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Abstract: The Andes mountain forests are sparse relict populations of tree species that grow in
association with local native shrubland species. The identification of forest conditions for conservation
in areas such as these is based on remote sensing techniques and classification methods. However,
the classification of Andes mountain forests is difficult because of noise in the reflectance data within
land cover classes. The noise is the result of variations in terrain illumination resulting from complex
topography and the mixture of different land cover types occurring at the sub-pixel level. Considering
these issues, the selection of an optimum classification method to obtain accurate results is very
important to support conservation activities. We carried out comparative non-parametric statistical
analyses on the performance of several classifiers produced by three supervised machine-learning
algorithms: Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN).
The SVM and RF methods were not significantly different in their ability to separate Andes mountain
forest and shrubland land cover classes, and their best classifiers showed a significantly better
classification accuracy (AUC values 0.81 and 0.79 respectively) than the one produced by the kNN
method (AUC value 0.75) because the latter was more sensitive to noisy training data.

Keywords: Andes; mountain forest; remote sensing; machine learning; comparison analysis;
accuracy analysis

1. Introduction

The Andean region’s complex topography and altitudinal range comprise an environmental
gradient that contains a variety of ecosystems, vegetation communities, and forest formations. Forests
of Escallonia, Myrcianthes, and Polylepis are located in the inter-Andean valleys and the High Andes
(1800–4800 m a.s.l.) and form an important ecosystem that is the habitat for endemic fauna and flora at
high altitudes [1]. These forests have degraded and fragmented tree populations that are currently
considered vulnerable due to anthropogenic pressures (e.g., fuelwood exploitation, overgrazing,
and fire) [2,3]. In addition, these forests have a limited distribution and are exposed to an arid
climate. All these factors contribute to the significant ecological and biogeographic importance of
Andes mountain forests [4] and, therefore, suitable forest management and conservation practices are
absolutely required in these areas.

Assessment of current forest conditions is important for forest conservation, and remote sensing
techniques are widely used for land cover mapping. Because the results of this type of mapping
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vary depending on the classification technique used to create the maps, the selection of appropriate
techniques is critical to obtain reliable results.

Andes mountain forests have a low percentage crown cover as compared to Amazon tropical
forest. They grow in a semi-arid environment in association with local shrub species, which are also
dominant in wide areas. When working with mid-resolution (pixel size of 2 m to 30 m) satellite images
of this forest type, most of the pixels actually contain more than a single land cover class, such as soil
and shrubs. Consequently, the data obtained by satellite sensors are a mixture of the reflected radiance
of different land cover types. Studies have shown that this issue is common when mapping vegetation
in semi-arid regions [5,6]. One approach to overcome the problem is to obtain high-resolution satellite
data such as GeoEye-1 (50 cm), WorldView (50 cm), QuickBird (60 cm), or IKONOS (1 m) scenes.
Because of the relatively high cost and computational capacity needed to use such an approach,
the satellite dataset chosen by most developing countries for forest monitoring and conservation
planning is the Landsat 8 OLI dataset with a pixel resolution of 30 m, which provides periodic global
coverage and is provided without cost by the U.S. Geological Survey.

It is very difficult to find fully homogeneous land cover pixels (also termed endmembers) in
the field, especially for rare and degraded vegetation types growing in areas that are hard to access.
In some cases, spectral mixture analysis has been applied to calculate land cover percentages on a
sub-pixel level [7,8]. In addition, a rugged topography reduces the accuracy of land cover classification
in complex terrain because it produces variations in surface illumination between shaded areas and
those receiving direct sunlight. As a result, the reflectance values of land cover vary greatly within
classes. Topographic correction analysis can be performed to reduce this effect; nevertheless, it cannot
eliminate the effect completely [9]. Thus, because terrain complexity and the co-existence of trees
with shrub species and soil at the sub-pixel level introduce noise to the training data, the accurate
classification of Andes mountain forest remains difficult.

