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Abstract: Recently, many researchers have been dedicated to using convolutional neural networks
(CNNs) to extract global-context features (GCFs) for remote-sensing scene classification. Commonly,
accurate classification of scenes requires knowledge about both the global context and local objects.
However, unlike the natural images in which the objects cover most of the image, objects in
remote-sensing images are generally small and decentralized. Thus, it is hard for vanilla CNNs
to focus on both global context and small local objects. To address this issue, this paper proposes
a novel end-to-end CNN by integrating the GCFs and local-object-level features (LOFs). The proposed
network includes two branches, the local object branch (LOB) and global semantic branch (GSB),
which are used to generate the LOFs and GCFs, respectively. Then, the concatenation of features
extracted from the two branches allows our method to be more discriminative in scene classification.
Three challenging benchmark remote-sensing datasets were extensively experimented on; the proposed
approach outperformed the existing scene classification methods and achieved state-of-the-art results
for all three datasets.

Keywords: remote sensing; scene classification; convolutional neural networks; global-context
feature; local-object-level feature

1. Introduction

With the development of satellite sensors, many high-resolution images of the earth’s surface
are readily available nowadays. Given this situation, remote-sensing scene classification, which aims
to automatically label a remote-sensing image with a specific semantic class according to the image
contents, has become an active research topic and has been widely used in real-world applications
including urban planning, land resource management, and so on [1–4].

During the past decades, many methods for remote-sensing scene classification have been
proposed. In general, these methods can be divided into three categories [5]:

(1) Methods using low-level features. These methods mainly focus on designing various human-
engineering either local or global features, such as spectral, color, texture, and shape information
or their combination, which are the primary characteristics of a scene image. Some of these
methods use local descriptors, for example, the scale invariant feature transform (SIFT) [6,7] for
describing local variations of structures in scene images. For instance, Yang et al. [8] extracted
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SIFT and Gabor texture features for classifying remote-sensing images and demonstrated SIFT
performs better. However, one limitation of the methods that use the local descriptors is a lack
of the global distributions of spatial cues. In order to depict the spatial arrangements of images,
Santos et al. [9] evaluated various global color descriptors and texture descriptors, for example,
color histogram [10] and local binary patterns (LBPs) [11–13], for scene classification. To further
improve the classification performance, Luo et al. [14] combined six different types of feature
descriptors, including local and global descriptors, to form a multi-feature representation for
describing remote-sensing images. However, in practical applications, the performance is largely
limited by the hand-crafted descriptors, as these make it difficult to capture the rich semantic
information contained in remote-sensing images.

(2) Methods relying on mid-level representations. Because of the limited discrimination of hand-
crafted features, these methods mainly attempt to develop a set of basis functions used for feature
encoding. One of the most popular mid-level approaches is the bag-of-visual-words (BoVW)
model [15–20]. The BoVW-based models firstly encode local invariant features from local image
patches into a vocabulary of visual words and then use a histogram of visual-word occurrences to
represent the image. However, the BoVW-based models may not fully exploit spital information
which is essential for remote scene classification. To avoid this issue, many BoVW extensions have
been proposed [21–23]. For instance, Yang et al. [21] proposed the spatial pyramid co-occurrence
kernel (SPCK) to integrate the absolute and relative spatial information that is ignored in the
standard BoVW model setting, motivated by the idea of spatial pyramid match kernel (SPM) [24]
and spatial co-occurrence kernel (SCK) [15]. Additionally, topic models have been developed to
generate semantic features. These models aim to represent the image scene as a finite random
mixture of topics; examples are the Latent Dirichlet Allocation (LDA) [25,26] model and the
probabilistic latent semantic analysis (pLSA) [27] model. Although these methods have made
some achievements in remote scene image classification, they all demand prior knowledge in
handcrafted feature extraction. Lacking the flexibility in discovering highly intricate structures,
these methods carry little semantic meaning.

(3) CNN-based methods. Recently, deep learning has achieved dramatic improvements in video
processing [28,29] and many computer vision fields such as object classification [30–32], object
detection [33,34], and scene recognition [35,36]. As a result of the outstanding performance in
these fields, many researchers have been dedicated to using CNNs to extract high-level semantic
features for remote sensing scene classification [37–42]. Most of them adopted pre-trained
object classification models, which are available online such as AlexNet [30], VGGNet [31], and
GoogLeNet [32], as discriminative feature extractors for scene classification. Nogueira et al. [43]
directly used the CNN models to extract global features followed by a sophisticated classifier and
demonstrated the effectiveness of transferring from the object classification models. Hu et al. [44]
extracted features from multi-scale images and further fused them into a global feature space via
the conventional BoVW and Fisher encoding algorithms. Chaib et al. [45] developed discriminant
correlation analysis (DCA) method to fuse two features extracted from the first and second
fully-connected layers of object classification model. Although current approaches can further
improve the classification performance, one limitation of these methods is only the global-context
features (GCFs) can be extracted and local-object-level features (LOFs), which would help to infer
the semantic scene label for an image is ignored.

