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Abstract: Infrared image enhancement is a crucial pre-processing technique in intelligent urban
surveillance systems for Smart City applications. Existing grayscale mapping-based algorithms
always suffer from over-enhancement of the background, noise amplification, and brightness
distortion. To cope with these problems, an infrared image enhancement method based on adaptive
histogram partition and brightness correction is proposed. First, the grayscale histogram is adaptively
segmented into several sub-histograms by a locally weighted scatter plot smoothing algorithm
and local minima examination. Then, the fore-and background sub-histograms are distinguished
according to a proposed metric called grayscale density. The foreground sub-histograms are equalized
using a local contrast weighted distribution for the purpose of enhancing the local details, while the
background sub-histograms maintain the corresponding proportions of the whole dynamic range in
order to avoid over-enhancement. Meanwhile, a visual correction factor considering the property of
human vision is designed to reduce the effect of noise during the procedure of grayscale re-mapping.
Lastly, particle swarm optimization is used to correct the mean brightness of the output by virtue of
a reference image. Both qualitative and quantitative evaluations implemented on real infrared images
demonstrate the superiority of our method when compared with other conventional methods.

Keywords: infrared image enhancement; adaptive histogram partition; local contrast weighted
distribution; brightness correction; Smart City

1. Introduction

Infrared (IR) imaging has been extensively applied in Smart City applications [1,2], e.g., scene
surveillance, goods sorting, and fire prevention due to its unique ability to receive IR rays (780 nm–300 µm)
which cannot be perceived by human eyes. However, compared with visible (Vis) images, IR images do
suffer from many intrinsic drawbacks, e.g., lack of color information, low contrast, blurred resolution,
and visual disturbance caused by noise, which generate much inconvenience when attempting to
recognize the target of interest from the background [3,4]. As a result, IR image enhancement is
always a hot topic worthy of investigation in Smart City applications and plays a significant role in the
pre-processing techniques of intelligent systems.

During the past decades, a number of image enhancement algorithms based on histogram
equalization (HE) have been developed, the goal of which is to re-map the grayscales of the original
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image and obtain a new histogram with a uniform intensity distribution so as to improve the image
contrast as much as possible. Among them, global histogram equalization (GHE) is the simplest
one, in which a transfer function formulated by the cumulative density function (CDF) is utilized to
re-calculate the grayscale histogram so that the overall histogram distribution is forced to be flattened
out and accounts for a broader dynamic range, exaggerating the global contrast to the greatest extent [5].
To this end, grayscales with high probability distribution function (PDF) values (usually belonging
to the background) will occupy the most intensity ranges and be dramatically enhanced, while those
with low PDF values (usually belonging to target regions) will be greatly suppressed or even lost.
That is to say, over-enhancement may easily occur in IR images with a large area of homogeneous
regions [6]. In an even worse scenario, the noise existing in background may be hugely amplified due
to over-enhancement.

Recently, some improved HE-based algorithms have also been investigated. Dynamic histogram
equalization (DHE) proposed by Abdullah-Al-Wadud et al. [7] tends to preserve the details of the
input. The raw grayscale histogram is partitioned based on local minima and specific grayscale
ranges are assigned to each partition, after which HE is implemented on each sub-histogram [8].
Brightness preserving bi-histogram equalization (BBHE) [9] divides the original grayscale histogram
into two parts using the mean brightness of the input and then the two sub-histograms are equalized
independently. It has been proved that selecting the mean brightness as the separation threshold can
preserve the general brightness before and after enhancement to a certain degree. Equal area dualistic
sub-image histogram equalization (DSIHE) [10] increases the global contrast with the same strategy as
BBHE, but the only difference is that the mean brightness is replaced by the median as the separation
threshold. Relevant experiments further verify that DSIHE can achieve better performances than BBHE
with respect to preserving the average information content of the input image. In addition, minimum
mean brightness error bi-histogram equalization (MMBEBHE) [11] is another improvement of BBHE
which yields the optimized mean brightness difference between the input and output. Recursive
mean-separate histogram equalization (RMSHE) [12] and recursive sub-image histogram equalization
(RSIHE) [13] are the recursive versions of BBHE and DSIHE. Although they provide a flexible way
of monitoring the over-enhancement degree, the mean brightness is overly emphasized. Overall,
the afore-introduced algorithms may have satisfactory enhancement results in Vis images, but side
effects may happen when facing the variation of grayscale distribution in the histogram [14] and the
strategy of brightness preservation is obviously unreasonable in IR image enhancement considering
the fact that the input brightness itself is distorted.

With the aim of alleviating over-enhancement, Vicker et al. [15] proposed plateau histogram
equalization (PHE), whose PDF is limited via a threshold. Furthermore, Song et al. [16] presented
double plateau histogram equalization (DPHE) in which the upper threshold is designed to prevent the
over-enhancement of background noise with typical grayscales, while the lower threshold is developed
to protect details with fewer pixels from being merged [17]. Yet, the thresholds in PHE and DPHE need
to be manually selected, which limits their usage in practice. As a result, adaptive plateau histogram
equalization (APHE) [18], as well as adaptive double plateau histogram equalization (ADPHE) [17],
were then developed. However, the robustness of ADPHE cannot be guaranteed because the thresholds
are fixed for all the grayscales.

Most of the existing methods are highly dependent on mode estimation, which may easily
lead to an over or under segmentation of the histogram. To deal with this significant problem,
a non-parametric method using contrario theory-based automatic histogram mode estimation was
proposed by Delon et al. [19]. In this method, a segmentation of the histogram without a priori
assumptions in terms of the number or shape of its modes is presented, and the core idea is to test the
simplest multi-modal law fitting the data. Specially speaking, an adequacy test named ‘meaningful
rejections’ is developed, which is demonstrated to be both locally and globally superior. The algorithm
is able to detect even very small modes when they are isolated, making it well adapted to document
analysis. In addition, it is more robust to quantization noise owing to its statistical aspect.
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To address the afore-mentioned problems in the existing methods, we focus on investigating
an effective IR image enhancement algorithm based on adaptive histogram partition and brightness
correction. First of all, the original grayscale histogram is smoothed by Gaussian filtering and a locally
weighted scatter plot smoothing (LOWESS) algorithm [20] so that the spikes can be removed. After that,
the histogram is partitioned into several intervals via local minima and whether a certain sub-histogram
belongs to the foreground or background is judged by its grayscale density. For the foreground
parts, a novel local contrast weighted distribution is presented to take the place of the conventional
intensity distribution, which only takes the occurrence frequency of each gray level into account and
each foreground sub-image is equalized using that distribution; for the background parts, all the
corresponding intervals keep their proportions of the whole dynamic range. It is remarkable that,
motivated by the characteristic of human eyes, a visual correction factor is proposed to adjust the range
of each foreground histogram before equalization. Finally, a reference IR image with an appropriate
brightness is employed to correct the mean brightness of the enhanced image by a particle swarm
optimization (PSO) algorithm. Figure 1 shows a complete flow chart of our method.
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2. Review of Global Histogram Equalization

Global histogram equalization (GHE) is the basic HE-based image enhancement method in
computer vision and has been widely applied to practice. Its core is to build a transfer function based
on PDF and re-map the raw grayscale distribution to a new uniform one.

