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Abstract: To obtain independent, consecutive, and high-resolution precipitation data,
the four-dimensional variational (4D-Var) method was applied to directly assimilate satellite
precipitation products into the Weather Research and Forecasting (WRF) model. The precipitation
products of the Tropical Rainfall Measuring Mission 3B42 (TRMM 3B42) and its successor,
the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM IMERG) were
assimilated in this study. Two heavy precipitation events that occurred over the Huaihe River
basin in eastern China were studied. Before assimilation, the WRF model simulations were first
performed with different forcing data to select more suitable forcing data and determine the control
experiments for the subsequent assimilation experiments. Then, TRMM 3B42 and GPM IMERG
were separately assimilated into the WRF. The simulated precipitation results in the outer domain
(D01), with a 27-km resolution, and the inner domain (D02), with a 9-km resolution, were evaluated
in detail. The assessments showed that (1) 4D-Var with TRMM 3B42 or GPM IMERG could both
significantly improve WRF precipitation predictions at a time interval of approximately 12 h; (2) the
WRF simulated precipitation assimilated with GPM IMERG outperformed the one with TRMM
3B42; (3) for the WRF output precipitation assimilated with GPM IMERG over D02, which has
spatiotemporal resolutions of 9 km and 50 s, the correlation coefficients of the studied events in
August and November were 0.74 and 0.51, respectively, at the point and daily scales, and the mean
Heidke skill scores for the two studied events both reached 0.31 at the grid and hourly scales. This
study can provide references for the assimilation of TRMM 3B42 or GPM IMERG into the WRF model
using 4D-Var, which is especially valuable for hydrological applications of GPM IMERG during the
transition period from the TRMM era into the GPM era.
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1. Introduction

Precipitation is a basic and vital component of the global water and energy cycles [1]. A robust
knowledge of precipitation processes at finer spatiotemporal resolutions has become increasingly
important for hydrological modeling, flood monitoring, soil moisture estimation, and water resource
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management [2–6]. Currently, there are generally three mainstream methods to obtain precipitation
information: traditional in situ observations, estimations from remote sensing, and numerical weather
prediction (NWP) [7–9].

In situ precipitation observations are generally obtained from conventional ground rain gauge
stations. This type of data is generally considered to be the most accurate measurements, and served
as the grounds for true precipitation values [10,11]. However, the application of these data in the
hydrological field is severely limited by poor point-to-area representativeness, incomplete opening to
the public, and several well-recognized issues of the station network, such as poor spatial distribution
and wind-induced deviation [12,13]. As remote sensing techniques developed, various satellite
precipitation products based on visible, infrared, and microwave wavelengths have emerged during
the last few decades, such as the Global Precipitation Climatology Project (GPCP) [14], the Climate
Prediction Center Morphing technique (CMORPH) [15], the Tropical Rainfall Measuring Mission
(TRMM) [16], and its ongoing replacement Global Precipitation Measurement project (GPM) [17].
These products not only cover a nearly global area, they also are available to the public free of charge.
Nevertheless, they still have coarse spatiotemporal resolutions, which are incapable of representing
consecutive precipitation process and have difficulty in detecting extreme events at high latitudes [18].
Since the NWP model is built on precise physical governing equations, it can resolve the inherent dynamics
of precipitation and nearly represent the entire spatial pattern of the precipitation process [19,20]. However,
when solving the equations and initialization errors, approximations due to incomplete observations
often induce many uncertainties to the model outputs [21,22]. In terms of simulated area ranges,
the NWP model is usually divided into general circulation models (GCMs), which cover the global or
continental scales, and regional climate models (RCMs), which cover the regional scale or mesoscale.
Compared with GCMs, RCMs can better simulate the exact distribution of a climatic field since they
have a finer spatial resolution; this enables them to resolve finer details of land surface characteristics,
such as topography, land cover, and surface vegetation [23,24]. Frequently used RCMs include the
National Meteorological Center (NMC) forecast model [25–27], the next-generation Weather Research
and Forecasting (WRF) model [28], the operational Japan Meteorological Agency (JMA) mesoscale
model [29], and the European Center for Medium-Range Weather Forecasts (ECMWF) model [30].

Considering the merits and drawbacks of these three types of precipitation data, we attempted
to integrate two of them to obtain a type of precipitation data. It is not only independent from
in situ observations, it can also reflect the precipitation consecutiveness at higher spatiotemporal
resolutions [31,32]. Therefore, we used the data assimilation (DA) method to integrate freely
downloaded remote sensing precipitation estimations with precipitation prediction from a more
physically realistic NWP model. Among the various DA algorithms, such as the polynomial
interpolation method [33], optimum interpolation [34], three-dimensional variational (3D-Var)
assimilation [35], four-dimensional variational (4D-Var) assimilation [36], and the Kalman filter [37,38],
4D-Var is particularly appropriate for assimilating synoptic satellite data due to its advantages
regarding a definite theoretical basis, simple formulation, and no limitations on the type of assimilated
data that is utilized [39].

At present, there have been extensive studies regarding integrating various precipitation data with
the NWP model via the 4D-Var data assimilation method. Zupanski and Mesinger [40] first carried out
a 4D-Var experiment with 24-hour accumulated precipitation data and the NMC forecast model in the
United States of America (USA) and demonstrated its improvement in precipitation forecasting.
Koizumi et al. [21] used the JMA mesoscale 4D-Var system to assimilate one-hour radar-based
precipitation data at a spatial resolution of 20 km over the islands of Japan and demonstrated
improvements in precipitation forecasts for an 18-hour forecast time. Lopez [41] assimilated the
National Centers for Environmental Prediction (NCEP) stage IV gauge-corrected radar precipitation
data into the ECMWF Global Integrated Forecasting System over the eastern USA, and found
a substantial improvement in short-term (i.e., up to 12 h) precipitation forecasts. Lin et al. [42]
assimilated NCEP stage IV rainfall data into the WRF model with the 4D-Var method in the USA,
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and they successfully downscaled a six-hour precipitation product with a 20-km resolution to an
hourly precipitation product with a resolution of less than 10 km. These studies were mainly carried
out to resolve the problems such as the highly nonlinear and discontinuous in cumulus convection
parameterization [7,41], the sensitivity of the different global datasets for the initial and boundary
conditions [21,41,43], and the effectiveness of applying different observational and background error
covariance matrices [44,45]. We will not go into the many details of 4D-Var techniques, but rather will
investigate its potential in hydrological applications.