Commonly, scenes are composed in part of objects, which means the accurate classification of
scenes requires knowledge about both GCFs and local-object features. However, compared with
natural images which are used for object classification, objects in the scene images are usually small
and decentralized. As shown in Figure 1a, a picture of a dog has been picked from ImageNet [46].
The major object of this picture, that is, the dog, is clearly located in the center and covers most of the
image area, as for others in ImageNet. Classifying this image only requires recognizing the category of
the major object in the picture. However, the scene image of an airport from the remote-sensing dataset
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AID (Aerial Image dataset) [5] contains both small airplanes and abundant global environmental
background, as shown in Figure 1b. Scene classification is challenging because the key objects are
separated and small, while the background occupies most of the space. Therefore, scene classification
needs to extract features from not only the key objects such as airplanes but also from the global
environmental background of the whole image. To address this issue, this paper proposes a novel
end-to-end CNN model, which can simultaneously capture both the global context feature (GCF) and
local object-level feature (LOF) for scene reasoning. Our architecture is composed of two branches
named the local-object branch (LOB) and the global semantic branch (GSB). The LOB can capture
LOFs from the region of interest (RoI) without the other redundant textual information, and the GSB
generates the GCFs by global average pooling.

(a) Object classification (b) Scene classification

Figure 1. (a) A dog’s picture from object classification dataset ImageNet; (b) a remote sensing image of
airport in the scene classification AID dataset.

Additionally, our architecture can accept arbitrary-size input images. Most of previous remote-
sensing scene classification methods based on CNNs require the fixed-size input images produced
by resizing the scene image to the scale or cropping fixed-size patches from image. Unfortunately,
the down-sampling of the original scene image makes the objects smaller and harder to extract
corresponding features. Additionally, the crop operation leads to changes in the characteristics of the
data, switching from scene data to object data without global environmental information. To solve the
above issues, our model, supporting input of any size, is well-designed by adding the global average
pooling layer in GSB and RoI pooling layer in the LOB. In general, by localizing objects with RoI
pooling and integrating local-object features with the GCFs, our proposed method performs more
accurate scene classification, as evidenced by experimental results on three popular datasets.

The major contributions of this paper are three-fold.

(1) To address the issue that many previous CNN-based methods in scene classification justly extract
the global feature from a single scene image and ignore LOFs that would help to infer the
scene, we propose a novel two-branch, end-to-end CNN model to capture both GCFs and LOFs
simultaneously.

(2) Our network supports input of arbitrary size by using global average pooling layer and RoI
pooling layer. Compared with methods that require fixed-size input images produced by resizing
the scene image to a certain scale or cropping fixed-size patches from image, our method can
extract more applicable features from the original-scale image.

(3) By integrating GCFs and LOFs, our method can obtain superior performance compared with the
state-of-the-art results from three challenging datasets.

The remainder of this paper is organized as follows. In Section 2, we illustrate the materials and
the proposed architecture in detail. Section 3 introduces the experimental results of the proposed scene
classification method. Section 4 discusses the influence of several factors. Section 5 concludes the
paper with a summary of our method.
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2. Materials and Methods

2.1. Datasets

AID [5] is an available large-scale aerial image dataset. It contains 10,000 aerial images with
a fixed size of 600 × 600 pixels and is divided into 30 classes. Figure 2 shows representative images of
each class, that is, airport, bare land, baseball field, beach, bridge, center, church, commercial, dense
residential, desert, farm land, forest, industrial, meadow, medium residential, mountain, park, parking,
playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium,
storage tanks, viaduct. The numbers of images vary from 220 to 420 with different aerial scene classes.
The spatial resolution changes from about 8 m to about 0.5 m. With higher intra-class variations and
smaller inter-class dissimilarity, AID has become an eye-catching and challenging dataset.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure 2. Class representatives of AID dataset: (1) airport; (2) bare land; (3) baseball field; (4) beach;
(5) bridge; (6) center; (7) church; (8) commercial; (9) dense residential; (10) desert; (11) farmland;
(12) forest; (13) industrial; (14) meadow; (15) medium residential; (16) mountain; (17) park; (18) parking;
(19) playground; (20) pond; (21) port; (22) railway station; (23) resort; (24) river; (25) school; (26) sparse
residential; (27) square; (28) stadium; (29) storage tanks; and (30) viaduct.

UC-Merced [15] dataset contains 2100 aerial scene images with regions of 256 × 256 pixels with
a pixel resolution of 30 cm in the red green blue (RGB) color space. And the images are manually
labeled into 21 categories, as shown in Figure 3 , including agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium
density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage
tanks, and tennis courts. This dataset has many highly overlapping classes, such as medium residual,
sparse residual and dense residual, and only differ in the density of structures, which make the dataset
difficult for classification.