Let us suppose that I = {I(x, y)} represents the input IR image, where I(x, y) is the grayscale
of each pixel whose spatial coordinate in I is (x, y). Additionally, the IR image is digitized into
L gray levels as {I0, I1, . . . , IL−1} (for an 8-bit digital image, L = 256). So, it is apparent that
∀I(x, y) ∈ {I0, I1, . . . , IL−1}. Next, the PDF of each grayscale can be defined as:

p(Ik) =
nk
n

, k = 0, 1, . . . , L− 1, (1)

where, Ik refers to an arbitrary grayscale and p(Ik) is its corresponding PDF; nk denotes the number of
pixels whose grayscales are Ik; and n is the total pixel number of I. Particularly, the graphic appearance
of PDF is regarded as a histogram [14]. Further, the CDF of each grayscale is calculated as:

c(Ik) =
k

∑
t=0

p(It) =
k

∑
t=0

nt

n
, k = 0, 1, . . . , L− 1. (2)
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Obviously,
L−1
∑

t=0
c(It) = 1. Based on Equation (2), the transfer function T(Ik) is constructed as:

T(Ik) = I0 + (IL−1 − I0) · c(Ik). (3)

Lastly, the enhanced image O is obtained as:

O = T(I) = {T(I(x, y)|∀I(x, y) ∈ {I0, I1, . . . , IL−1})}. (4)

Note that:
dc(Ik)

dIk
= c(Ik)− c(Ik−1) =

k

∑
t=0

p(It)−
k−1

∑
t=0

p(It) = p(Ik). (5)

From Equation (5), it is easy to find that grayscales with high PDFs can have a high gain, and
account for the majority of the whole dynamic range. As a rule, those grayscales mainly belong to
background pixels and are always over-merged by GHE, which is absolutely unexpected. On the
contrary, the foreground, especially some small-sized targets, the grayscales of which have relatively
low PDFs, are greatly suppressed after GHE, i.e., the details are thus lost.

3. Theory

In this section, the detailed theories related to the proposed algorithm are discussed at great
length. First, Section 3.1 introduces the automatic way of partitioning the raw grayscale histogram.
Next, the criterion of distinguishing between fore-and background sub-histograms is revealed
in Section 3.2. After that, we clarify the different means of enhancing fore-and background
sub-histograms, respectively, in Section 3.3. Finally, PSO algorithm optimizing the mean brightness
with a reference image is depicted in Section 3.4.

3.1. Adaptive Segmentation of Input Grayscale Histogram

Considering the physical law in IR imaging that the temperature distribution of the target
(foreground) or background is continuous and centers around a specific temperature, meaning that the
grayscale distribution of the foreground should be unimodal (the condition of background is the same),
we propose to judge whether a cluster of grayscales belongs to the foreground or background by
means of partitioning the raw histogram into several intervals and recognizing each of them through
a specific characteristic of grayscale distribution discussed in Section 3.2. In this way, we can use
different strategies to enhance the fore-and background separately.

Inspired by previous works [21–23], the strategy of segmenting a histogram via local minima is
adopted in this paper. Unlike the conventional methods, we focus on improving its robustness to those
spikes existing in the histogram. Therefore, a data smoothing method called LOWESS is utilized as
a pre-processing step.

We notice that there are large quantities of spikes, which can be seen as local outliers, in the input
grayscale histograms, leading to too many peaks if the local minima are examined directly. Thus,
a one-dimensional Gaussian filter is employed to roughly smooth the histogram at first:

p′(Ik) =
k+w1

∑
j=k−w1

p(Ij) · κ(j), k = w1, w1 + 1, . . . , L−w1 − 1, (6)

where, p′(Ik) refers to the smoothed PDF after Gaussian filtering; the size of the local window is
1 ∗ (2w1 + 1); and κ(·) represents a one-dimensional Gaussian kernel function which is defined as:

κ(x) =
1√

2πσ1
e
− (x−xo)2

2σ1
2 , (7)
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where, σ1 is a constant parameter deciding the weight of each neighboring PDF affecting the output
and xo = k denotes the index of the current grayscale Ik.

Then, a local smoother called LOWESS is used on the histogram after Gaussian filtering to further
remove the spikes. The specific steps to nullify the minor peaks from p′(Ik) are described as follows:

(1) Given a span ζ with a fixed length d, the regression weight of each neighboring PDF in ζ is
locally calculated using a 9-degree polynomial ϕj(p′(Ik)) expressed as Equation (8).

ϕj(p′(Ik)) =

1−
∣∣∣∣∣p′(Ik)− p′(Ij)

d

∣∣∣∣∣
3
3

, (8)

where, p′(Ij) denotes the neighboring PDF of p′(Ik) in ζ and p′(Ik) is the current PDF to be smoothed.
(2) A polynomial unary regression estimation function is used to compute the smoothed PDF of

each grayscale, and the coefficients of the locally linear regression are deduced by the weighted least
square estimate of equations fitting an affine model to the probabilities. Please refer to the study made
by Cleveland [20] for the detailed deduction. Here, the solution of the coefficients is directly given as:

θ̂ =

[
θ0

θ1

]
=
(

XTϕX
)−1(

XTϕY
)

, (9)

where, X ∈ Rd×2 in which the first column values are equal to 1 and the second column values are
written as a vector (p′(Ik)− p′(Ij)); ϕ = diag(ϕ1(p′(Ik)),ϕ2(p′(Ik)), . . . ,ϕd(p′(Ik))) is a d× d sized
diagonal matrix; and Y is the intended span of p′(Ik). Figure 2 gives a simple schematic diagram of
the above-discussed procedure of estimating.
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According to Equation (9), a 2× 1 sized coefficient vector θ̂ of the locally linear regression model
is yielded and the smoothed output p∗(Ik) of each PDF after Gaussian filtering p′(Ik) is determined
through Equation (10).

p∗(Ik) = θ1 · p′(Ik) + θ0. (10)

Figure 3 shows an example of smoothing the grayscale histograms produced by Gaussian filtering
and LOWESS, respectively. It can be clearly seen that although the Gaussian-smoothed histogram in
Figure 3b becomes smoother, there are still some fake peak and valley points (see the orange circle).
Fortunately, in Figure 3c, LOWESS removes almost all the spikes effectively, while only the valid peaks
and valleys remain. Thus, it proves that LOWESS is necessary in our work.
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Figure 3. An example of histogram smoothing by Gaussian filtering and LOWESS: (a) original
histogram; (b) histogram smoothed by Gaussian filtering; (c) histogram further smoothed by LOWESS.

Based on the idea of searching for local minima, a 1×w2 sized sliding window is designed and
all the local minima are extracted using the following criterion:

p(Ik) =

{
minimum, if p∗(I k) = min(p∗(Ik−(w2−1)/2), . . . , p∗(Ik), . . . , p∗(Ik+(w2+1)/2))

non−minimum, others
, (11)

where, min(·) represents the minimal component in a set.
Besides, both the first and last non-zero components of the input grayscale histogram are also

regarded as local minima. In this case, we assume that there is a total of σ local minima in the histogram
and they are denoted as {m1, m2, . . . , mσ}. Hence, the raw histogram can be partitioned into σ− 1
intervals, which are further written as [m1, m2], [m2, m3], . . . , [mσ−1, mσ], and Figure 4 shows a more
intuitive presentation of the segmentation result (σ = 7).
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minima).