One approach to overcome these issues is to use advanced classification methods based on
learning algorithms that have adjustable parameters and can process high-dimensional data to avoid
overfitting. Non-parametric classifiers, such as machine-learning algorithms (MLAs), have been used
to map vegetation growing in mountains because they have good potential for accurately classifying
natural land cover types [10,11]. There is no need to assume that the data are normally distributed
with MLAs; hence, it is possible to include non-spectral ancillary data in the classification process [12]
and produce better classification results in complex landscapes. In addition, this method is robust
when analyzing noisy training data.

The most commonly used MLAs are the Random Forest (RF), Support Vector Machine (SVM),
and k-Nearest Neighbor (kNN) algorithms. Many mapping studies have been conducted in
Amazon tropical forests using advanced classification algorithms with a corresponding performance
comparison analysis; for example, Paneque-Gálvez et al. compared parametric (maximum-likelihood),
non-parametric (SVM and kNN), and the Max-Min Hill-Climbing algorithms [13]. RF was used to
determine the area of closed canopy tropical forests for forest carbon estimation [14]. In addition, there
are forest cover studies for tropical Andes regions that used classification methods such as supervised
decision trees [15], logistic regression [16], maximum-likelihood, and spectral unmixing [17]. However,
there are few studies on the application of more recently developed and advanced classification
methods for classifying and mapping Andes mountain forests.

In this study, we carried out a comparative analysis of the performance of the RF, SVM, and kNN
methods with different combinations of spectral data from Landsat 8 and topography-derived
variables selected by correlation analysis to find the best classification model for mapping Andes
mountain forests.
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2. Materials and Methods

2.1. Study Area

The Andes is a continuous mountain range with elevations between 2000 and 6000 m a.s.l.
(average = 4000 m a.s.l.) [18] and a steeply sloped topography (60◦ on average). In these geographical
conditions, changes in climatic conditions such as temperature occur over relatively short horizontal
distances. Moreover, the mountains act as a barrier to the mass of water vapor entering from the
Atlantic side toward the Pacific side of South America. Thus, the east-facing slopes have high levels of
humidity and precipitation, whereas the west-facing slopes are semi-arid. These differences in altitude,
temperature, and humidity lead to distinct habitats and vegetation communities. On the semi-arid
western side of the Andes, forests are present in high and mid altitude areas [19]; we refer to these as
Andes mountain forests.

The Andes mountain forests are relict populations of Polylepis spp., Escallonia spp., and Myrcianthes
spp., which commonly grow in association with tall (up to 2 m) local native shrubland species. Most
of these forests currently exist in remote and inaccessible areas and in protected areas managed by
government agencies to prevent their degradation and deforestation. Degradation and deforestation
have taken place since the times of the Inca Empire [20]. By the end of the 15th century, the population
in the Andes was 6–12 million, and the Andes mountain forests were exploited for various purposes.
During the Spanish colonial period in the 16th century, residents exploited forest with greater intensity,
as the demand for timber and fuel increased for mining and colonial construction.

The region now consists of a highly fragmented mosaic of different land cover types such as
shrubland, natural pasture, agricultural land, and man-made forest plantations of Eucalyptus globulus
and Pinus spp. to meet the local communities’ demand for fuelwood, aside from the endemic tree
species that originally made up the forests of the Andes mountains.

We selected a study site that showed a typical land cover mosaic using a Landsat 8 image.
The scene (path 4, row 69) is located in Cuzco, Peru, with an area of 170 km × 185 km (Figure 1).
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Figure 1. Study area in Peru. The red box outlines the image area.

2.2. Data

2.2.1. Land Cover Types and Forest Definition

The land cover classification used in this study is based on the class list that the Ministry of
Agriculture (MINAGRI) of Peru developed for its National Forest Inventory. These land cover types
include inland surface water bodies, bare land, infrastructure/towns, agricultural land, natural pasture,
wetland, shrubland, forest plantations, Andes mountain forest, and Highland Amazon forest.
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The Andes mountain forest in this study was defined by MINAGRI as land with a tree crown
cover of more than 10%, an area of more than 2 ha, and a minimum tree height of 2 m at maturity.