From an application perspective, a majority of these existing studies were performed and
evaluated at the mesoscale, whereas a limited number of studies focused on the basin scale evaluation,
even though basin is the most commonly used unit in hydrological studies. Moreover, since the
GPM was just released in 2014, there are very few studies on the feasibility and efficiency of the
GPM application in 4D-Var data assimilation, and the discrepancies in assimilation effectiveness
between assimilating GPM and assimilating TRMM are less investigated. Therefore, we assimilated
the Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) and the TRMM Multi-satellite
Precipitation Analysis 3B42 (TRMM 3B42) with the 4D-Var method into the NWP model of WRF,
and assessed their performances in simulating two heavy precipitation events that occurred over the
Huaihe River basin (HRB) in eastern China. Before assimilation, we first drove the WRF model with two
different forcing data to choose a more suitable forcing datum and determine the control experiment for
the subsequent assimilation work. Then, DA experiments were carried out with different assimilation
data and for different precipitation events. Finally, we evaluated the experimental precipitation results
with the daily in situ observations and the hourly merged CMORPH estimations at different spatial and
temporal scales in detail. The manuscript is organized as follows: Section 2 introduces the study area,
study events, and data. Section 3 introduces the WRF configuration, 4D-Var methodology, experimental
design, and evaluation metrics. Section 4 shows the evaluations of the simulated precipitation from the
WRF and the WRF 4D-Var that is assimilated with TRMM 3B42 and GPM IMERG. Section 5 discusses
the WRF sensitivity to different rainfall events, forcing data, and spatial resolutions; examines the
effectiveness of WRF 4D-Var at different thresholds and time; and compares the 4D-Var performances
assimilated with TRMM 3B42 and GPM IMERG. The conclusions are drawn in Section 6.

2. Data

2.1. Study Area and Events

The HRB is one of seven major river basins in China; it is located between 110◦–122 ◦E and
31◦–37 ◦N (Figure 1b), and covers an area of 270,000 km2. Most of the HRB region is vast plains,
except for some mountains and foothills located at the western, southern, and northeastern HRB
(as shown in Figure 1b). The mountain altitudes are normally 1000–2000 meters above the sea level
(a.s.l.). The HRB is in the transitional zone between the abundant rainfall area of southern China and
the arid area of northern China [46], belonging to the warm temperate and semi-humid monsoon region
with an average temperature of 11–16 degrees centigrade and an average annual rainfall about 910 mm.
The precipitation distribution within a year is very uneven. In the flood season (June–September),
the total precipitation accounts for 50–80% of annual precipitation [47]. The heavy rainfall events
that occur in the summer frequently cause disaster in this area. Across the basin, there is a gradual
gradient in average annual precipitation from about 1000 mm in the southeast to less than 600 mm in
the northwest, while the highest precipitation occurs in the inner mountain areas; this variation is a
result of the topography [48]. A robust knowledge of the precipitation processes in the HRB is vital for
local flood monitoring and water resource management.
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Figure 1. (a) Outer domain (D01, 27-km resolution) and inner domain (D02, 9-km resolution) defined
in the Weather Research and Forecasting (WRF) model; (b) location and meteorological stations of the
Huaihe River basin.

To select the studied precipitation events, daily precipitation data from 30 meteorological stations
in the HRB during 2015 were obtained from the China Meteorological Administration (CMA) and
analyzed (Figure 2). Based on these CMA observations, the contributions of accumulated daily
precipitation to the annual precipitation amounts at each meteorological station were calculated and
sorted in decreasing order. As shown in Figure 2a, all 30 CMA stations received half of the total annual
precipitation within seven days (Dingtao station) or 13 days (Huoshan station). This suggests that
short-term heavy precipitation events are the main contributors to the total annual precipitation amount
in the HRB. Therefore, we focused our studies on short-term heavy precipitation events. The mean
monthly precipitation over the HRB in 2015 was also calculated, and is illustrated in Figure 2b.
The results showed that the precipitation amount during the flood season of the HRB composed 58.23%
of the annual amount at all of the stations. The mean monthly precipitation in June comprised the
highest percentage (21.6%), and August had the second largest percentage (18.33%). However, because
the WRF forcing data of the NCEP final analyses (FNL) ds083.3 was issued in July 2015, we selected
one event from August. As shown in Figure 2c, a heavy rainfall event occurred on 9 August, when
the daily precipitation at many CMA stations exceeded 50 mm, and the highest exceeded 160 mm;
thus, we chose the rainfall event from 0000 UTC on 9 August to 1200 UTC on 11 August (hereafter
referenced as event A) as our first case study. As shown in Figure 2b, the mean monthly precipitation
in November was evidently the highest during the non-flood season. Therefore, we chose the rainfall
event that occurred from 0000 UTC on 5 November to 1200 UTC on 7 November (hereafter referenced
as event N) as our second case study. During event N, the average daily precipitation of the basin
reached 22.1 mm, and that of a single CMA station (Rizhao) reached 66.6 mm. The two case studies
(event A and event N; each spanned 60 h) represent the type of convection dominant precipitation
events during a flood season, and extratropical cyclone-associated precipitation events during the
non-flood season, respectively.
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Figure 2. (a) Contribution (%) of accumulated daily precipitation to the total annual precipitation for
30 CMA stations across the HRB in 2015 (sorted in decreasing order); (b) mean monthly precipitation
of the HRB in 2015; (c) daily precipitation at the 30 CMA stations and the mean daily precipitation of
the basin (HRB).

2.2. Study Data

2.2.1. Satellite Precipitation Products for Assimilation

In this study, two satellite-based precipitation data, including the TRMM 3B42 (version 7) and
the GPM IMERG (final run), were applied as observation operators. Both were processed to collect
six-hour accumulated precipitation data for assimilation into the WRF model.

TRMM was jointly launched by the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) in 1997. TRMM 3B42 is one product of the
TRMM Multi-satellite Precipitation Analysis (TMPA); it combines remote sensing data from various
microwave and infrared sensors with the monthly gauge analysis from the Global Precipitation
Climatology Centre (GPCC). TRMM 3B42 covers ±50 ◦N/S at spatiotemporal resolutions of 0.25◦ and
3 h [49]. After over 17 years of productive data acquisition, the observation instruments on TRMM
were turned off on 8 April 2015. However, the actual termination of TRMM was not a substantive issue
for its multi-satellite products in TMPA; therefore, the TRMM 3B42 data during our study periods
are still available. Tang et al. [50] compared TRMM 3B42 with the gauge observations and found that
the correlation coefficient (CC) over Mainland China reached 0.42 and 0.68 at its original three-hour
and daily timescales, respectively; for the region encompassing the lower reaches of the Huaihe River,
the CCs reached 0.43 and 0.71 at the three-hour and daily timescales, respectively.