3.2. Recognition of Fore-and Background Sub-Histograms

Before re-mapping the grayscales, we need to distinguish between fore- and background intervals
and use different tools to deal with them. In this paper, we argue that whether a certain interval
belongs to the foreground or background cannot depend on the PDF of a single grayscale, but the
overall grayscale distribution of the interval should be considered. On account of the following two
physical facts in IR imaging: (1) background pixels occupy a large percentage of the whole image
whereas the object has an opposite condition, and both the intensity values of the foreground and
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background tend to cluster around a peak; (2) foreground intervals always present a flat shape whereas
background intervals possess a narrow but sharp shape, a metric Λi measuring the grayscale density
of each interval is proposed below:

Λi =
Ci

Ni
, i = 1, 2, . . . , m− 1, (12)

where, Ni = mi+1 −mi + 1 refers to the quantity of grayscales in [mi, mi+1] and Ci =
mi+1

∑
i=mi

p(Ii) stands

for the CDF of [mi, mi+1]. Based on the definition of grayscale density, we further propose that a small
Λi is related to the foreground and a large one corresponds to the background.

Next, an adaptive threshold Λ∗ to recognize the property of each interval is adaptively calculated
via Ostu’s method [24], which is based on maximizing the inter-class variance of the dataset. Suppose
that all the Λi compose a set Λ = {Λ1, Λ2, . . . , Λσ−1}, and Λ∗ separates this set into two classes Λα
and Λβ. Ostu’s method exhaustively searches for the optimum Λ∗ as:

Λ∗ = argmax
Λmin<Λ∗<Λmax

{σ(Λ∗)}, (13)

where, Λmax and Λmin stand for the maximum and minimum of Λ, respectively; and,

σ(Λ∗) = Wα · (E(Λα)− µΛ)
2 + Wβ · (E(Λβ)− µΛ)

2, (14)

where, E(Λα) and E(Λβ) stand for the mean values of the two separated classes; µΛ is the mean value
of Λ; and Wα and Wβ represent the fractions indicating the component numbers of the two classes
among the whole, respectively.

To this end, the grayscale histogram of input is segmented into fore- and background
sub-histograms as the following criterion:{

Λi ≤ Λ∗, [mi, mi+1] ∈ foreground
Λi > Λ∗, [mi, mi+1] ∈ background

, (15)

Additionally, Figure 5 illustrates the above-introduced segmentation result.
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3.3. Methods of Sub-Histogram Enhancement

In this section, some specific techniques are developed to enhance the partitioned sub-histograms
respectively. Section 3.3.1 describes the details of allocating a mapped range for each interval;
in Section 3.3.2, the fore-and background parts are enhanced with two different strategies.

3.3.1. Allocation of Re-Mapped Range

In order to overcome the adverse effect of over-enhancement, which commonly occurs in
the background, we consider only equalizing the foreground sub-histograms while the modified
intensity range of each background sub-histogram accounts for the same percentage in the raw
histogram [25]. Under the circumstances, the gray levels of background will not be over-merged,
but the target/background contrast is improved.

For an arbitrary background interval [mi, mi+1], its re-mapped range Ri is computed as follows:

Ri =
mi+1 −mi

Imax − Imin
· L, Λi > Λ∗, (16)

where, Imax and Imin denote the maximal and minimal grayscales in the raw image, respectively.
The condition of foreground intervals is more complicated. First of all, the CDF is applied as

a metric to decide the re-mapped range as:

Rj = (L− 1−m′1 − ∑
∀Λs>Λ∗

Rs) ·
Cj

∑
∀Λt≤Λ∗

Ct
, Λj ≤ Λ∗, (17)

where, s and t represent the indexes of background and foreground intervals, respectively; Cj =
mj+1

∑
k=mj

p(Ik)

is the CDF of a foreground interval [mj, mj+1]; and m′1 denotes the optimal minimal grayscale of the
enhanced image, which will be discussed in Section 3.4.

In light of the property of human vision that noise in flat regions of an image will give rise to
spurious or texture to the observer and the contrast sensitivity will decrease at sharp transitions [26],
an exponential correction factor γ is designed to modify the re-mapped ranges of foreground intervals
so as to reduce the effect of image noise as much as possible. Based on this consideration, we further
notice that local entropy is an extensively-used physical metric in informatics that measures the
richness of texture of an image block. Thus, we choose to use local entropy as a significant component
to construct γ. The definition of γj ∈ [0, 0.6] is given as:

γj =
Θj

Θmax
× 0.6, (18)

where, Θj stands for the smoothness degree of [mj, mj+1] which is defined as Equation (19) and
Θmax = max{Θ1, Θ2, . . . , Θσ−1} is utilized for normalization.

Θj =

∑
x

∑
y

H(x, y)

Nj
, (x, y) ∈ {(x, y)|I(x, y) ∈ [mj, mj+1]}, (19)

where, Nj represents the number of pixels belonging to [mj, mj+1]; and H(x, y) is the local entropy of
pixel (x, y) whose grayscale is within [mj, mj+1] and its formula is given as Equation (20).

H(x, y) = ∑
We(x,y)

L−1

∑
t=0
−p(t) · log2p(t) if p(t) = 0, log2 p(t) = 0. (20)
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As is shown in Equation (18), the local entropy in regard to all the pixels in a w3 ∗w3 sized local
window We(x, y) around (x,y) is counted. Obviously, a larger Θj reveals a foreground interval with
more complex textures on average.

As a result, Equation (17) can be re-written as:

Rj = (L− 1−m′1 − ∑
∀Λs>Λ∗

Rs) ·
(Cj)

γj

∑
∀Λt≤Λ∗

(Ct)
γt

, Λj ≤ Λ∗. (21)

3.3.2. Re-Mapping of Fore-and Background Histograms

Based on the principle that the background intervals maintain their proportions of the whole
dynamic range without any other manipulations, the re-mapped result Ob(Ik) of a background
grayscale Ik ∈ [mi, mi+1] can be computed as Equation (22).

Ob(Ik) =
i−1

∑
j=1

Rj + Ri ·
Ik −mi

mi+1 −mi
. (22)

Then, let us further discuss the enhancement strategy for those foreground intervals, the local
details of which need to be enhanced. In our study, a local contrast weighted distribution is developed
and is written as:

ℵ(Ik) =
ℵc(Ik)

L−1
∑

s=0
ℵc(Is)

, (23)

where,

ℵc(Ik) =
M−1

∑
x=0

N−1

∑
y=0

ψ(ω(x, y)) · δ(I(x, y), Ik), (24)

where, M and N are the width and height of the image, respectively; δ(x, y) =

{
1, x = y
0, others

is the

Kronecker delta function; andω(x, y) denotes the local contrast operator [27], which is defined as:

ω(x, y) =
∇r(x, y) +∇l(x, y) +∇u(x, y) +∇d(x, y)

4
, (25)

where, 
∇r(x, y) = |I(x, y)− I(x, y + 1)|
∇l(x, y) = |I(x, y)− I(x, y− 1)|
∇u(x, y) = |I(x, y)− I(x + 1, y)|
∇d(x, y) = |I(x, y)− I(x− 1, y)|

, (26)

As can be seen from Equations (25) and (26), ω(x, y) indicates the four-direction gradient
information of pixel (x, y). Furthermore, ψ(·) representing the weight function is formulated based on
the sigmoid function as:

