a,b): Gremyachinsk; (c,d): shore of Lake Geneva.

To provide quantitative results, we have determined the planar Root Mean Square Error (RMSE)
on samples of 50 points for every test area. To provide the most objective statistics possible, these
points were selected as follows: a series of random patterns of given size, extracted for the image of
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interest, was generated; inside each pattern, a point was chosen in the orthophoto and the four images
corresponding to each step of our algorithm (first projection, after boresight/IOP calibration, after PIV
and after estimation of the EOP). The results are given in Table 4.

Table 4. Planar RMSE for each test area, and percentage evolution from previous step, at each step of
the geocorrection.

Planar RMSE Selenga Village 1 Selenga Village 2 Selenga Rivers Gremyachinsk Lake Geneva Shore

Initial
Projection 24.5 m/40.8 px 24.6 m/41 px 24.5 m/40.8 px 45.5 m/75.8 px 10.8 m/27 px

After IOP and
Boresight
Correction

2.4 m/4 px
(−90%)

13.6 m/22.7 px
(−45%)

1.3 m/2.2 px
(−95%)

8.2 m/13.7 px
(−82%)

3.7 m/9.2 px
(−66%)

After PIV
Deformation

0.9 m/1.5 px
(−67%)

1.6 m/2.7 px
(−88%)

0.6 m/1 px
(−54%)

6.1 m/10.2 px
(−26%)

1.8 m/4.5 px
(−51%)

With Corrected
Orientation
Parameters

1.1 m/1.8 px
(+22%)

1.8 m/3 px
(+13%)

0.8 m/1.3 px
(+33%)

6.5 m/10.8 px
(+6%)

1.6 m/4 px
(−11%)

For the first three areas, the RMSE decreased from about 25 m (before correction) to about one
metre (after correction). While many tie points were found by SURF for Selenga Village 1 and Selenga
Rivers, few were found for Selenga Village 2. The reason is the U-turn motion of the aircraft implied
important gaps between the scan lines; to create the mosaic, data was interpolated between these
scan lines, and no salient point recognisable by SURF can be detected in this synthetic data. However,
in spite of the lesser decrease of the RMSE at the SURF stage (13.6 m, against 2.4 m and 1.3 m for
Village 1 and Rivers, respectively), PIV performs very well and the final RMSE is approximately
the same for the three areas. This result suggests that local normalised cross-correlation can deal
with significant rotations like the ones that affected the Village 2 image. The final RMSE in the
Gremyachinsk area (6.5 m), although seemingly worse than the others, is encouraging as the initial
RMSE was significantly higher (45.5 m) and the image does not exhibit a significant heterogeneity;
only 11 points were matched by SURF, all gathered on the few built structures at the bottom centre of
the image. The application of PIV then allowed to decrease the RMSE by an additional 26 %. On the
shore of Lake Geneva, significant discrepancies were observed in the first projection, where adjacent
scan lines appeared to be taken with different attitudes and, as a consequence, the correction operated
by PIV, although satisfying, did not respect the inherent geometrical properties of the pushbroom
scanner: the shifts estimated by PIV showed very different values and directions within each single
scan line. As a consequence, and for this test area only, the mosaic produced after correction of the
EOP was better (RMSE = 1.6 m) than the one produced by PIV (RMSE = 1.8 m). It should be noted that
the opposite is expected, and observed for the four other test areas, as the final mosaic is produced by
an orthorectification algorithm, while PIV produces a mosaic regardless of the geometrical nature of
the problem. Overall, the geocorrection algorithm performs well on areas with enough salient points,
whether the motion of the aircraft is smooth (Selenga Village 1, Selenga Rivers) or irregular (Selenga
Village 2, Lake Geneva Shore).

4. Conclusions

We presented here a post-processing algorithm for dual frame-pushbroom airborne acquisitions
which estimates orientation parameters to co-register the orthophoto from frame images and the
mosaic from pushbroom scan lines. The algorithm is split in several steps, including feature matching
to compensate for systematic errors in the co-registration, local area matching, and estimation of both
interior and exterior orientation parameters. Area matching is performed using local normalised
cross-correlation in the form of Particle Image Velocimetry, whose use is new to the domain of remote
sensing. Without GCP and any a priori model of the trajectory of the aircraft, the RMSE of the
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pushbroom scan lines with the reference orthophoto is reduced by a factor from 7 (for homogeneous
areas) to 30 (heteogeneous areas and stable attitude of the aircraft). Such results were obtained on
a variety of images depicting different types of surfaces, acquired at different altitudes and for different
types of trajectory of the aircraft. The geocorrected data has already been used for various applications
including the study of heavy metals and the classification of vegetation in the Selenga delta. In
the future, the Leman-Baikal project shall also make use of this data to investigate the presence of
Chlorophyll-a and the turbidity in both Lake Geneva and Lake Baikal.
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