RSSCN7 [47] dataset contains 2800 remote sensing images collected from the Google Earth and
is divided into 7 scene categories, that is, grassland, forest, farmland, parking lot, residential region,
industrial region, river and lake. Each category consists of 400 images with a size of 400 × 400 pixels.
Classification for this dataset is challenging because the images are sampled at four different scales
with different imaging angles, as shown in Figure 4.
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(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(15) (16) (17) (18) (19) (20) (21)

Figure 3. Class representatives of the UC-Merced dataset: (1) agriculture; (2) airplane; (3) baseball
diamond; (4) beach; (5) buildings; (6) chaparral; (7) dense residential; (8) forest; (9) freeway; (10) golf
course; (11) harbor; (12) intersection; (13) medium residential; (14) mobile home park; (15) overpass;
(16) parking lot; (17) river; (18) runway; (19) sparse residential; (20) storage tanks; and (21) tennis court.

(1) (2) (3) (4) (5) (6) (7)

Figure 4. Class representatives of the RSSCN7 dataset: (1) grassland; (2) forest; (3) farmland; (4) parking
lot; (5) residential region; (6) industrial region; (7) river and lake.

2.2. Methods

In this section, we first introduce the overall architecture; then the VGG-Base and the branches
extracting GCFs and LOFs is detailed separately.

2.2.1. Overall Architecture

As illustrated in Figure 5, our proposed architecture can be mainly divided into three parts:
VGG-Base, GSB and LOB. The processing flow of our architecture is as follows. Firstly, an image
randomly selected from the dataset is fed into the VGG-Base without cropping and resizing
operation. Compared with methods that require fixed-size input images, therefore resizing images to
a certain scale or cropping fixed-size patches, our method can extract more applicable features from
original-scale images. Taking an image as input, the VGG-Base network, which is the backbone of our
framework, maps the image into a shared feature map followed by two branches. Then, according
to the given position of the RoI, that is, the red rectangle in the input image, LOFs are produced by
the RoI pooling layer in LOB. GCFs can be generated via the global average pooling layer in the GSB.
Finally, both features are concatenated and fed into a softmax classification layer. The GSB can capture
the global environmental background of the whole image, and the LOB extracts LOFs from the RoI.
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By integrating LOFs and GCFs, our method can generate a more discriminative feature representation
than that produced by only extracting one feature, as demonstrated in Section 3.3. It is worth noting
that our architecture supports input of arbitrary size because the RoI pooling layer and global average
pooling layer can map arbitrary-size input to fixed-size output.

Shared feature map

Softmax 

classification 

layer
Input image

Local object branch

RoI pooling 

layer

Global semantic branch

Global average 

pooling layer

VGG-Base

LOFs 

GCFs

Label 1

Label 2
Label 3

Label n

 

 

  

Figure 5. The architecture of the proposed scene classification method. Our method mainly contains
VGG-Base, global semantic branch (GSB) and local object branch (LOB).

2.2.2. VGG-Base

As shown in Figure 6, the VGG-Base network is structured as a series of layers, including
convolutional layers and pooling layers. Compared with traditional feature extraction methods, such
as SIFT, convolutional layers can automatically extract features from data. Following convolutional
layers, max pooling layers, which compute the maximum of a local patch of units in one feature
map, are added to reduce the dimension of representation and create invariance to small translations
or rotations. Our VGG-Base network is modified from VGG16 [31], which has shown excellent
performance in many computer vision tasks. As shown in Figure 6, “3 × 3” means the kernel size
of convolutional layer. “3 × 224 × 224” means that the channel of input image is 3, and the size is
224 × 224. Particularly, all 13 convolutional layers contained in VGG-Base adapt 3 × 3 kernel size.
VGG16 contains 13 convolutional layers, 5 max-pooling layers, and 3 fully connected layers; however
we remove the 3 fully-connected layers and the last max-pooling layer in our VGG-Base network.
Specifically, as discussed in [34], the requirement of fixed-size images only comes from fully-connected
layers. Thus, the three fully connected layers in VGG16 are novelly removed with the consideration of
any size input of our network. Furthermore, the existing five max-pooling layers in VGG16 make the
size of the shared feature map 1

32 that of the input image. To avoid the difficulty of extracting LOFs
from a small feature map, we also remove the last max-pooling layer.