ψ(x) = α · (Sg(λ · x + θ) + ξ), (27)

where, Sg(x) = 1
1+e−x is the standard sigmoid function whose curve is drawn as Figure 6a; and α, λ, θ,

and ξ denote the amplitude, scale, phase, and shift parameters, respectively.
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Figure 6b reveals one of the desirable curve forms of ψ(x) that meets the following
three requirements for our purpose: (1) a non-negative and monotonically increasing function;
(2) lim

x→xmin
ψ(x) = 0, xmin = min(ω); and (3) lim

x→xmax
ψ(x) = 1, xmax = max(ω), and the exact values of

the four parameters can be computed as:

α = 1

λ =
ln
(
ε2

1−ε2
· 1−ε1
ε1

)
max(ω)−min(ω)

θ = ln
(
ε1

1−ε1

)
−

ln
(
ε2

1−ε2
· 1−ε1
ε1

)
max(ω)−min(ω)

·min(ω)

ξ = 0

, (28)

where, ε1 and ε2 are two constant values that are approach 0 and 1, respectively. An example of
calculating the local contrast weighted distribution via the above-introduced method is given in
Figure 7.
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On the basis of the presented local contrast weighted distribution ℵ(Ik) ∈ [0, 1], the grayscale
distribution of the foreground interval is substituted and a foreground grayscale Ik ∈ [mj, mj+1] is
re-mapped using the approach expressed as:

Of(Ik) =
j−1

∑
t=1

Rt + Rj ·
ℵ(Ik)

Cℵj
, (29)

where, Cℵj =
mj+1

∑
k=mj

ℵ(Ik) denotes the cumulative local contrast weighted distribution of [mj, mj+1]. Here,

a schematic diagram of the grayscale re-mapping is also drawn in Figure 8.
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Thus, the final enhanced image O can be obtained as:

O = {O(i, j)} = Of ∪Ob. (30)

However, one point that should be noticed is that the minimal grayscale after re-mapping m′1 is
uncertain and it decides the general brightness of the output image directly. The optimization of this
parameter is discussed in Section 3.4.

3.4. Brightness Correction via PSO Algorithm

As is mentioned above, the minimal grayscale m′1 affects the overall brightness of the enhanced
IR image. In normal conditions, m′1 is set as 0 by default, which results in the phenomenon that the
enhanced image is over-dark. However, we cannot simply use the strategies of brightness preservation
proposed in the previous works [9–13], which aim to make the mean brightness close to the input as
much as possible, because the brightness of the input itself is distorted for IR images. On account
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of this problem, we consider using the PSO algorithm to optimize the exact value of m′1 by virtue of
a reference image with a suitable brightness.

PSO is a population-based stochastic optimization algorithm [28] and it utilizes a certain number
of particles forming a swarm motion in the search space to estimate the optimum solution of the
objective function F. All the particles fly through the search space depending on the best solution of
each particle achieved so far and the best solution tracked by any particle among all generations of the
swarm, which are named pbest and gbest, respectively [29].

3.4.1. Particle Initialization

In this step, N particles are first generated. The initial position of each particle can be regarded
as random sampling, and the position of each particle is a potential value of m′1. Assuming that
the sum of the re-mapping ranges of background intervals calculated in Section 3.3.1 is denoted as
< = ∑

∀Λs>Λ∗
Rs, we propose that the initial position of each particle should be greater than 0 and smaller

than L− 1−<. Based on this point, uniform distribution-based random sampling is implemented in
the range [0, L− 1−<] to assign the initial value for each particle.

Here, an example of particle initialization for Figure 9 is shown in Table 1. < = 90 for Figure 9a
and < = 99 for Figure 9b, so the sampling ranges are [0, 165] and [0, 156], respectively. Note that all the
initial positions are sampled as integers in our study.
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Table 1. Examples of particle initialization for Figure 9.

‘building’
Particle index 1 2 3 4 5 6 7 8 9 10

Initial position 1 42 102 125 41 114 50 162 7 105

‘room’
Particle index 1 2 3 4 5 6 7 8 9 10

Initial position 94 17 114 152 106 125 80 104 86 151

3.4.2. Objective Function

In our study, m′1 to be optimized composes a one-dimensional search space for PSO and the
objective function is defined as the absolute mean brightness error [30] of the enhanced image and
reference image. Equation (29) gives the formulation of the objective function F as:

F =
∣∣Mo(m′1)−MR

∣∣ (31)

where, MO(m′1) and MR stand for the mean of output image O and reference image R, respectively.
Unlike the offline learning strategy, the reference image R is not used for the learning purpose. Here,
only a reference image, the mean brightness of which is comfortable for the human vision system,
is needed, i.e., its mean brightness is neither too dark nor too bright. It is utilized to generate a standard
mean intensity value MR which is regarded as a standard value to optimize the objective function
value F in the following PSO optimization. By this means, the optimal value of m′1 can be computed.
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Note that MO(m′1) can be calculated using the method discussed from Sections 3.1–3.3, once m′1 is
generated by PSO.

3.4.3. Implementation of PSO Iteration

Every particle tries to change its position via information including the current position, current
velocity, the respective distance between the current position and pbest, and the distance between the
current position and the gbest [31]. The velocity of each particle is suitably updated as Equation (30).

Vt+1
i = ω ·Vt

i + c1 · rand() · (pbesti − Pt
i) + c2 · rand() · (gbesti − Pt

i), (32)

where, Vt
i denotes the velocity of the i-th particle at the t-th iteration; c1 and c2 are learning factors;

rand() ∈ [0, 1] represents a uniformly distributed random number; Pt
i is the position of the i-th particle

at th t-th iteration; and pbesti represents the current best of the i-th particle (the minimal F in the
current iteration) while gbesti represents the global best of the swarm (the minimal F in all the iterations
that have been implemented so far). Besides, ω is the inertia weight which is set to be in the range
[ωmin,ωmax] and Equation (33) gives its formulation in detail.

ω =
ωmax − (ωmax −ωmin) · t

tmax
, (33)

where, t is the current iteration and tmax is the maximal iteration.
Based on the afore-discussed modified velocity Vt+1

i , the position of a particle Pt+1
i can be thus

updated as:
Pt+1

i = Pt
i + Vt+1

i . (34)

Then, the optimal m∗1 is achieved by iteration until convergence, and the complete procedure is
concluded in Algorithm 1. Finally, the enhanced image is outputted using the procedures introduced
in Sections 3.1–3.3.

Algorithm 1: Optimization of m′1 using PSO

1. Input: an IR image I to be enhanced and the mean of a reference image MR.
2. Create N particles {P1, P2, . . . , PN}, where Pi ∈ R1×1 representing an m′1;
3. for each particle i = 1 to N do
4. Initialize the position of each particle P1

i and its corresponding velocity V1
i ;

5. end for
6. for t = 1 : tmax do
7. for each particle
8. Produce the enhanced image Ot

i using methods introduced in Section 3.1, Section 3.2 and Section 3.3
based on its position value Pt

i ;
9. Calculate the objective function Ft

i using Equation (29);
10. if Ft

i < F(pbesti)

11. pbesti = Pt
i ;

12. end if
13. if Ft

i < F(gbesti)

14. gbesti = Pt
i ;

15. end if
16. end for
17. for each particle i = 1 : N do
18. Update the velocity Vt+1

i using Equation (32);
19. Update the position Pt+1

i using Equation (34);
20. end for
21. end for
22. Output: the optimal m∗1 .
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4. Experiment and Discussion