2.2.2. Landsat 8 OLI Satellite Data and Digital Elevation Model (DEM) Data

We selected four scenes with the minimum cloud coverage rate that were taken in the dry
season (between April and September; Table 1). The data have a resolution of 30 m per pixel, and
the spectral data used included three bands of the visible spectrum (Bands 2, 3 and 4), the near
infrared band (Band 5), and two short wavelength infrared bands (Bands 6 and 7). These scenes were
atmospherically and topographically corrected using the ATCOR 3 module of the ERDAS IMAGINE
remote sensing application and free DEM data provided by the Space Shuttle Radar Topography
Mission. The algorithm used by ATCOR 3 adjusts reflectance values based on the values of sun
elevation, azimuth, and parameters related to atmospheric characteristics.

Table 1. Satellite and DEM data used in the analysis.

Characteristic Detail

Satellite sensor Landsat 8
Path/row 4/69

Pixel resolution 30 m

Acquisition date
(DD/MM/YYYY)

Scene 1: 28/05/2014
Scene 2: 01/08/2014
Scene 3: 17/08/2014
Scene 4: 02/09/2014

Band and wavelength

2 0.452–0.512 µm Blue

3 0.533–0.590 µm Green

4 0.636–0.673 µm Red

5 0.851–0.879 µm NIR *

6 1.566–1.651 µm SWIR-1 **

7 2.107–2.294 µm SWIR-2 **

DEM data Space Shuttle Radar Topography Mission 30 m resolution

(*) NIR: near infrared; (**) SWIR: shortwave infrared.

Due to the complex topography of the study area, the ATCOR 3 algorithm produced small
patches of overcorrected reflectance. To create good correction models in the normalization process,
we manually masked such areas to use only coherent reflectance values from the scenes.

2.2.3. Collection of Land Cover Data

Field surveys of land cover and forest condition were conducted in August, October,
and November 2015, and June, July and December 2016. Information collected included longitude and
latitude of the location, vegetation type, dominant tree species, forest condition, and forest cover rate.
Photographs were also taken of the survey sites. Each chosen survey site corresponds to a land cover
patch of approximately 2 hectares.

As an indirect method of land cover data collection, we used Collect Earth (CE), a free open
source software developed by the Food and Agriculture Organization. CE allows the collection of
land cover information by visual interpretation of satellite data from locations determined by a regular
sampling grid produced with GIS software. These plots are superimposed over free high-resolution
satellite imagery available from Google Maps, and experts with experience in the field and in photo
interpretation of vegetation visually identified the land cover within the plots. We used a sampling
grid design, with a separation distance of 4 km. Instead of the rectangular plots used by CE, we used
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the polygons produced by the object segmentation analysis in Section 2.3.1 located at each node of the
grid and with an average size of 2 hectares. We collected land cover data from 1368 locations with the
guidance of local forestry experts from the National Forest and Wildlife Service of Peru in conjunction
with the CE data (Table 2).

Table 2. Land cover dataset gathered by the field survey and by using Collect Earth software.

Land Cover Type Code Collect Earth Data Field Survey Data Total

Andean mountain
forest AF 2 43 45

Shrubland M 389 15 404
Highland amazon

forests HAF 240 61 301

Forest plantation Pl 6 37 43
Other vegetation OV 656 34 690
-Agricultural land 123 21
-Natural pasture 528 10

-Wetlands 5 2
-Bamboo - 1

No vegetation NV 30 6 36
-Bare land/towns 30 6
Inland surface
water bodies W 45 - 45