Input image:

3x224x224 3x3

3x3
3x3

3x3

Convolutional layer ×2

Max-pooling layer

Convolutional layer ×2

Max-pooling layer

Convolutional layer ×3

Max-pooling layer

Convolutional layer ×3

Max-pooling layer

64x112x112 128x56x56 512x14x14256x28x28

 

         

                  

        

                

 

         

                   

         

                  

 

         

                  

512x14x14

Convolutional layer ×3

3x3

Figure 6. The architecture of VGG-Base. It contains 13 convolutional layers and 4 max-pooling layers.
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2.2.3. Global Semantic Branch

As shown in Figure 7, the input of the GSB is the whole shared feature map with global-context
information. Then, the shared feature map goes through the following Conv6, global average pooling,
Fc6_global and Fc7_global layers in turn. Finally, GCFs can be obtained with the dimension of 2048.
The detailed parameters of these layers are shown in Table 1. Following the convolutional layers
in VGG-Base, we add an extra convolutional layer named Conv6 to increase the depth of GSB and
extract high-level global semantic features. This branch introduces a global average pooling layer,
which has three main advantages. First, the global pooling layer further helps the integration of global
information by taking the average of each feature map. Furthermore, it is more robust to spatial
translations of the input. Second, this layer has no parameter to learn and needs few computations to
process a large input feature map compared with the fully connected layer. Overfitting is reduced at
this layer. Third, the global average pooling operation can map an input feature map with any size
into a fixed-length vector. Therefore, our network is suitable for images of different sizes. Additionally,
two fully connected layers are added into the GSB, consistently with the original VGG16 network.
In particular, the neurons of the Fc6_global and Fc7_global layers are 2048 compared with 4096 in
VGG16. The effect on the output of the fully connected layer is analyzed in Section 4.2.

Conv6

Global average pooling

RoI pooling

Conv1x1

Fc6_global

Fc7_global

Fc6_local

Fc7_local

Softmax layer

Concat layer

Global 

semantic

branch

Local 

object 

branch

Shared feature map

Figure 7. The details of global semantic branch (GSB) and local-object branch (LOB). “Conv” indicates
a convolutional layer, “Fc” indicates a fully connected layer.

Table 1. The detailed parameters of global semantic branch (GSB), supposing the size of the shared
feature map is H × W × 512; "

⌊
.
⌋
" refers to ceiling operation, and “-” refers to no parameters.

Layer Name Weights Shape Bias Shape Output Shape

Conv6 512 × 3 × 3 × 512 1 × 512 (
⌊ H−3

2
⌋
+1) × (

⌊W−3
2

⌋
+ 1) × 512

Global average pooling - - 1 × 1 × 512

Fc6_global 512 × 2048 1 × 2048 1 × 2048

Fc7_global 2048 × 2048 1 × 2048 1 × 2048
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2.2.4. Local-Object Branch

In order to more accurately extract the object features, we first need to know the location of the
objects. However, for a given scene image, we lack prior knowledge about the location of a certain
object. This means if the region in which the object would appear with a high probability can be
prepared in advance, the object features could be more accurately extracted. Inspired by the success of
object detection, to realize this purpose, the extraction of local-object feature includes two steps, which
are object proposals production and object feature extraction according to the positions of given object
proposals. As shown in Figure 7, the LOB modified from Fast r-cnn [33] has two inputs. One is the
shared feature map, as for the GSB, and the other is a list of RoI positions, that is, the locations of object
proposals. Moreover, each proposal is defined as a tuple (r, c, h, w) that specifies the RoI’s top-left
location (r, c) and its height and width (h, w). The detailed parameters of this branch are shown in
Table 2.

Table 2. The detailed parameters of Local Object Branch. “n ” refers to the number of object proposals,
and “-” refers to no parameters.

Layer Name Weights Shape Bias Shape Output Shape

RoI pooling - - n × 7 × 7 × 512
Conv1 × 1 n × 1 × 1 × 512 1 × 512 7 × 7 × 12
Fc6_local 25,088 × 2048 1 × 2048 1 × 2048
Fc7_local 2048 × 2048 1 × 2048 1 × 2048

Object proposals production: In this paper, we use the EdgeBoxes [48] algorithm to quickly
produce category-independent object proposals. Edges provide a sparse yet informative representation
of an image. Thus, the number of contours that are wholly contained in a bounding box is indicative
of the likelihood of the box containing an object. In the EdgeBoxes algorithm, by producing the initial
edge map, clustering the neighboring similar edge pixels to form groups, and computing the affinities
between groups, series of object proposals can be obtained with confidence scores. The confidence
score for a proposal is computed by summing the edge strengths of all edge groups within the box and
subtracting the strengths of edge groups that are part of a contour that straddles the box’s boundary.
Finally, by ranking the object proposals’ scores, a list of RoI positions containing objects can be obtained.
How the number of proposals affects the performance of our network is discussed in Section 4.1.

Objects feature extraction: We use the RoI pooling layer to efficiently extract objects feature
according to the given position (r, c, h, w) of each proposal. The shared feature map is 1

16 of the input
image. As can be seen from Figure 5, the feature map finally input into LOB is cropped according to
the location ( r

16 , c
16 , h

16 , w
16 ). Then the cropped feature map of each proposal is mapped into a fixed-size

feature map by the RoI pooling layer. Supposing the cropped feature map has a size of a×a. In order
to get the feature map of size b×b, RoI pooling is implemented as a sliding window pooling, where
the window=

⌈ a
b
⌉

and stride=
⌊ a

b
⌋

with
⌈
.
⌉

and
⌊
.
⌋

denoting ceiling and floor operations, respectively.
Unlike Fast r-cnn, which predicts the class and location of each proposal, we have merged each object
proposal’s feature into a super feature space. We have also added an extra convolutional layer with
a filter size of 1 × 1, named Conv1 × 1, in addition to the RoI pooling layer to increase the non-linear
and generalization ability of the network. Moreover, with two more fully connected layers, the LOB
can produce local-object features which have the same dimension as the final feature vector in the GSB.