In this section, a number of real IR images are applied to make comparative experiments and
they can be downloaded from a publicly available database [32]. The reference image with a suitable
brightness used in our method is shown in Figure 10 and its mean intensity is 99. All the test IR
images whose wavelengths on the electromagnetic spectrum are from 4 to 12 µm [33] are 8-bit and their
sizes are 384× 288. Figure 11 presents the eight test images utilized, which are named as ‘residence’,
‘car’, ‘guardrail’, ‘building’, ‘room’, ‘cabinet’, ‘leg’, and ‘computer’, respectively. The former fours
are outdoor scenes, while the latter fours are indoor scenes. In our experiments, seven conventional
algorithms: GHE, BBHE, MMBEBHE, DSIHE, RMSHE, RSIHE, and ADPHE, introduced in Section 1,
are used to make both qualitative and quantitative comparisons. Among them, the recursion level of
RMSHE is set as the default value r = 2.
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Below, we firstly discuss the parameter setting in Section 4.1; the processing results as well as
some related discussions are revealed in Section 4.2; in Section 4.3, several quantitative metrics are
employed to further demonstrate the superiority of our method. Furthermore, all the simulations
are implemented by Matlab 2012a software on a PC with a 2.60 GHz INTEL CPU and 4 GB memory.
The codes of this work can be downloaded from our github website [34].

4.1. Parameter Setting

In this section, all the parameters utilized, as well as the corresponding settings, are listed in
Table 2. The default values of c1, c2, ωmax, and ωmin are set according to [31], and the others are set
empirically. Note that all these values are fixed in all the simulation experiments.

Table 2. Parameter settings.

Parameter Meaning Default Value

w1 Radius of Gaussian filtering window 4
σ1 Variance of Gaussian filter 0.7
d Length of LOWESS span 11

w2 Length of sliding window for local minima examination 9
w3 Length of local entropy window 7
ε1 Lower bound of the weight function ℵ(x) 0.0001
ε2 Upper bound of the weight function ℵ(x) 0.9999

tmax Maximal iteration of PSO 10
N Particle number of PSO 10
c1 Learning factor of PSO 0.5
c2 Learning factor of PSO 0.5
ωmax Maximal inertia weight of PSO 0.9
ωmin Minimal inertia weight of PSO 0.1

Specifically speaking, w1 decides the length of the Gaussian filtering window and σ1 affects the
weight of each neighboring PDF. The suitable values of these two parameters need to ensure that the
remarkable spikes in the raw histogram can be filtered while the local feature of normal PDFs can be
preserved. In the LOWESS algorithm, d adjacent PDFs are utilized to codetermine the final smoothed
output of a centered PDF processed by Gaussian filtering. For the purpose of maintaining the local
shape of the raw histogram, d cannot be too large. With regards to w2, it should be neither too large
nor too small so that those spikes which cannot be totally smoothed by Gaussian filtering and LOWESS
are prevented from being recognized as local minima and only those outstanding valley points can be
picked out. We argue that w3 should be relatively small, because a large w3 would not only increase
the computational cost, but also make the local entropy calculated not well represent the property of
the centered pixel. Due to the fact that the weight function ℵ(x) cannot exactly reach 0 and 1, ε1 and ε2

are used to represent the practical lower and upper bounds, respectively. Thus, their values should
approach to 0 and 1 as much as possible. In order to limit the computational load and get a satisfactory
convergence simultaneously, the maximal iteration tmax and the particle number N are both set as 10.
Lastly, based on previous work on the PSO algorithm [31], the two learning factors c1 and c2 should be
in the range [0, 4], andωmax,ωmin are commonly set as 0.9 and 0.1, respectively.

4.2. Qualitative Comparison

First of all, the enhanced images of all the eight algorithms are given in Figures 12–19. As is
shown in Figure 11, all the IR images to be enhanced suffer from low global contrast and blurred
details, and image noise is particularly serious in Figure 11e–h, which are indoor scenes.
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For the ‘residence’ scene, it can be observed from Figure 12 that GHE, BBHE, and MMBEBHE
have strong abilities of grayscale equalization, leading to the exaggerated fore- and background
contrast. The wall and the roof are thus over-enhanced and the noise on the ground is also obviously
amplified. On the other hand, DISHE, RMSHE, and RSIHE maintain the input brightness to a certain
extent, whereas some grayscales are still over merged. The details, e.g., the windows and doors,
are enhanced by ADPHE, but the visual contrast is not clearly improved, which is far from our
expectation. Fortunately, our proposed algorithm achieves a relatively better visual performance
which avoids the over-enhancement on the wall successfully.

With respect to the ‘car’ image shown in Figure 11b, the thermal radiations of the wheel and snow
cause severe disturbances for most of the traditional methods. The grayscales belonging to the wheel
are overly improved and over-merged in GHE, BBHE, MMBEBHE, DISHE, and ADPHE, while those
belonging to the telegraph pole and wall are mistakenly re-mapped by RMSHE and RSIHE, but all
these adverse phenomena do not happen in our method.

The grass and guardrail pixels of the ‘guardrail’ scene are exceedingly suppressed by GHE, BBHE,
and MMBEBHE, which results in an unnatural visual performance. Besides, artifacts are seriously
generated in the wall region at the top left corner, especially in DISHE, RMSHE, RSIHE, and ADPHE
(see Figure 14d–g). For our algorithm, we argue that although the global contrast of Figure 14h is
lower than Figure 14a–c,g, the over-enhancement is completely overcome and the overall clarity
is satisfactory.

The condition of the ‘building’ scene is quite similar to ‘residence’, and the transition area around
the skyline becomes visually abrupt due to the fact that the conventional algorithms treat fore- and
background in the same way. In addition, the image noise is comparatively obvious in Figure 15c
produced by MMBEBHE and the textures of the block wall are lost dramatically in Figure 15g produced
by ADPHE. It is worth noting that the enhanced result using RSIHE is much more blurred when
compared with DISHE and RMSHE, even though they can all preserve the input brightness quite well,
indicating that more detailed information is missing in RSIHE. When considering the performance
of our method, we find that not only the troublesome noise is suppressed, but also the fore- and
background contrast can meet the observational requirement well.

The ‘room’ image displayed in Figure 11e is changeling on account of the striking noise. On the
one hand, the grayscales belonging to the box at the bottom right corner are overly enhanced, except
in our method. What is more, the noise distributing around the door is extremely magnified by GHE,
BBHE, and MMBEBHE. We also notice that the small heat source near the chairs is over-merged by
ADPHE, despite the fact that the noise is not amplified.

The cabinet in Figure 11f is fuzzy and all the comparing algorithms make attempts to improve its
contrast as much as possible. We consider this kind of strategy as incorrect since it decreases the clarity
in spite of the improvement of contrast. In other words, the balance between clarity and contrast
is the key point in IR image enhancement. As is shown in Figure 17h, our presented method not
only preserves the texture of the floor, shelf, and power lines, but also increases the global contrast to
a certain degree.

The ‘leg’ image has a relatively higher target/background contrast when it is compared with other
test images. One of the most significant tasks in enhancing this image is to enrich the texture existing
on the leg and to keep the local contrast of background. Among all the processed results, severe
over-enhancement of grayscales belonging to the chair leg and the wall occurs in GHE, MMBEBHE,
and ADPHE, even though ADPHE adaptively selects the upper threshold to suppress noise to some
extent. It should be noted that although BBHE and DISHE achieve satisfactory global contrasts, one of
the legs of the chair located in the middle of the image disappears and the noise is magnified more
seriously than RMSHE, RSIHE, ADPHE, and our method.