As the replacement of TRMM, GPM has been providing next-generation global observations
of rain and snow for more than three years. The observation system on the GPM comprises one
core satellite and several constellation satellites, with a dual-frequency precipitation radar and a
suite of microwave radiometers. The core observatory of the GPM was designed as an extension
of TRMM’s highly successful rain-sensing package, which primarily focused on heavy to moderate
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rain over tropical and subtropical oceans [51]. A key advancement of the GPM over the TRMM is
the extended capability to measure light rain (≤0.5 mm/hour) and falling snow, since the two types
of precipitation account for significant proportions of precipitation at mid and high latitudes. GPM
IMERG is the third-level precipitation product of GPM, which covers an area of ±60 ◦N/S with
unprecedented resolutions of 0.1◦ and 30 min. Tang et al. [50] reported that when compared with the
gauge observations, the CCs of GPM IMERG over Mainland China reached 0.53 and 0.71 at the hourly
and daily timescales, respectively; for the region encompassing the lower reaches of the Huaihe River,
the CCs reached 0.55 and 0.72 at the hourly and daily timescales, respectively.

2.2.2. Forcing Data for the WRF Model

To simulate the two heavy precipitation events over the HRB, the NCEP FNL datasets were
applied to provide the WRF model with the initial states and lateral boundary conditions. Among the
various NCEP FNL datasets, the commonly used 1.0◦ and six-hour FNL ds083.2 and the newly released
0.25◦ and six-hour FNL ds083.3 datasets were employed and compared. The one that performed
better with the WRF model was used in the subsequent 4D-Var experiments. These two forcing data
were composed of an underlying Global Forecast System (GFS) that was obtained from the Global
Data Assimilation System (GDAS), which continuously collects observational data from the Global
Telecommunications System (GTS) and other sources for many related analyses. The archived time
series of the ds083.2 and ds083.3 datasets started on 30 July 1999 and 8 July 2015, respectively. Both
of these datasets extended to a near-current date. They can be downloaded from the Research Data
Archive at the National Center for Atmospheric Research (https://rda.ucar.edu/datasets/).

2.2.3. In Situ and Gauge-Corrected Data for Evaluation

To evaluate the precipitation results simulated by the WRF model and the WRF 4D-Var with
TRMM 3B42 and GPM IMERG, two types of precipitation datasets were used as reference data.
One was the in situ gauge observation dataset for daily precipitation; this data was obtained
from the 30 meteorological stations in the HRB (Figure 1b) and provided by the CMA (hereafter
referenced as CMA data). This dataset was collected as a benchmark for the point-scale evaluations.
The accuracy of the CMA data was officially claimed to be approximately 100%, as before its
release, it experienced a series of quality control assessments including a climate limit value
check, station extreme value check, spatiotemporal consistency check, and other related checks
(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html). When
comparing with the CMA data, the simulated precipitation results from the WRF and the WRF
4D-Var models were changed to Beijing time, which is used in the CMA data. The other dataset was
the gridded merged CMORPH data, which was used for the evaluation at the grid scale [52]. It is
also released by the CMA, with spatiotemporal resolutions of 0.1◦ and hourly. The CMA generated
the merged CMORPH data by applying the probability density function matching method and the
optimal interpolation method. This dataset integrates with the following two data sources: (1) gauged
hourly precipitation from more than 30,000–40,000 automatic weather stations in China after quality
control; and (2) inverse precipitation products from the global CMORPH satellite, with resolutions of
30 min and 8 km provided by the Climate Prediction Center (USA). The merged CMORPH data have
been opened to the public since 1 January 2008. This dataset covers mainland China, and its applied
time zone was the same as that used in the WRF model, i.e., the UTC time zone. Its general error
remains under 10%, and the errors in strong precipitation over sparsely-gauged areas are less than
20%. Its quality is better than that of other similar products in China (http://data.cma.cn/). When
used for evaluation, the merged CMORPH data were resampled to the same spatial resolutions as
those of the WRF domains (i.e., 27 km and 9 km) by the nearest neighborhood interpolation method.
Moreover, to ensure evaluation quality, the coordinate system of the merged CMORPH data was
transformed to be the same projected coordinate system as that used in the WRF model. It should be
noted that for the grid-scale evaluation, assessments were only carried out over intersecting regions

https://rda.ucar.edu/datasets/
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/
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that encompassed the two WRF domains and the merged CMORPH data region since the latter only
covered mainland China.

3. Methods

3.1. WRF Configuration, 4D-Var Methodology, and Experimental Design

3.1.1. WRF Configuration

To obtain precipitation at a finer resolution and reduce the computing quantity, a nested domain
(Figure 1a) was applied in our WRF configuration. The outer domain (D01) was set around the HRB
to be as large as possible to cover the important weather features of the HRB, which are probably
caused by the Indian southwestern monsoon, the East Asian subtropical monsoon, and the Asian
monsoon that originates from the Siberian high. However, D01 cannot be set to an unlimited large
domain, as a large domain means more grids for calculation, which requires more computational
resources. Therefore, we finally define D01 with grids of 180 * 155 and a 27-km resolution and set the
inner domain (D02) to cover the whole HRB, with 226 * 175 grids and a 9-km resolution.

The physical configuration of the WRF model and its related dominant parameters were
determined by obeying the rule that the configuration should incorporate the experiences obtained
from comparable numerical modeling studies as much as possible, especially studies performed
over the HRB. Moreover, a one-way nesting strategy was employed, since a nesting strategy was not
decisive of the overall performance [53], and was not our research priority. The main configuration of
the WRF model is listed in Table 1.

Table 1. The main configuration of the Weather Research and Forecasting (WRF) model.