By ignoring the redundant information around the RoI, the LOB can focus on the key objects
supporting the scene reasoning. Additionally, RoI pooling can map a feature map with any size into
a fixed-size feature map. This means that an image with any size can be directly fed into our network.
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3. Results

3.1. Experimental Setup

3.1.1. Implementation Details

We utilized the open-source Caffe framework [49] to implement our proposed architecture. In the
experiments, two training ratios are adopted for each dataset, following the work of [5,50,51] for
a fair comparison. For the AID and RSSCN7 datasets, 50% and 20% of the samples are randomly
selected as the training samples and the left for testing. For the UC-Merced dataset, we fixed the
ratios of the number of training set to 80% and 50%, respectively. Data augmentation [44] is critical to
generate sufficient data to train an effective model. Our augmentation operations mainly included
rotating in four different orientations (0◦, 90◦, 180◦, 270◦), left-right flipping, up-down flipping, and
randomly adding the White Gaussian Noise. Hyper-parameters used for training were set as below.
The base learning rate was set to 10−5. The step size and the maximum number of iterations were set
as 30,000 and 100,000, respectively. For the stochastic gradient descent (SGD) optimization algorithm,
the batch size was set to 1, the weight decay was set to 0.0005, and the momentum was set to 0.9.
It is worth noting that our VGG-Base network is fine-tuned from the pre-trained VGG16 model on
ImageNet, while the two branches are trained from scratch. In all experiments, the filter weights
of both branches are initialized by Gaussion distribution with zero mean and unit variance. All the
implementations were evaluated on the Ubuntu 14.04 operating system with one 3.8 GHz 6-core
CPU and 128 GB memory. Additionally, a GTX 1080Ti graphics processing unit (GPU) was used to
accelerate computing.

3.1.2. Evaluation Protocol

We report the overall accuracy and confusion matrix to compare with the state-of-the-art methods.
The overall accuracy is defined as the number of correctly classified images divided by the total
number of images. The confusion matrix is an informative table used for analyzing the errors and
confusions between different scene classes, and it is obtained by counting each class of correct and
incorrect classifications of the test images and accumulating the results in the table. To compute the
overall accuracy, we randomly selected the training set according to the above training ratios and
repeated it ten times to reduce the influence of the randomness to obtain mean and standard deviation
of convincing overall accuracy. Additionally, the confusion matrix was obtained by fixing the ratio of
the number of training sets of the AID dataset, UC-Merced dataset and RSSCN7 dataset to be 20%,
50%, 20%, respectively.

3.2. Experimental Results and Analysis

3.2.1. Classification of AID

A comparative evaluation against several state-of-the-art scene classification methods on the
AID dataset is shown in Table 3. As can be seen from Table 3, our classification method, by fusing
the GCFs and LOFs, achieved the highest overall accuracy of 96.85% and 92.81% using 50% and 20%
training ratios, respectively. Worthy of mention is that our architecture outperformed the second-best
model [51], which uses a feature fusion method to reconstruct global feature representation, with
increases in the overall accuracy of 2.27% and 0.16%. The good performance of our method is mainly
the results of the fusion of GCFs and LOFs.

Figure 8 shows the confusion matrix generated by the proposed method with the 20% training
ratio. From the confusion matrix, we can see that almost 80% of the 30 categories achieved the
classification accuracy of greater than 90%. Some types with small inter-class dissimilarity, such
as dense residential (0.93), medium residential (0.96), and sparse residential (0.99), could also be
accurately classified. However, the major confusions were between school and commercial, resort
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and park. As illustrated in Figure 2, school and commercial have the same image distribution, for
example, clutter structures; resort and park have the analogous objects and image texture, for example,
green belts and buildings. Thus, these classes were easily confused. Even so, our method achieved
a substantial improvement for the difficult scene types compared with the accuracies (0.49, 0.6, 0.63,
0.65) of the same classes from the confusion matrix of [5], which directly used the deep learning image
classification model. This result is possibly explained by the fact that the integration of GCFs and LOFs
gives the ability to learn discriminative features. Particularly, for the scenes that are rich in obvious
objects, such as airport, industry, and dense (medium, sparse) residential, our method can achieve
higher accuracies by capturing the features of key objects when compared with the accuracies of [37].
For the scenes consisting of many textures, such as desert and bare land, our method can also achieve
comparable performance. Thus, the fusion of the GCFs and LOFs can achieve accurate scene reasoning.