Finally, the ‘computer’ image is the most challenging one among all the eight images due to the
remarkable noise and quite weak contrast. It is clear that only our method succeeds in improving
the image contrast while suppressing the noise. Owing to the usage of local contrast weighted
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distribution, the heat source on the table becomes more outstanding, while it totally vanishes in
ADPHE. On the other hand, our strategy of maintaining the raw proportion of background interval in
the input grayscale histogram makes it a success in simultaneously eliminating background noise and
improving the global contrast.

4.3. Quantitative Comparison

4.3.1. Comparison of Processed Result

To further verify the superiority of the presented algorithm, several extensively used metrics are
applied to make quantified comparisons in this section.

First of all, the definitions of all the metrics utilized in this paper are introduced:
(1) Linear index of fuzziness η [35] is widely applied to analyze the performance of image

enhancement, which is defined as:

η(O) =
2

M×N

M−1

∑
x=0

N−1

∑
y=0

min(Ψ(x, y), 1−Ψ(x, y)), (35)

where, O represents the enhanced image and its width and height are M and N, respectively. and,

Ψ(x, y) = sin
[
π

2

(
1− O(x, y)

max(O)

)]
, (36)

where, max(O) represents the maximal grayscale of O. A smaller value of ρ indicates a better
performance of the enhanced image with fewer clutters [36].

(2) Peak signal-to-noise ratio (PSNR) [37–39] is commonly used for evaluating image quality and
measures how much the enhanced image has degraded when referred to the input image in the area of
image enhancement [38]. Here, the formula of PSNR is given in Equation (37).

PSNR(O) = 20× lg

(
MAX√

MSE(O, I)

)
, (37)

where, MAX denotes the maximal gray level and MAX = 255 for 8-bit digital images; MSE(O,I) is the
mean square error between the output O and input I, which is defined as:

MSE(O, I) =
1

M×N

M−1

∑
x=0

N−1

∑
y=0

(O(x, y)− I(x, y))2. (38)

Besides, a larger PSNR refers to a higher image quality of the output.
(3) Image definition ρ [40] is a comprehensive index integrating η and PSNR and is always used

to reflect the overall definition of an enhanced image. Below, its specific definition is given as:

ρ(O) =
PSNR(O)

η(O)
. (39)

Ideally, a qualified result should not only improve the global contrast, but also has less degradation.
Thus, for a high-quality enhanced image, a small ρ is expected.

(4) Roughness Ω [41] is used as a metric for evaluating the performance of an algorithm for noise
reduction in many IR imaging applications. Here, we employ it in the following experiments for
measuring the effect of noise suppression of the enhanced image. Further, the calculation of Ω is
introduced below:

Ω(O) =
‖h1 ∗O‖1 + ‖h2 ∗O‖1

‖O‖1
, (40)
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where, h1 = [1,−1] and h2 = [1,−1]T stand for the horizonal and vertical difference filters, respectively;
∗ is a convolution operator; and ‖ · ‖1 stands for the L1 norm. Obviously, a smaller Ω is related to
a smoother result with less residual noise.

(5) Discrete entropy (DE) [42] characterizing the information amount contained in an enhanced
image is employed to measure the degree of over-enhancement in our experiment. Additionally, DE is
a globally statistical index which is defined as:

DE(O) =
L−1

∑
s=0
−p(s) · log2p(s) if p(s) = 0, log2 p(s) = 0. (41)

A larger DE means fewer gray levels are merged, leading to a clearer visual performance. Note that
the essence of DE is different from the one of local entropy H defined in Equation (20), although their
formulas are seemingly the same. DE is a globally counted index, but H is calculated in a local window.

(6) Logarithmic Michelson Contrast Measure (AME) [43] denotes a measure of local contrast,
and Equation (42) gives its definition as:

AME(O) = − 1
l1 × l2

l1

∑
i=1

l2

∑
j=1

20 · ln
(

Oi,j
max −Oi,j

min + ε

Oi,j
max + Oi,j

min + ε

)
, (42)

where, the output O is segmented into l1 × l2 blocks; Oi,j
max and Oi,j

min denote the maximal and minimal
grayness of the block, respectively; and ε = 10−5 is a constant for preventing the invalid values. AME
aims to use the relationship between the spread and the sum of the two intensity values in each block,
and a smaller AME means a better performance [33].

Tables 3–8 list the statistical results of the six indexes and the average values are also given in
the last row of each table. To present a clearer comparison, the corresponding line graphs are also
presented in Figure 20.

Table 3. Quantitative comparisons of η for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 0.1974 0.1993 0.2094 0.2508 0.2546 0.2687 0.3188 0.1427
‘car’ 0.1973 0.1871 0.2069 0.2446 0.2441 0.2589 0.2991 0.1389

‘guardrail’ 0.1980 0.1986 0.2052 0.2500 0.2492 0.2642 0.2863 0.1196
‘building’ 0.1979 0.1935 0.2096 0.2484 0.2494 0.2670 0.3113 0.1479

‘chair’ 0.1978 0.1845 0.2033 0.2496 0.2405 0.2592 0.2718 0.1904
‘table’ 0.1965 0.2132 0.2041 0.2530 0.2557 0.2684 0.2768 0.1484
‘leg’ 0.1973 0.1537 0.2116 0.2336 0.2279 0.2496 0.2235 0.1204

‘computer’ 0.2009 0.2082 0.2105 0.2412 0.2514 0.2766 0.2767 0.2228
Ave. 0.1978 0.1922 0.2075 0.2464 0.2466 0.2640 0.2625 0.1542

Table 4. Quantitative comparisons of PSNR for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 11.8826 12.0603 12.1058 15.5140 14.2222 17.2296 18.8433 18.5197
‘car’ 13.1067 13.4511 13.3919 16.8303 16.8147 20.5077 15.3592 16.9767

‘guardrail’ 13.0533 13.2453 13.3280 16.6305 16.1224 19.4358 13.1659 16.7550
‘building’ 12.2800 12.6611 12.7154 16.0500 15.3751 18.5320 16.8048 16.8685

‘chair’ 13.1027 13.2009 13.2610 16.8133 16.1347 18.2692 12.5104 20.5891
‘table’ 12.4319 12.5129 12.6715 16.1413 14.4491 17.9370 12.0847 16.5403
‘leg’ 13.3853 14.2202 13.6672 19.2938 24.1548 24.4557 25.2335 24.6008

‘computer’ 11.4300 11.4154 11.4812 14.9679 13.0504 16.4078 27.6319 21.4629
Ave. 12.5840 12.8459 12.82775 16.5301 16.2904 19.0968 17.7042 19.0391
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Table 5. Quantitative comparisons of ρ for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 60.1955 60.5132 57.8118 61.8580 55.8609 64.1220 59.1070 129.7807
‘car’ 66.4303 71.8925 64.7264 68.8074 68.88447 79.2108 51.3513 122.2224

‘guardrail’ 65.9257 66.6933 64.9512 66.5220 64.6966 73.5647 45.9863 140.0919
‘building’ 62.0515 65.4320 60.6650 64.6135 61.6483 69.4082 53.9826 114.0534

‘chair’ 66.2421 71.5495 65.2287 67.3609 67.0881 70.4830 46.0279 108.1360
‘table’ 63.2666 58.6909 62.0847 63.7996 56.5080 66.8293 43.6585 111.4575
‘leg’ 67.8423 92.5191 64.5897 82.5933 105.9885 97.9795 112.9015 204.3256