Map and Grids

Map projection Lambert conformal
Center point of the domain 35.8 ◦N, 114 ◦E
Number of vertical layers 27
Horizontal grid resolution 27 km (D01), 9 km (D02)

Domain grid 180 * 155, 226 * 175
Static geographical fields time step Standard dataset at a 30” resolution 150 s, 50 s from the United States Geological Survey (USGS)

Physical Parameterization Schemes

Cloud microphysics WRF double-moment six scheme [54]
Long-wave radiation Rapid Radiative Transfer Model (RRTM) [55]
Short-wave radiation Dudhia scheme [56]
Land surface model Noah land surface model (LSM) [57]

Planetary boundary layer Yonsei University scheme [58]
Cumulus parameterization New Grell–Devenyi 3 scheme [59] (except for the 9-km domain: no cumulus)

3.1.2. 4D-Var Methodology

The incremental 4D-Var formulation, which is commonly used in operational systems [60–63],
was utilized in the WRF 4D-Var data assimilation system. The incremental approach was designed to
determine an analysis increment that minimized the cost function, which was defined as a function of
the analysis increment instead of the analysis itself [64]. Mathematically, the WRF 4D-Var minimizes
cost function J:

J = Jb + Jo + Jc (1)

which includes quadratic measures of distance to the background, observation, and balanced solution.
The background cost function term Jb is:

Jb =
1
2

(
xn − xb

)T
B−1

(
xn − xb

)
(2)

where the superscripts −1 and T denote the inverse and the adjoint of a matrix or a linear operator,
respectively. The final analysis of WRF 4D-Var (i.e., after the last (n) outer loop occurs) is denoted as xn.
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The background xb has typically been a short-range forecast in previous analyses. B represents the
background error covariance matrix.

The observation cost function term represents the quadratic measure of the distances between the
analysis xn and the forecast model Mk and the observation operator Hk and the observations yk:

Jo =
1
2 ∑K

k=1{Hk[Mk(xn)]− yk}T R−1{Hk[Mk(xn)]− yk} (3)

When calculating the observation cost function Jo, a linear approximation is made, and the entire
assimilation time window is split into K observation windows. The nonlinear observation operator Hk
is approximately transformed into a tangent linear observation operator, and the nonlinear model Mk
is also transformed into a tangent linear model. xn denotes the guess vector, and xn − xn−1 denotes the
analysis increment. R represents the observation error covariance matrix.

The balancing cost function Jc measures the quadratic distance between the analysis and a
balanced state, and it is expressed as follows:

Jc =
1
2 γd f

[
M N

2

(
xn − xn−1)−∑N

i=0 fi Mi
(
xn − xn−1)]T

C−1
[

M N
2

(
xn − xn−1)−∑N

i=0 fi Mi
(
xn − xn−1)] (4)

where N represents the total number of integration steps over the assimilation window, and γdf
represents the weight assigned to the Jc term. fi is the coefficient for the digital filter [65,66]. C is a
diagonal matrix containing variances of wind, temperature, and dry surface pressure, with values of
(3 m/s)2, (1 K)2, and (10 hPa)2, respectively.

3.1.3. Experimental Design

In this study, two series of experiments were carried out over the HRB. The first series of
experiments, which are labeled the CTL experiments in this manuscript, were performed with the
WRF model. They were carried out to choose the most optimal forcing data for the WRF model and
determine the control experiments for the subsequent 4D-Var assimilation study. According to the
different applied forcing data and the different study events, the CTL experiments were labeled from
CTL1 to CTL4 (Table 2). The second series of experiments utilized the 4D-Var via direct assimilation
of TRMM 3B42 and GPM IMERG. They were referred to as the DA experiments (Table 2). For the
DA experiments, the background error covariance matrices, B, for August and November in 2015
were separately generated with one-month ensemble forecasts every 12 h using the NMC method [67].
Meanwhile, one variable, named “eps”, was set to 0.0001 to make the WRF DA convergence criterion
more stringent. In addition, by considering the impacts of the WRF spin-up [61,68,69], we utilized the
WRF forecast during the first 12-hour period of each CTL experiment as the first guess of the 4D-Var
assimilation in each DA experiment. Thus, the simulation period for each DA experiment was reduced
to 48 h. For each 24 h segment of the 48 h period, there was one WRF 4D-Var model that provided
the initial and boundary conditions for the other WRF model with a forecast period of 24-hour cycles;
this cycling mode was used to connect the simulations during the entire 48 h. With the application of
32 GB of memory on eight nodes and 16 CPU/nodes on the supercomputer used in our study, each
WRF 4D-Var that ran over a six-hour time window took approximately 12 h. Limited by the available
computational resources, 4D-Var was only employed in D01. Given the problem of the WRF spin-up,
the first 12 h of the CTL experiments were not included in the following evaluations. Therefore,
in this study, the evaluation periods for both the CTL experiments and DA experiments spanned
from 1200 UTC on 9 August to 1200 UTC on 11 August in 2015 for event A, and from 1200 UTC on
5 November to 1200 UTC on 7 November in 2015 for event N.
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Table 2. Designs of the WRF control (CTL) experiments and the WRF data assimilation (DA) experiments.

No. Studied Event Forcing Data No. Studied Event Assimilated Data

CTL1
Event A

FNL ds083.2 DA1
Event A

TRMM 3B42
CTL2 FNL ds083.3 DA2 GPM IMERG

CTL3
Event N

FNL ds083.2 DA3
Event N

TRMM 3B42
CTL4 FNL ds083.3 DA4 GPM IMERG

3.2. Evaluation Metrics

To evaluate the simulated precipitation results of the CTL and DA experiments, we applied
two categories of metrics, which are shown in Table 3. The first category of metrics contained the
mean error (ME), the relative error (RE), the root mean square error (RMSE), and the CC, which were
used to describe the errors, deviations, and correlations between the simulated precipitation and
the reference precipitation at the point scale. The second category of metrics contained skill scores
commonly used in meteorological studies, including the bias score (BIAS), the false alarm ratio (FAR),
the probability of detection (POD), the probability of false detection (POFD), and the Heidke skill
score (HSS). These skill scores were constructed based on a contingency table [70] and applied in
the evaluation at the grid scale. BIAS is an indicator of how well the model predicts the number of
occurrences of an event. FAR indicates the fraction of forecasts detected by the WRF model that turns
out to be wrong. POD represents the ratio of correct forecasts to the number of events that occurred,
which is commonly known as the hit rate. POFD represents the faction of false alarms to the total
number of events that did not occur. HSS is one of the most frequently used and comprehensive
skill scores for summarizing square contingency tables and combining the characteristics of hints and
random detections. Considering that the detection accuracy of the CMA ground observation was
0.1 mm/day, the rain/no rain threshold was set to 0.1 mm in this study.