Total 1368 196 1564

2.3. Methods

2.3.1. Preprocessing

Figure 2 shows the flow of analysis. One problem with land cover mapping using remote
sensing in mountainous terrain is the presence of sunlit and shadowed slopes produced by the steep
topography. Topographic correction is necessary to reduce this effect.
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After conducting atmospheric and topographic correction for the scenes (P2) and masking
of clouds, cloud shadows, and pixels with overcorrected reflectance (P3 and P4), we normalized
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the satellite data. We conducted this process on pairs of overlapping scenes using the
Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) algorithm (P5) [21,22] to find
pseudo-invariant features that can compute a modified model [23]. The size of sample areas was
10 km × 10 km, and the sample areas included deep water bodies, concrete, and/or bare soil, aside
from forest areas. This method is based on canonical correlation analysis (CCA) and is an unsupervised
change detection algorithm that is invariant to linear transformations of the original data. In this
method, CCA creates linear combinations of the pixel values for each of the spectral bands of the two
scenes. Each pair of linear combinations are called canonical variates (CVs), and the number of CVs is
equal to the number of bands. The first pair of CVs has maximal correlation, the second pair of CVs has
the second highest correlation and is orthogonal to the first pair of CVs, and so on. Then, the process
to determine the difference between the CVs is carried out to produce a sequence of transformed
difference images called MAD variates that records the maximum spread (or maximum change) of the
pixel values. The sequence generates the same number of MAD variates as the number of bands used.
From these different images, we select all pixels with minimum or no change (called Pseudo-Invariant
Features, PIFs) that satisfy Formula (1):

N

∑
1
(

MADi
σMADi

)
2
< t, (1)

where N is the number of MAD variates, σ is the variance of the no-change distribution, and t is
a decision threshold value. In the absence of change, the sum of the squares of standardized MAD
variates is approximately chi-squared distributed with N degrees of freedom. The value of t is
defined as:

t = X2
N,P=0.01, (2)

where P is the probability of observing a value lower than t. The process uses P as weight for the
observations, and the whole process is iterated until a stopping criterion is met. In this study, we
used a fixed number of iterations equal to 50. With this process, we selected PIFs to carry out linear
regressions to produce linear equations for each band to normalize the reflectance values of the scenes.
Finally, we created cloud-free normalized mosaics by overlapping the normalized scenes.

In contrast to pixel-based and unsupervised classification techniques, object-based image
classification creates land cover maps that are easier to compare with reality. The object-based
classification approach implies the creation of “objects” or “groups of pixels.” For this purpose,
we carried out a series of a segmentation analyses using eCognition [24]. This process uses
a region-merging algorithm starting with randomly selected pixel seeds that are distributed
regularly [25]. The pixels are then grouped with other pixels based on the homogeneity criteria
to form polygons called objects. By using a series of tests with different scale values and evaluating
changes in the average size of the created objects, we determined an optimum segmentation scale
value to produce objects with an average area equal to the minimum defined forest area (2 ha). Then,
we segmented the cloud-free normalized mosaic with the optimum scale value (P6) to produce the
objects we used in the classification analysis.

2.3.2. Training Datasets and Verification Datasets

Table 2 shows the land cover data collected by the field survey and through visual interpretation
using the CE tool at the study site. Because of the highly fragmented land use (landscape) in the area,
it was difficult to collect enough data on Andes mountain forest using CE to build a training dataset.
Therefore, we redistributed the available land cover data records of the Andes mountain forest land to
complete the training dataset to a percentage of at least 70% of the total data. As a result, we randomly
redistributed the 45 combined land cover data records for Andes mountain forest into 33 data records
(73%) for the training dataset and 12 (27%) data records for the verification dataset.
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2.3.3. Classification Variables and Variable Selection

The values of the variables used in this study were obtained by an object-based analysis,
which means that we used the values of the pixels within each object to calculate the value of the
corresponding variable for each object and used the average value in our analyses. The raster datasets
used were the cloud-free Landsat 8 OLI mosaic and STRM 30-m DEM data described in Table 1.
Using the longitude and latitude of the land cover data records in the training and verification
datasets, we determined the objects corresponding to each land cover point and then extracted
the calculated value of the variables from those objects using the statistical software R version 3.4
(http://www.cran.R-project.org).