‘computer’ 56.8939 54.8290 54.5425 62.0559 51.9108 59.3195 99.8623 96.3326
Ave. 63.6059 67.7649 61.8250 67.2013 66.5732 72.6146 64.1096 128.3000

Table 6. Quantitative comparisons of Ω for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 1.0765 1.0791 1.0795 1.0529 1.0578 1.0664 1.0423 1.0409
‘car’ 0.9312 0.9116 0.9393 0.9045 0.9044 0.8591 0.8935 0.8580

‘guardrail’ 0.8900 0.8888 0.8965 0.9043 0.9054 0.9222 0.9354 0.8687
‘building’ 1.0108 1.0083 1.0100 1.0059 1.0092 0.9949 0.9894 0.9388

‘chair’ 1.0219 1.0143 1.0232 1.0136 1.0089 1.0188 1.0093 1.0083
‘table’ 0.5149 0.5462 0.5322 0.6583 0.6733 0.6725 0.7245 0.5060
‘leg’ 0.9830 0.9247 0.9860 0.9771 0.9067 0.9219 0.8301 0.6563

‘computer’ 0.7749 0.7911 0.7917 0.8895 0.8776 0.8826 0.9063 0.7720
Ave. 0.9004 0.8955 0.9073 0.9257 0.9179 0.9173 0.9163 0.8311

Table 7. Quantitative comparisons of DE for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 4.6137 4.7407 4.7440 4.6254 4.7362 4.5887 4.7578 4.7814
‘car’ 5.3755 5.6892 5.6620 5.6261 5.6718 5.6029 5.3767 5.7270

‘guardrail’ 5.5252 5.7597 5.7517 5.6302 5.6942 5.7341 5.4055 6.0788
‘building’ 5.0128 5.2030 5.2001 5.1155 5.1643 5.0980 5.1544 5.5099

‘chair’ 5.4534 5.6513 5.6509 5.5331 5.5749 5.4956 5.4883 5.6769
‘table’ 5.1794 5.3335 5.3334 5.2613 5.3089 5.2492 5.1603 5.6247
‘leg’ 4.9969 5.4267 5.3248 5.2583 5.4086 5.2907 5.3053 5.4650

‘computer’ 4.0868 4.1793 4.1791 3.9492 4.1579 4.0408 4.1892 4.4657
Ave. 5.0304 5.2479 5.2307 5.1248 5.2146 5.1375 5.1046 5.4161

Table 8. Quantitative comparisons of AME for test images, and bold values indicate the top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

‘residence’ 5.8276 6.0680 6.5956 13.6031 12.9730 16.2548 16.0403 13.7693
‘car’ 6.7853 6.6191 7.4672 14.3339 14.2674 15.9727 15.3144 15.4704

‘guardrail’ 4.0183 4.1726 4.5488 10.1015 9.9692 11.4671 10.8266 11.5326
‘building’ 5.3333 5.4193 6.0829 12.6270 12.4008 14.1731 13.8817 14.4274

‘chair’ 9.1302 8.9374 9.7847 17.0440 16.8935 18.8566 17.3644 17.4060
‘table’ 8.8114 10.1058 9.5605 15.6672 15.5742 17.0279 17.8687 19.1004
‘leg’ 7.0446 6.1563 7.7684 15.353 16.7957 17.6740 15.1999 16.9298

‘computer’ 4.4752 5.1033 5.4196 11.2161 10.5654 13.6330 17.8573 17.8747
Ave. 6.4282 6.5727 7.1534 13.7432 13.6799 15.6324 15.5441 15.8138
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On the one hand, η denotes the target/background contrast, and it also measures the quantity
of clutters to a certain degree. As is shown in Table 3 and Figure 20a, our method achieves the best
average η, implying that the foregrounds become brighter while the background clutters become
darker after our enhancement. More specifically, we argue that it is the strategy of sub-histogram
segmentation that enlarges the intensity difference between the fore- and background. We notice
that BBHE, GHE, and MMBEBHE also result in low η values (<2) in most scenes, which matches the
experimental fact that the intensity differences between target and background regions are always
remarkable in their enhanced images. Besides, the average η of RSIHE is the worst, which is about



Remote Sens. 2018, 10, 682 29 of 34

10% larger than ours and it proves that the serious over-enhancement is somewhat related to the
degradation of global contrast.

Unlike its poor performance related to η, RSIHE has the most satisfactory PSNR on the whole,
while our method still takes second place in this metric. Since PSNR reflects the degree of image
degradation, we consider that if the PSNR value is excessively large, a large amount of detail
information is lost at the same time. That is the reason why the enhanced images processed by
RSIHE are fogged and their PSNRs are always very high. By contrast, our method maintains a balance
between PSNR (slightly larger than ADPHE and RMSHE) and exhibits the preservation of details,
meaning that not only the visual performance presented in Section 4.2, but also the quantitative
evaluation of image degradation, is qualified.

As is mentioned above, ρ is a comprehensive index measuring the overall performance of image
enhancement. Since our method results in comparatively remarkable performances in both η and PSNR,
its ρ values of all the test images thus keep the advantage. Relying on its outstanding achievements in
η, the average ρ value of our method is almost two times that of RSIHE, which possesses the second
largest value. One point that should be noticed is that those algorithms overly emphasizing input
brightness preservation, e.g., BBHE, MMBEBHE, DISHE, RMSHE and RSIHE, sacrifice the fore- and
background contrast instead, which leads to their poor performances in η and ρ.

Ω is commonly utilized to reflect the smoothness of image. As is shown in Figure 20d, BBHE and
our method obtain the top two Ω values, whereas DISHE presents the worst one. Since the background
occupies the majority of an image and the background histograms are not equalized in our method,
the noise is not amplified and the smoothness is thus satisfactory. However, some grayscale histogram
equalization-based algorithms, like GHE and MMBEBHE, quite easily generate over-enhancement in
high grayscales and image noise precisely tends to center on high grayscales, so the effects of the noise
suppression of these algorithms greatly decrease. According to Table 6, we also see that ADPHE’s
capability of removing noise through the adaptive upper threshold is limited in IR images considering
its comparatively high Ω values.

DE is a significant index that directly measures the degree of over-enhancement. Through
observing its definition, we can easily find that if more grayscales are merged by equalization,
the entropy of the image will decrease more. Clearly, our method has a distinct advantage in DE
which is approximately 3% greater than the second largest one (BBHE). On the contrary, GHE and
DISHE decrease the DE value of the original image seriously, and this is mainly because these methods
tend to merge different gray levels together through enhancement. Interestingly, RSIHE achieves
a satisfactory performance in PSNR, but its DE performance is poor. Furthermore, BBHE undergoes an
opposing situation. We infer that a high DE value can indicate relatively low image degradation to
a certain degree.

To evaluate the local contrast of the enhanced image, Table 8 reports the comparison result in
terms of AME. Among all the comparative algorithms, the average AME of our method is the best,
while the one of GHE is the worst. Even though the η values of GHE and MMBEBHE, which represent
the global contrast, are large, plenty of local regions turn to be homogenous due to the fact that it
is highly likely that pixels in the same region will merge in these algorithms, contributing to the
low AMEs.

4.3.2. Evaluation of Running Time

A comparison of running time is made in Table 9. All the algorithms are implemented for five
times and the average running time is recorded.