Table 3. Statistical metrics applied in the evaluations *.

Statistical Metrics Equation Perfect Value

Mean Error (ME; unit: mm) ME = 1
N

N
∑

i=1
(PP,i − PO,i) 0

Relative Error (RE) RE = ∑N
i=1(PP,i−PO,i)

∑N
i=1PO,i

0

Root Mean Square Error (RMSE;
unit: mm) RMSE =

√
1
N

N
∑

i=1
(PP,i − PO,i)

2 0

Correlation Coefficient (CC) CC =
∑N

i=1(PP,i− ´PP,i)(PO,i− ´PO,i)√
∑N

i=1(PP,i− ´PP,i)
2
∑n

i=1(PO,i− ´PO,i)
2 1

Bias Score (BIAS) BIAS = (A+B)
(A+C)

1

False Alarm Ratio (FAR) FAR = B
(A+B) 0

Probability of Detection (POD) POD = A
(A+C) 1

Probability of False Detection
(POFD)

POFD = B
(B+D) 0

Heidke Skill Score (HSS)

HSS = (s−SRef)

(SPerf−SRef )

S = (A+D)
N

SRef =
[(A+B)(A+C)+(B+D)(C+D)]

N2

1

* PP,i and PO,i denote the predicted and observed precipitation values of the i grid, where ´PP,i and ´PO,i are their
means, respectively. A represents the precipitation predicted by the WRF model and observed by the reference data;
B represents the precipitation predicted by the WRF model but not observed by the reference data; C represents the
precipitation not predicted by the WRF model but observed by the reference data; and D represents the precipitation
not predicted by the WRF model and not observed by the reference data.
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4. Results

4.1. Evaluation of Simulated Precipitation in the CTL Experiments

4.1.1. Evaluation of Simulated Precipitation in the CTL Experiments at the Point Scale

To evaluate the precipitation simulated by the WRF model at the point scale, the error indices
of ME, RE, CC, and RMSE were used. Precipitation values in D01 and D02 were both extracted from
grids located closest to the CMA stations, then accumulated into daily values and compared against
the daily in situ CMA data. As delineated in Figure 3, for both event A and event N, the values of
ME and RE in D01 and D02 were positive, which indicated that the WRF-predicted precipitation
results were generally overestimated. Although the CC values of event N were lower than those
of event A, the points that represented the relationship between the station precipitation and the
predicted precipitation was evidently much closer to the 1:1 line for event N (Figure 3b) than that
for event A (Figure 3a). Moreover, the values of ME, RE, and RMSE for event N were also lower
than those for event A. This means that the predicted precipitation results for event N showed better
agreement with the CMA observations than those for event A. In addition, the error metrics for the
simulated precipitation from D02 were generally comparable to those from D01, which indicated that
the resolution increase for precipitation from 27 km (D01) to 9 km (D02) was realized through the
nested domain at a very slight accuracy reduction cost at the point and daily scales. For the variations
made by different forcing data, there appeared to be some slight negative changes in the ME, RE, CC,
and RMSE values from CTL4 to CTL3, but the CCs of CTL 2 were only 0.01 lower than those of CTL1,
and the ME, RE, and RMSE values of CTL2 were evidently much lower than those of CTL1. Therefore,
we conclude that the WRF performance driven by the FNL ds083.3 dataset outperformed that driven
by the ds083.2 dataset at the daily and point scales.
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Figure 3. Scatter plots of daily precipitation (mm/day) observed by the China Meteorological
Administration (CMA) meteorological stations and predicted by the WRF control experiments: CTL1
and CTL2 (a) and CTL3 and CTL4 (b).

4.1.2. Evaluation of the Simulated Precipitation in the CTL experiments at the Grid Scale

To make the evaluations of the simulated precipitation more complete, we also compared the
simulated precipitation from the CTL experiments with the hourly merged CMORPH data. The skill
scores of BIAS, FAR, POD, POFD, and HSS were used to quantify the assessment. The evaluated results
are displayed in Figure 4. It is observed that the box lengths of BIAS, FAR, and POFD for event N were
much shorter than those for event A, which indicated lower deviations and better performances for
the simulation of event N. This finding was consistent with the evaluated results at the daily and point
scales. Thus, we conclude that the WRF performance for event N was better than that for event A.
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This was probably attributed to the over or underestimation of the WRF model for localized extreme
precipitation intensities when simulating strong convective precipitation events.

By comparing the evaluation results between D01 and D02, it is found for event A that the values
of BIAS over D02 were much closer to 1 than those for event N; the mean values of FAR and POFD
over D02 were much lower, and the maximum and mean values of HSS over D02 were higher. For the
rainfall in event N, although the comprehensive index values of HSS over D02 were slightly lower
than those over D01, the BIAS values over D02 were much closer to 1 than those over D01, and the FAR
values also decreased more over D02 than those over D01. Thus, advantages in the WRF improvement
regarding spatial resolution were conveyed both in convective and non-convective rainfall events at
the grid and hourly scales.

Based on the above evaluations, the forcing data of NCEP FNL ds083.3 dataset were selected to
drive the following WRF 4D-Var experiments. The CTL2 experiment was utilized as the reference for
DA1 and DA2 (event A), and the CTL4 experiment was determined as the reference for DA3 and DA4
(event N).
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Figure 4. Box plots * of evaluation scores BIAS (a), FAR (b), POD (c), POFD (d), and HSS (e) for hourly
precipitation (exceeding 0.1 mm/h) simulated by the WRF CTL experiments and estimated by the
merged Climate Prediction Center Morphing technique (CMORPH) data. * The lower and upper edges
of the central box represent the first and third quartiles (25% and 75%, respectively), and the band and
the circle inside the box represent the 50th percentiles and the mean values, respectively. The ends
of the outliers represent the minimum and maximum values of the score distributions. The asterisks
represent several possible alternative values.
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4.2. Evaluation of the Simulated Precipitation in the DA Experiments