Table 3. Overall accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 50% and 20% on the AID dataset.

Methods 50% Training Set 20% Trainging Set

CaffeNet [5] 89.53 ± 0.31 86.86 ± 0.47
GoogLeNet [5] 86.39 ± 0.55 83.44 ± 0.40

VGG16 [5] 89.64 ± 0.36 86.59 ± 0.29
salM3LBP-CLM [37] 89.76 ± 0.45 86.92 ± 0.35

TEX-Net-LF [50] 92.96 ± 0.18 90.87 ± 0.11
Fusion by addition [45] 91.87 ±0.36 -
Two-Stream Fusion [51] 94.58 ± 0.41 92.32 ± 0.41

Ours 96.85 ± 0.23 92.48 ± 0.38

Figure 8. Confusion matrix of our method on AID dataset by fixing the training ratio as 20%.

3.2.2. Classification of UC-Merced

In order to further measure the scene classification performance of our approach, we also
compared the classification accuracies with several state-of-the-art methods on the UC-Merced dataset.
The final accuracies certify the effectiveness of our method, as shown in Table 4. Our method generated
state-of-the-art performance again with accuracies of 99%, 97.37% by using 80%, 50% labeled samples
per class, respectively. Our proposed method produced better results than the second-highest accuracy
of 98.49% reported in [44] on this dataset, which was implemented by aggregating multi-scale dense
features to generate the global image representations. By capturing the key LOFs, which are ignored
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in [44], the discriminative and powerful image representations can be captured in our architecture.
Compared with the LGF method introduced in [52], which also combines local and global features,
our method is superior. Zhou et al. extracted local and global features by SIFT [6] and MS-CLBP [12],
which are hand-crafted descriptors. Our experimental results demonstrate the superior performance
of CNNs can be generated, compared to the hand-crafted descriptor. Figure 9 shows the confusion
matrix on this dataset. It is interesting that most of the scene types could achieve an accuracy of over
0.96, yet dense residential has an accuracy of 0.74. We believe that there is major confusion between
dense residential and medium residential. As we can see in Figure 3, the scenes of dense residential
and medium residential have similar spatial distribution and scale of buildings. Thus, it is likely that
dense residential was misclassified as medium residential.

Table 4. Overall accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 80% and 50% on the UC-Merced dataset.

Methods 80% Training Set 50% Training Set

SCK [15] 72.52 -
SPCK [21] 73.14 -
BoVW [15] 76.81 -

BoVW + SCK [15] 77.71 -
SIFT + SC [38] 81.67 -

MCMI [13] 88.20 -
Unsupervised feature learning [38] 81.67 ± 1.23 -

Gradient boosting CNNs [39] 94.53 -
MS-CLBP + FV [12] 93.00 ± 1.20 88.76 ± 0.79

LGF [52] 95.48 -
SSF-AlexNet [40] 92.43 -

Multifeature concatenation [7] 92.38 ± 0.62 -
CaffeNet [5] 95.02 ± 0.81 93.98 ± 0.67

GoogLeNet [5] 94.31 ± 0.89 92.70 ± 0.60
VGG16 [5] 95.21 ± 1.20 94.14 ± 0.69

Fine-tuned GoogLeNet [42] 97.10 -
Deep CNN Transfer [44] 98.49 -

salM3LBP-CLM [37] 95.75 ± 0.80 94.21 ± 0.75
TEX-Net-LF [50] 96.62 ± 0.49 95.89 ± 0.37

Fusion by addition [45] 97.42 ± 1.79 -
Two-Stream Fusion [51] 98.02 ± 1.03 96.97 ± 0.75

Ours 99 ± 0.35 97.37 ± 0.44

Figure 9. Confusion matrix of our method on UC-Merced dataset by fixing the training ratio as 50%.
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3.2.3. Classification of RSSCN7

Because the images were collected from four different scales and angles in RSSCN7 dataset,
the proposed approach was also carried out on this dataset. Table 5 shows the classification
performance comparison of our architecture compared to the state-of-the-art methods. Our method
outperformed all other methods with the overall accuracies of 95.59% and 92.47% using 50% and
20% training ratios, respectively. Figure 10 shows the confusion matrix. From the confusion matrix,
we can conclude that six types of the seven classes were accurately classified by our method. Only
one class industry had major confusion with the class parking. In order to find out the reason of this,
the images’ names in the industry class, which were wrongly classified, and the probabilities of the
classifying industry into parking class are listed, as shown in Figure 11. We can easily see that these
three industry images were so similar to the scenes of parking that a human could not accurately
classify them. Because of the existing major confusion between these two categories, our method
had superior performance in inferring the scene for this dataset than the state-of-the-art methods.
Specifically, the overall accuracies of class residential and class parking were (0.96, 0.93). Compared
with the accuracies of the same classes from the confusion matrix in [5,41], which are respectively (0.84,
0.83) and (0.95, 0.89), the performance was greatly improved by integrating the global environment
information and local-object features in our method. Generally, the experimental results demonstrate
the effectiveness of our approach in recognizing the complicated remote scene images.