The average reflectance values of the visible bands (blue, green, and red), the near infrared (NIR)
band, and two shortwave infrared bands were derived from the spectral data. Additionally, we used
the three first principal components produced by principal component analysis and tasseled cap
transformation, both of which reduce data dimensionality, taking into account the variability of the
data as much as possible. We also used the Normalized Difference Vegetation Index (NDVI) and the
Modified Soil-adjusted Vegetation Index (MSAVI). MSAVI was calculated as:

MSAVI =
2× ρNIR + 1−

√
(2× ρNIR + 1)2 − 8× (ρNIR − ρred)

2
, (3)

where ρNIR and ρred are the reflectance values in the NIR and red bands, respectively. This index
has been used in vegetation studies in arid and semi-arid regions [26–28] because it reduces the soil
background effect. We chose to use it among other soil-adjusted vegetation indexes because it can be
used without any preliminary knowledge of the vegetation cover rate [29].

We included elevation and aspect (the downward direction of the slope in degrees) calculated
from the DEM data as topography-derived variables in the classification analysis, considering the
ecological relationships between vegetation species, altitude, and slope orientation.

One of the characteristics of SVM and RF algorithms is that they do not require feature
selection [30]. However, the performance of classifiers produced by kNN algorithm is affected by
the presence of irrelevant or redundant features in the training data [31,32]. Since we wanted to
determine which among these three machine learning algorithms can produce the most accurate
classifier for Andes mountain forest classification, we chose to make such a comparison using the
same models produced after feature selection and using the same subsets of data produced with cross
validation. Additionally, in order to take into account the full capacity of the SVM and RF algorithms
to produce highly accurate classifiers, we introduced and tested classifiers produced with all the
available variables.

The variables were subjected to a selection process involving two analyses. In the first analysis,
we determined the relative importance of the variables by using the Akaike weight [33], which is based
on the Akaike information criterion (AIC), taking into account that our classification analysis had
a binary outcome: Andes mountain forest or shrubland. To do this, we built models using all possible
combination of the variables and calculated their corresponding AIC values. Then, we calculated the
AIC difference (∆i) between each model (AICi) and the model with minimum AIC (AICmin):

∆i = AICi − AICmin. (4)

If R is the total number of models, then the Akaike weight (wi) can be calculated for each model
as follows:

wi =
exp

(
− 1

2 ∆i

)
∑R

r=1 exp
(
− 1

2 ∆r

) . (5)

http://www.cran. R-project.org
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The relative importance of each variable was estimated by summing the Akaike weights of all the
models in which the variable occurs. In the second analysis, we calculated the Pearson’s correlation
coefficient between each pair of variables. We chose the variables with the higher values of relative
importance and discarded the correlated variables with the lower importance value.

2.3.4. Classification Methods

RF is a powerful MLA that is widely used to classify imagery data for land cover classification
using multispectral satellite sensor imagery. The method performs well when the number of predictors
is greater than the number of observations and has low sensitivity when the number of irrelevant
predictors is large. SVM is another MLA used for classification to determine a hyperplane (or boundary
in a high dimensional space) that can divide training data into a predetermined number of categories.
This method is used in many remote sensing studies because of its capacity to process small training
datasets [34]. The kNN method is simple to implement and has a low training computational cost.
This non-parametric method uses the k closest training data vectors to make predictions and has been
used in forest inventory practices and as a tool for forest classification and mapping [35–37].

We carried out a comparative statistical analysis of the three MLAs using non-parametric statistical
tests to compare the performances of all the considered models.

1. Random Forest

The RF method [38] is an ensemble of classification trees in which each tree contributes a unit
vote to determine the most frequent class according to the input data (Equation (6)):

Cm
r f (x) = majority vote{Cmi (x)}m

1 , (6)

where Cm
r f (x) is the predicted class from the RF classification of data record x, and Cmi (x) is the

predicted class from the classification tree mi of the data record x. Each classification tree is constructed
using a bootstrap sample of 63.2% of the training data, while the rest of the data is considered out-of-bag
(OOB) data. When forming a split point (node) in a tree, the algorithm randomly selects a sub-set of
variables and searches among these variables for the best split point to classify the data. The number
of variables in each sub-set is commonly denoted as mtry. The performance of this algorithm depends
on the availability of a sufficient number of trees (ntrees) to be generated to converge on the value of the
OOB error and the number of variables randomly sampled as candidate variables in each node of the
classification trees (mtry).