The DA experiments output precipitation values with spatiotemporal resolutions of 27 km and
150 s in D01, and 9 km and 50 s in D02. Figure 5 shows the spatial patterns of the 12-hour accumulated
precipitation extracted from the reference CTL experiments, the DA experiments and the merged
CMORPH dataset over a subset of the D01 domain. It is clear in Figure 5 that the CTL2 experiment
captures the shift in precipitation during event A over the HRB from the southwest to the northeast,
and the CTL4 experiment also captures the shift in precipitation during event N over the HRB from
the west to the east of the HRB. However, compared with the merged CMORPH data, which served
as the true measurements at the grid scale, the spatial distributions and the amounts of simulated
precipitation in CTL2 and CTL4 were much wider and larger than those reflected in the merged
CMORPH dataset. For each 24-hour period, these discrepancies between the simulated precipitation
and the merged CMROPH data became more evident in the second 12-hour period than those in
the first 12-hour period, which may be related to the error accumulations when the WRF model was
running. It can also be found in Figure 5 that the simulated precipitation after assimilation with TRMM
3B42 and GPM IMERG was more agreeable with the merged CMORPH dataset.
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4.2.1. Evaluation of Simulated Precipitation in the DA Experiments at the Point Scale

To evaluate the simulated precipitation in the DA experiments at the point scale, precipitation
values were extracted from the grids closest to the CMA stations from the DA simulations, which
were accumulated into daily values and compared against the daily CMA data. The evaluated error
indices of ME, RE, CC, and RMSE for the control experiments and the DA experiments are displayed
in Figure 6. As shown in Figure 6a, the application of 4D-Var to event A had an obvious change
in simulated precipitation via CLT2 from over-forecasting (above the 1:1 line) to under-forecasting
(below the 1:1 line). This variation can also be found in the numerical changes in ME from positive
values to negative values. For event N (Figure 6b), the MEs changed differently. The MEs for DA3
were still positive (indicating over-forecasting), and the MEs for DA4 were negative (indicating
under-forecasting). This means that after assimilating GPM IMERG, WRF precipitation outputs tend
to be lower than those from the corresponding CTL experiments for both event A and event N.
By assimilating with the remotely sensed precipitation products, the RMSEs of all of the DA
experiments all significantly decreased, which indicated reduced deviations in the precipitation
outputs of the WRF 4D-Var. Moreover, the CCs of the DA experiments all significantly increased.
The biggest CC increase for event A was 0.39 (from CTL2-D01 to DA2-D01) and 0.22 for event N
(from CTL4-D01 to DA4-D01). These positive variations manifested improvements in the precipitation
simulations due to the assimilation of TRMM 3B42 and GPM IMERG onto WRF at the daily and
point scales.
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Figure 6. Scatter plots of daily precipitation (mm/day) observed by CMA meteorological stations and
simulated by the CTL and DA experiments for rainfall events in August (a) and November (b) of 2015.

4.2.2. Evaluation of Simulated Precipitation in the DA experiments at the Grid Scale

The simulated precipitation results of the DA experiments in D01 and D02 were processed
into hourly values and evaluated with the grid data (i.e., the hourly merged CMORPH data).
The evaluations were quantified by the skill scores of BIAS, FAR, POD, POFD, and HSS. These
skill scores for the hourly precipitation from the CTL2, CTL4, and DA experiments changed with time
during the 48 h in each experiment (Figure 7). On the whole, for the reason of error accumulation
during the simulations, the FAR values showed increasing tendency with time, the values of POD
and HSS presented decreasing tendency with time, the values of BIAS and POFD fluctuated with
time, and the amplitudes were weakened by the application of 4D-Var in DA experiments. Looking
into the HSS variation, for the reason of 4D-Var data assimilation, the HSS values for the hourly
precipitation predictions increased at first, but as time passed, they decreased because of the error
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accumulation during the simulations. Moreover, there appear abrupt changes between the 24th hour
and the 25th hour in Figure 7a–e. These sudden variations were caused by the newly initial and
boundary conditions accompany with the start of the second 24-hour forecast in each DA experiment.
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Besides, it is also seen in Figure 7 that in the same domains, all of the values of BIAS, FAR, and
POFD for the DA experiments are primarily lower than those in the CTL experiments. This suggests
that the 4D-Var-assimilated TRMM 3B42 or GPM IMERG can effectively reduce several false alarms
regarding rainfall occurrences. It is noteworthy that the variations in hit rates, which were indicated
by the PODs, were different between event A and event N (Figure 7c). When comparing CTL2-D01
and CTL2-D02, the POD average values of DA1-D01, DA1-D02, DA2-D01, and DA2-D02 were reduced
by 0.02, 0.01, 0.04, and 0.01, respectively. For event N, the PODs of DA3 and DA4 all remarkably
improved compared with those of CTL4. These different variations in POD were probably attributed
to the different precipitation mechanisms of event A and N and the imperfection of WRF in predicting
extreme local precipitation. Regardless, the comprehensive scores of HSS for the DAs finally improved.
In comparison with the mean hourly HSS values for the reference CTL experiments, the HSS mean
values of DA1-D01, DA1-D02, DA2-D01, DA2-D02, DA3-D01, DA3-D02, DA4-D01, and DA4-D02
increased by 0.05 (0.28), 0.05 (0.32), 0.04 (0.28), 0.04 (0.31), 0.05 (0.34), 0.09 (0.31), 0.06 (0.34), and 0.09
(0.31), respectively (the HSS values are in parentheses). This definitely demonstrates the positive
improvements in the precipitation simulations that were made by the 4D-Var assimilation with TRMM
3B42 and GPM IMERG via the WRF model at the grid and hourly scales. Moreover, it can be concluded
that the improvements in WRF 4D-Var for event A mainly benefited from the corrections of the false
alarms for non-occurrences, since the POD values for DA1 and DA2 decreased, but their BIASs, FARs,
and POFDs also reduced, which finally improved their HSSs. For event N, the reductions in BIASs,
FARs, and POFDs were minor, but the PODs experienced evident improvements, and the HSSs finally
became better than those of CTL4.