Table 5. Overall Accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 50% and 20% on the RSSCN7 dataset.

Methods 50% Training Set 20% Training Set

CaffeNet [5] 88.25 ± 0.62 85.57 ± 0.95
GoogLeNet [5] 85.84 ± 0.92 82.55 ± 1.11

VGG16 [5] 87.18 ± 0.94 83.98 ± 0.87
DBN [47] 77 -

HHCV [20] 84.7 ± 0.7 -
Deep Filter Banks [41] 90.4 ± 0.6 -

Ours 95.59 ± 0.49 92.47 ± 0.29

Figure 10. Confusion matrix of our method on RSSCN7 dataset by fixing the training ratio as 20%.
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c001 (0.9997) c004 (0.9993) c234 (1.0)

Figure 11. Three examples from the wrongly classified images of industry scene: c001, c004 and c234
are the names of images; the numbers in parentheses are the probability of classifying industry class
into parking class.

3.3. Ablation Study

To evaluate the effectiveness of our proposed method, ablation experiments were conducted by
using only global semantic branch (GSB) or local object branch (LOB) on both the AID and UC-Merced
datasets. Additionally, we fine-tuned the pre-trained VGG16 model [31] on the AID and UC-Merced
datasets by using the default configurations as the baseline. All experimental results are shown in
Table 6, and the following can be seen from the results.

(1) Results from LOB are the worst, which was because the LOB can only extract local-object features
without paying attention to GCFs. It is not reliable for classifying a scene by only focusing on
part of the image.

(2) The method using only the GSB works better than the baseline method. We think there are
two reasons. One is that our GSB architecture introduces a global average pooling layer and is
more applicable than VGG16 to extract global features by taking the average of each feature map.
Another reason is that the resize operation in the original VGG16 network makes the objects
smaller and makes it harder to extract features.

(3) Our proposed method achieved the best performance compared to only using one branch or
baseline method, which was a result of combining both GCFs and LOFs. The LOB is designed to
describe objects in RoIs, while the GSB focuses on extracting GCFs. Therefore, a collaborative
representation of the fusion of GCFs and LOFs can generate superior performance.

Table 6. Overall Accuracy (%) of different methods on AID and UC-Merced. “Baseline” refers to the
method using original VGG16 model, “Local” refers to the method using only local-objects features,
“Global” refers to the method only using global context feature, “Global + Local” refers to the proposed
method fusing both global-context and local-object features.

Methods
AID UC-Merced

50% Training Set 20% Training Set 80% Training Set 50% Training Set

Baseline 94.08 91.25 96.90 95.33
Local 87.44 86.34 95.47 94.76

Global 95.04 92.25 98.09 96.28
Global + Local 96.85 92.48 99 97.37

In addition, to further prove the practicability of our method, we present a few examples showing
that the baseline method and method using only global or local feature cannot generate correct
classifications while our proposed method can. As illustrated in Figure 12, the class of storagetanks in
the left block was misclassified as intersection, because the GSB only focuses on its global environment
and ignores important local objects such as tanks. The category of tenniscourt was confused with the
mediumresidential category when using either the GSB or baseline method, as they pay more attention
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to the global structure while ignoring the vital local object tenniscourt. Additionally, failure cases in
the middle block, such as runway being misclassified as freeway and building being misclassified as
storagetanks, demonstrate that the LOB only focuses on local objects and ignores the global structure.
These examples demonstrate that using only one branch or baseline cannot achieve promising results,
while our proposed collaborative representation of the fusion of GCFs and LOFs is more effective in
scene classification.

Global Local Baseline

intersection

storagetanks

mediumresidential

tenniscourt
storagetanks

buildings
forest

golfcourse

freeway

runway

golfcourse

storagetanks
denseresidential

buildings

denseresidential

mobilehomepark
denseresidential

tenniscourt
mediumresidential

tenniscourt

Figure 12. A few examples showing that the baseline method and method using only global or local feature
cannot generate the correct classification as compared to combining global-context and local-object-level
features. “Global” refers to the method using only global-context features, “Local” refers to the method
using only local-object features, and “Baseline” refers to the method using the original VGG16 model.
The predicted label is marked with green color, while the ground truth is with red color.

4. Discussion

In this section, three factors, the number of proposals, the number of model weights, and the
kernel size of the RoI pooling, were tested to analyze how these factors affect classification accuracy.
In all experiments, 80% of each class’ images in the UC-Merced dataset and a 50% training ratio in the
AID dataset were chosen for the analysis of the above factors.