As we can see, BBHE achieves the fastest running speed, which is about 88 fps. Besides, DISHE
and ADPHE also perform well, and their running speeds can reach more than 60 fps and 40 fps,
respectively. In regard to our method, the PSO-based optimization consists of multiple iterations of
the procedures introduced in Section 3.2. That is to say, these parts of codes need to be executed for
N× tmax times in total, which leads to the long computation time. As a matter of fact, computation
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burden is a common problem existing in all the iterative algorithms which needs to be urgently settled.
Motivated by the extensive applications of multi-core digital signal processors, e.g., GPU, in practical
engineering, we propose to increase our running efficiency using the strategy of parallel processing.
Considering that each particle in PSO is individual, the executable codes of all the particles in the same
iteration can be regarded as a group of parallel tasks and can be implemented in different cores at the
same time. Under the circumstances, even real-time running can be expected.

Table 9. Comparison of execution time with conventional methods (s), and bold values indicate the
top two results.

GHE BBHE MMBEBHE DISHE RMSHE RSIHE ADPHE Ours

residence 0.1287 0.0112 0.1253 0.0165 0.1336 0.1396 0.0206 9.5613
car 0.1272 0.0106 0.1223 0.0161 0.1387 0.1405 0.0269 9.7212

guardrail 0.1255 0.0123 0.1225 0.0159 0.1337 0.1415 0.0207 9.4910
building 0.1282 0.0105 0.1269 0.0157 0.1367 0.1474 0.0225 9.3013

room 0.1288 0.0122 0.1264 0.0151 0.1356 0.1445 0.0216 8.9021
cabinet 0.1278 0.0113 0.1235 0.0154 0.1338 0.1493 0.0246 9.3456

leg 0.1283 0.0119 0.1247 0.0165 0.1335 0.1409 0.0248 9.5722
computer 0.1297 0.0110 0.1267 0.0174 0.1377 0.1494 0.0277 8.9022

Ave. 0.1280 0.0114 0.1248 0.0161 0.1354 0.1441 0.0237 9.3496

In order to demonstrate the advantage of PSO optimization among concurrent methods,
three other concurrent optimization algorithms: the genetic algorithm (GA) [44], ant colony
optimization (ACO) [45], and the bat algorithm (BA) [46] are applied to make a comparison. For a fair
comparison, all these algorithms are implemented with the same number of particles and iterations
(N = 10, tmax = 10), and Table 10 clearly reports the running time of the four algorithms. Note that the
execution time listed is the average of five times of running.

Table 10. Comparison of running time with concurrent algorithms (s), and bold values indicate the
top results.

GA ACO BA PSO

residence 10.5096 10.8130 9.3390 9.5613
car 10.9597 10.5610 9.5279 9.7212

guardrail 10.7847 10.5709 9.5572 9.4910
building 10.0764 10.5479 9.3078 9.3013

room 10.8000 10.8842 9.0858 8.9021
cabinet 10.7875 10.2348 9.4933 9.3456

leg 10.9137 10.8163 9.4611 9.5722
computer 10.5576 10.1879 8.9899 8.9022

Ave. 10.6737 10.5770 9.3453 9.3496

As is indicated from Table 10, the average running time of GA and ACO is obviously longer
than that of BA and PSO. This is because GA contains several genetic operations, e.g., crossover and
mutation, and ACO contains a series of combinatorial optimizations. BA and PSO achieve almost the
same average execution time due to the fact that their update mechanisms of position and velocity
are similar.

4.3.3. Evaluation of Mean Brightness Error Ratio

Intended to further verify the advantage of our method when it is compared with other concurrent
methods, a comparison of the mean brightness error ratio δ, which reflects the optimization ability,
is made in this section. Here, the definition of δ is given below:
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δ =
|mean(O)−mean(Ref)|

mean(Ref)
, (43)

where, mean(O) and mean(Ref) stand for the mean intensity values of the enhanced image and the
reference image, respectively.

Table 11 records the optimized values of m′1 and Table 12 records the mean brightness errors.
It can be observed from these two tables that all four of the concurrent algorithms are able to generate
reasonable optimization results and the average values of δ are all lower than 3.5. However, we need
to notice that apart from the ‘computer’ image, the δ values of our method are superior than most of
the others, which convincingly verifies the optimization ability of our algorithm. We consider that this
is mainly owing to the memory mechanism of PSO. Furthermore, the reason why the δ values of the
‘computer’ image are relatively large is that the brightness of the input itself is much higher than the
reference image, so the mean brightness of the enhanced image cannot approach the reference even if
m′1 = 0.

Table 11. Optimization results of m′1.

Residence Car Guardrail Building Room Cabinet Leg Computer

GA 60 38 21 52 4 32 55 0
ACO 55 41 22 55 3 32 56 0
BA 61 38 24 57 9 28 65 0

PSO 56 41 21 54 3 31 54 0

Table 12. Mean brightness error ratio δ, and bold values indicate the top results.

Residence Car Guardrail Building Room Cabinet Leg Computer Ave.

GA 0.0276 0.0209 0.0016 0.0158 0.0069 0.0108 0.0099 0.1435 0.0296
ACO 0.0121 0.0077 0.0058 0.0081 0.0031 0.0108 0.0147 0.1435 0.0257
BA 0.0355 0.0209 0.0207 0.0219 0.0400 0.0182 0.0854 0.1435 0.0483

PSO 0.0041 0.0077 0.0016 0.0019 0.0031 0.0019 0.0012 0.1435 0.0206

5. Conclusions

In this paper, a new IR image enhancement method using adaptive histogram segmentation
and local contrast weighted distribution is presented. In order to separately address the fore- and
background, the raw grayscale histogram is firstly smoothed by Gaussian filtering and LOWESS and
partitioned via local minima. Then, a metric called grayscale density is developed to recognize whether
each sub-histogram belongs to the foreground or background. For the foreground sub-histograms,
a local contrast weighted distribution is calculated via modified sigmoid transformation and is
applied to replace the intensity distribution, after which the detail information can be enhanced
by equalization based on the proposed distribution. For the background sub-histograms, a strategy
where the corresponding proportions of the whole dynamic range are maintained is considered to
avoid over-enhancement. Also, an exponential factor is designed based on a characteristic of human
vision and is employed to adjust the re-mapping ranges for the purpose of decreasing the effect of
noise. Finally, the overall brightness of the output is corrected through the PSO algorithm based on
a reference image with an appropriate mean brightness. A number of both qualitative and quantitative
experiments prove that our method outperforms other conventional methods in different scenes.

We would like to acknowledge that there are 13 parameters utilized in our algorithm and most of
the values are empirically set (see Section 4.1). Fairly speaking, this number of parameters may be
more than other existing methods, although it can achieve a more satisfactory performance in IR image
enhancement. In future work, we will pay more attention to this issue and improve the robustness and
simplicity of our algorithm further.
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Also, we will concentrate on transplanting the presented algorithm to an appropriate hardware
platform. Compared with the state-of-the-art methods, the PSO iteration in our method hugely
increases the computational complexity. Under the circumstances that we would like to improve the
accuracy of optimization, more particles and more iterative rounds are needed, which will further
increase the running time. However, we consider that this problem can be solved if multi-core
processors, e.g., GPU, are utilized, because every particle can be regarded as an individual task and be
implemented in different cores simultaneously.
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