Considering precipitation applications in a hydrological basin, the simulated precipitation results
of the DA experiments in the HRB were specifically evaluated; they were extracted, accumulated and
spatially averaged. Figure 8 shows the hourly mean precipitation values of the basin via the CTL2,
CTL4, and DA experiments during the studied 48 h. As shown in Figure 8, the agreements between the
DAs’ simulated precipitation and the merged CMORPH estimations were better than those between
the CTL simulated results and the merged CMORPH estimations. Nevertheless, it should be noted
that the impact of the WRF 4D-Var was not always consistent throughout the whole forecast period.
For each 24-hour simulation, the mean precipitation of the basin via the DAs had the greatest agreement
with the merged CMORPH estimations at the beginning (about the first 12 h). During the next 6 h,
the mean precipitation values of the basin also maintained relatively good consistency with the merged
CMORPH data. However, in the following hours, the predictions showed evident deviations from the
merged CMORPH estimations. The reduction in the positive impact on the precipitation simulations
suggested a time interval for the efficiency of the WRF 4D-Var. This may be related to the inevitable
errors that accumulate while the WRF 4D-Var DA system is running [53]. Moreover, when we applied
the cycling mode, the initial conditions of the subsequent 24-hour forecast were provided by the
previous 24-hour forecast; this caused error accumulation from the first 24-hour simulation, and as a
result, the WRF 4D-Var performance for the subsequent 24 h became generally worse than that for the
first 24 h.
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Figure 8. Mean hourly precipitation (mm/h) of the basin via the merged CMORPH estimates and the
CTL2, CTL4, and DA experiments for rainfall events in August (a) and November (b).

5. Discussions

5.1. WRF Sensitivity to Different Rainfall Events, Forcing Data, and Spatial Resolutions

To quantitatively assess the WRF sensitivity to different rainfall events, different forcing data
and spatial resolutions, the error indices of ME, RE, CC, and RMSE and the skill scores of BIAS, FAR,
POD, POFD, and HSS for the CTL experiments were inter-compared and are displayed in Figure 9a,b,
respectively. Both the sharp decreases in ME, RE, and RMSE from CTL1-2 to CTL3-4 (Figure 9a) and
the evident BIAS value much closer to 1 (Figure 9b) demonstrated a better WRF performance for event
N than that for event A. This finding is consistent with that concluded by Lin et al., [42], where they
found that the WRF model was relatively harder to use when forecasting convective and dominant
precipitation events than precipitation events caused by extratropical cyclones.
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Figure 9. (a) Error indices for daily precipitation between the CTL experiment simulations and the CMA
observations; (b) skill score averages of hourly precipitation between the CTL experiment simulations
and the merged CMORPH estimations.

The impacts of different forcing data on the WRF precipitation simulations were well reflected
in the error indices at the daily and point scales. As shown in Figure 9a, the CCs of CTL2 over D01
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and D02 were both 0.01 lower than the CCs of CTL1. However, the ME, RE, and RMSE values of
CTL2 significantly decreased by 22.61%, 22.09%, and 12.63% compared with those of CTL1_D01,
respectively, and decreased by 15.53%, 14.94% and 11.81% compared with those of CTL1_D02,
respectively. This indicated that significant improvements were made by using forcing data ds083.3 for
event A. For event N, contrasted with CTL3, the CCs of CTL4 decreased by 0.03 in D01 and 0.04 in D02.
The ME, RE, and RMSE values of CTL4_D01 slightly increased by 1.03 mm, 0.06 mm, and 2.31 mm
respectively, compared with those of CTL3_D01. The values of CTL4-D02 increased by −0.07 mm,
0.00 mm, and 0.83 mm, respectively, compared to those of CTL3_D02. These results indicated that
slightly negative impacts of ds083.3 were found when predicting non-convective precipitation. These
differences in the error indices caused by different forcing data suggested that the WRF model is
very sensitive to its initial and lateral boundary conditions, especially for convective precipitation.
Considering the notable positive improvements caused by ds083.3 for the simulation of convective
precipitation, the slightly negative impacts of ds083.3 on the simulation of non-convective precipitation
were omitted from this study. Therefore, we considered forcing data ds083.3 to be better than ds083.2
to drive the WRF model.

As shown in Figure 9b, the mean hourly BIASs and FARs of the CTLs over D02 showed more
evident decreases than those over D01, and these reductions of CTL1 and CTL2 were especially
remarkable. The POD values over D02 were slightly lower than those over D01 for event A, but the
mean hourly PODs for event N over D01 and D02 were nearly the same. For event A, the POFDs in
D02 were visually lower than those in D01, and the comprehensive HSSs in D02 were higher than
those in D01. For event N, the HSSs in D02 were lower than those in D01, while clearly lower values
of the BIASs and FARs over D02 indicated some improvements in the reduction of false predictions.
Hence, we conclude that the improvement of spatial resolution (from 27 km to 9 km) in the WRF
model has an evident positive impact on precipitation predictions for strong convection-dominated
rainfall events, and slightly negative impacts on the predictions of rainfall events associated with
extratropical cyclones. Considering the practical need for finer spatial resolutions and the overall
better performances over the D02, we recognize that the WRF performance is better over D02 than that
over D01.

5.2. The Effectiveness of WRF 4D-Var at Different Thresholds and Time

To examine the WRF 4D-Var effectiveness in detail, the simulated daily precipitation from the
CTL2, CLT4, and DA experiments at different thresholds ranging from 1 mm/day to 70 mm/day
were evaluated with the daily merged CMORPH data. The assessments were quantified with the
skill scores of BIAS, FAR, POD, POFD, and HSS. As shown in Figure 10, the performances of the
WRF and WRF 4D-Var models decreased as the precipitation threshold increased. The predictions
for strong precipitation events greater than 50 mm/day were severely over-forecasted in CTL2 and
CTL4, as their BIASs mostly surpassed 2 and even reached 12 (Figure 10c). After assimilating the
satellite precipitation products, over-forecasting was controlled, as the values of BIAS and FAR for the
strong precipitation event obviously decreased (Figure 10a–d). As shown in Figure 10q,s, the HSSs of
DA1-D02 and DA3-D01 for precipitation exceeding 40 mm/day were evidently much larger than those
in other experiments, which suggested that the resultant heavy precipitation event assimilated with
TRMM 3B42 was more accurate than that assimilated with GPM IMERG during the first day of each
simulation. For the second day, these two simulated precipitation results tended to be over-forecasted.
For light rain, the simulated precipitation results of DA2 and DA4 were better than those of DA1
and DA3. The BIASs for both DA2 and DA4 were generally much closer to 1, and they had lower
values of FAR and POFD and higher values of POD and HSS. This was mainly attributed to the key
advancement of the GPM over the TRMM, because the GPM has a better capability of measuring
light rain; this is because its core observatory carried the first spaceborne Ku/Ka band dual-frequency
precipitation radar, which is more sensitive to light rain rates [50].
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Figure 10. Skill scores of daily precipitation (mm/day) obtained from the CTL2, CTL4, and DA
experiments in comparison with the merged CMORPH estimations at different thresholds ranging
from 1 mm/day to 70 mm/day. (a-d), (e-h), (i-l), (m-p) and (q-t) are the skill scores of BIAS, FAR, POD,
POFD and HSS, respectively, for the daily precipitation in the first and second days of the event A and
the event N.