4.1. Evaluation of Number of Proposals

In our method, the object proposals are generated by ranking the confidence score of each proposal.
Additionally, for n object proposals, we concatenated the local-object feature extracted from each object
proposal into a super semantic feature space. Thus, the number of object proposals would influence
the final classification accuracy. The number of proposals was varied as follows: n = {30, 100, 300, 1000},
and the other parameters were kept the same. From Figure 13, the classification accuracies firstly
increase and then decrease with the increasing of the number of proposals. The changing trend for
both datasets could be explained by the object proposals with high scores have a large probability
to contain objects, while the low-score object proposals may justly contain the textual information
without object features. Hence, a smaller proposal number leads to the local-object features with
insufficient information on objects, and a greater proposal number leads to redundant information that
mainly includes similar textual cue. It is interesting that the best accuracy was obtained for different
proposal number for the two datasets, that is, 300 proposals for AID and 100 proposals for UC-Merced.
We believe there are two main reasons for this phenomenon. One is that the scale of AID dataset is
much larger than UC-Merced, and therefore more robust and discriminative feature needed to be
extracted. The other is that the number of objects in the scene is different. For example, the object
numbers in same scenes in both datasets, e.g., 3 vs. 3, 9 vs. 7, 15 vs. 13 in Figures 2 and 3, are clearly
different. In particular, the airport class in the AID dataset contains many airplanes, while the airplane
class in UC-Merced dataset contains only a few airplanes. This indicates that the model trained on
AID dataset needed more object proposals to capture LOFs for scene reasoning.

4.2. Evaluation of Number of Model Weights

Commonly, the number of model weights influences the performance of a CNN model. The model
weights mainly result from fully connected layers because of the connecting of every neuron from
one layer to another. To reduce the number of model weights, in principle, the number of neurons of
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a fully connected layer should be decreased. However, the performance of a CNN model would be
decreased due to the reduction in the number of model weights. Therefore, to trade-off the performance
and model weights, the number of outputs of fully connected layers were tested by separately by
setting the number of neurons of FC6_global, FC7_global, FC6_local, and FC7_local (as shown in
Figure 7) as {512, 1024, 2048, 4096}, and the other parameters were kept the same. From Figure 14,
when the neurons of a fully connected layer increased from 512 to 4096, the classification accuracy of
both datasets improved. The size of the models were {123, 181, 312, 623} MB. However, the size of
VGG16 model was 553 MB. It is interesting that when the model size was 312 MB, the classification
accuracies of our method were 92.48% and 99.04% in the AID and UC-Merced datasets, respectively.
It is very convincing that the architecture integrating the GCFs and LOFs effectively improves the
scene classification of remote-sensing images, as the number of model weights is smaller than the
original VGG16. The accuracies reported in Section 3 were obtained by setting the neurons as 2048.

Figure 13. The relationship between the number of proposals and classification accuracy.

Figure 14. The relationship between the setting of fully connected layer and classification accuracy.
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4.3. Evaluation of Scale of RoI Pooling Kernel

The RoI pooling layer is used for extracting the LOFs by sliding window with window =
⌈ a

b
⌉

and
stride =

⌊ a
b
⌋

, where a means the size of input feature map, and b is the size of the output feature map
in the layer. Commonly, the objects in remote-sensing scenes are usually small and hard to detect.
Thus, a moderate window size is necessary for LOFs extraction. Four different window sizes were
tested to analyze how these affected classification accuracy by setting the size of output feature map
as {1 × 1, 3 × 3, 5 × 5, 7 × 7}. For the same size of input feature map, the window size decreased
when the size of output feature map increased. As can be seen from Figure 15, the classification
accuracy improved as the size of output feature map increased , that is, as the window size decreased.
This comparison between different window sizes suggests that a smaller window size could capture
small local-object information helpful to infer scenes. The accuracies reported in Section 3 were
obtained by setting the output feature map of RoI pooling layer as 7 × 7.

Figure 15. The relationship between the size of output feature map and classification accuracy.

5. Conclusions

In this paper, to solve the problem of difficulty in extracting both the global context and small local
objects in conventional remote-sensing scene classification methods, we propose a novel end-to-end
scene classification architecture that consists of two branches. By integrating global context features
(GCFs) extracted in global semantic branch (GSB) and local-object-level features (LOFs) extracted from
local object branch (LOB), our network can learn robust and abstract feature representations of scene
image. To address the problem of fixed-size inputs of traditional CNN models, which causes the
objects in the original scene to be smaller and harder to detect, our architecture supports input of any
size for taking full advantage of objects’ feature.

To test the performance of our method, experiments were performed on the challenging AID,
UC-Merced, and RSSCN7 datasets. Extensive experimental results consistently showed that our
architecture outperforms the current state-of-the-art methods. Particularly, when compared with the
methods that use CNNs as the global feature extractor, our method, integrating the LOFs and GCFs,
obtained the best accuracy. In the future work, we will conduct a multi-task network for simultaneously
carrying out the object detection and scene classification of remote-sensing images.
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