Looking into the time interval issues regarding the effectiveness of the 4D-Var, which was
mentioned in Section 4.2, the 12-hour accumulated precipitation of the DA experiments, the CTL2
and the CTL4 were evaluated with the skill scores. The increments of the skill scores between the
DA experiments and its corresponding control experiment were analyzed. As portrayed in Figure 11,
the increments of BIAS, FAR, and POFD at the first and third 12-hour periods exhibited more extensive
decreases than those during the second and fourth 12-hour periods, especially for event A, which
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is represented with red lines. The PODs for event A reduced, but those for event N increased.
In Figure 11e, most of the HSS increments in the first and third 12-hour periods were higher than those
in the second and fourth 12-hour periods. Thus, we conclude that substantial improvements via the
WRF 4D-Var with TRMM 3B42 and GPM IMERG can be sustained for approximately 12 h.Remote Sens. 2018, 10, 646 19 of 25 
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Figure 11. Increments of skill scores of BIAS (a), FAR (b), POD (c), POFD (d), and HSS (e) in the DA
experiments compared to their corresponding CTL experiments. The table in each graph lists the
evaluation scores of CTL2 and CTL4. The x-axis represents the first, second, third, and fourth 12-hour
periods in the overall study period.

5.3. Comparison of the 4D-Var Performance Assimilated with TRMM 3B42 and GPM IMERG

To comprehensively compare the 4D-Var performance after assimilation with TRMM 3B42 and
GPM IMERG, normalized Taylor diagrams [71] were used to compare the spatial patterns of daily
and 48-hour (i.e., the whole study period) precipitation data between the simulations of the DA, CTL
experiments, and the merged CMORPH data. The Taylor diagrams and are shown in Figure 12.
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For the first day (Figure 12a), DA2 agrees the best with the merged CMORPH data, as the two
points delegated DA2_D01 and DA2_D02 are the closest to the point labeled as REF in the figure,
and the two points also show the highest correlation coefficients. Simultaneously, they almost have
the same standard deviations as those of the merged CMORPH estimations, since they are located on
the bold dashed line. For DA2-D01 and DA2-D02, their correlation coefficients are 0.692 and 0.663,
respectively, and both their RMSEs occur at approximately 0.75 mm. DA3 and DA4 slightly differ
in performance, as their representative points are very close to each other. For the performances on
the second day (shown in Figure 12b), CTL2 exhibits a remarkable departure from the REF point, as
simulation errors accumulated from the first day to the second day during the WRF was running.
These performances rank from best to worst for event A as follows: DA2-D02, DA1-D02, DA1-D01,
and DA2-D01. For event N, the results of DA3 and DA4 over D01 and D02 are almost the same. It is
clear in Figure 12c that DA2 evidently outperforms DA1. Thus, we conclude that the WRF 4D-Var
with GPM IMERG generally outperforms the WRF 4D-Var with TRMM 3B42.

6. Conclusions

To reduce data acquisition difficulty for precipitation in hydrological studies and obtain
independent, consecutive, and high-resolution precipitation data, we used a 4D-Var data assimilation
method to assimilate the remotely sensed precipitation products of the TRMM 3B42 and GPM IMERG
into the atmospheric WRF model. By focusing on two heavy precipitation events that occurred during
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the flood and non-flood seasons over the HRB in 2015, CTL experiments were first carried out to choose
the best forcing data for the WRF model and determine the control experiment for the subsequent
DA experiments. Then, DA experiments were carried out to investigate the feasibility and efficiency
of the GPM IMERG to be assimilated into the WRF model with the 4D-Var method, and the 4D-Var
performances assimilating with the GPM IMERG and the TRMM 3B42 were compared as well. All of
the simulated precipitation values from the CTL experiment and the DA experiment were evaluated
with in situ CMA observations and hourly merged CMORPH data.

CTL experiments were performed based on the WRF model with different forcing data and for
different events. The assessment of the simulated precipitation in the CTL experiments found that when
predicting heavy rainfall events over the HRB, the WRF performance for event N, which represented
non-convective precipitation, outperformed the performance for event A, which represented convective
precipitation. Moreover, the simulated precipitation generated by forcing data ds083.3 and the output
from nested domain D02, which had a higher spatial resolution (9 km), could generally yield better
agreement with the in situ CMA data and the merged CMORPH data.

DA experiments were carried out with forcing data ds083.3. The 4D-Var performances that
were assimilated with TRMM 3B42 and GPM IMERG based on the WRF model were evaluated in
detail. The simulated precipitation results of the DA experiments were assessed at spatial scales of
D01, D02, and the HRB, and at hourly, 12-hour, daily, and 48-hour timescales. The evaluation results
showed that (1) the 4D-Var with both the TRMM 3B42 and GPM IMERG based on the WRF model
could significantly improve the precipitation simulations. The improvements made by GPM IMERG
generally outperformed those made by TRMM 3B42, as GPM IMERG was more sensitive to light rain
(≤0.5 mm/hour), which accounted for significant portions of the precipitation occurrences at mid and
high latitudes. (2) For event A, the enhancement of simulated precipitation was mainly attributed to
the corrections of false alarms for non-occurrences. For event N, this improvement was primarily due
to more accurate forecasting of these occurrences. The accuracy enhancement for event A was larger
than that for event N. (3) The accuracy improvement in simulated precipitation over D01 (27 km) by
4D-Var could be effectively achieved over D02 (9 km); assimilation in D01 and downscaling to D02 with
a nested domain based on the WRF model could provide an effective way to obtain finer-resolution
precipitation forecasts. (4) Due to error accumulations in the WRF running, essential improvements
made by the 4D-Var were maintained for approximately 12 h; it was also not recommended to use the
cycling mode for error accumulations in the WRF model.

Further studies can be conducted to deepen the understanding of the 4D-Var algorithm from the
following aspects: (1) investigating the performance of a longer duration precipitation simulation;
(2) assimilating more remotely sensed precipitation products into other NWP models; and (3) analyzing
the sensitivity of the WRF 4D-Var to background errors, which would be worthwhile for future studies.
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