We used 4000 random decision trees. The OOB error is the average of the misclassification(s) rates
computed from each sample of the OOB data when classified by all the trees constructed without such
samples. We adjusted the value of mtry by carrying out a series of classification tests with different
values of this parameter and calculated the corresponding Cohen’s kappa value. Then, we selected the
value of mtry that had the maximum Cohen’s kappa value.

2. Support Vector Machine

SVM [39] is a non-parametric supervised statistical learning classifier that finds a hyperplane for
optimal classification by minimizing the upper bound of the classification error. To use this method,
we standardized the values of the variables in the training data. The method maximizes the distance
from the data points of two classes (in the case of binary classification) to an optimal separation vector
of a hyperplane created from the variables [40]. The hyperplane is the surface used to determine
the classification.

Given a training set (xi, yi), where yi is the class label that takes the value of –1 or 1 and xi is the
training vector of the values of the corresponding explanatory variables, a solution to the following
optimization problem is needed:

min
w,b,ξ

1
2

wTw + C
l

∑
i=1

ξi, (7)
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subject to yi

(
wTφ(xi) + b

)
≥ 1− ξi, ξi ≥ 0, (8)

where phi is a projection function of the training vector given by the kernel model used by the analyst;
w and b are the adjustable weight and bias parameters, respectively; C is the penalty parameter of the
error term ξ; l is the number of samples in the training dataset; and T denotes the transpose operator.

The parameters w and b in Equation (8) define the decision hyper-plane that separates the
classes, and the minimization of Equation (7) aims to maximize the separation margin of the data.
The projection function is related to a kernel function K by the following expression:

K(xi, xi′) = φ(xi)·φ(xi′) (9)

We used the radial basis function kernel that depends on the value of the parameter γ in the
following expression:

K(xi, xi′) = exp

(
−γ

p

∑
j=1

(
xij − xi′j

)2
)

, γ > 0. (10)

where xi and xi’ are two different training vectors of the values of the explanatory variables; xij and
xi’j are the values of the jth explanatory variable in the ith and i’th training vectors; and p is the total
number of variables. The parameter γ defines the extent to which the impact of a single training
example extends to determine the decision surface. On the other hand, C trades off misclassification
of training data against the number of dimensions that the decision surface should have. These
two parameters were adjusted using a grid search analysis; that is, the best decision hyper-plane
of the largest Cohen’s kappa value was calculated using different values of C and γ in a series of
sequential tests.

3. k-Nearest Neighbors

kNN is a well-known nonparametric classification method that assigns a sample vector x to the
class represented by the majority of k nearest neighbors whose similarity is determined by the distance
measure. As with the SVM algorithm, the values of the variables in the training data need to be
standardized to use this method. We used the Minkowski metric to define distance:

d(xi, xj) =

(
p

∑
s=1

∣∣xis − xjs
∣∣q)1/q

(11)

where xi is the predictor vector of length p of observation i to be classified, and xj is the jth nearest
neighbor. Euclidean distances can be determined by setting the value of q = 2. When kr is the number
of nearest neighbors to the observation xi that belongs to class r, then:

c

∑
r=1

kr = k. (12)

The algorithm assigns observation xi to the class r for which kr is the largest. We restricted the
value of k to odd values to avoid the possibility of a tie between the numbers of neighboring training
data samples of two different classes. Because the performance of this method depends on the value of
k, we adjusted its value by calculating the Cohen’s kappa value of a series of classification analyses
using different values of the parameter and by choosing the value that had the maximum Cohen
kappa value.

2.3.5. Tuning of Parameters and Performance Assessment of the Classification Models

We carried out a stratified 10-fold cross-validation using data corresponding to the classes “Andes
mountain forests” and “shrubland,” dividing the data into 10 sub-datasets of approximately the same
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size and maintaining the ratio of data of each class. Each model was trained using nine folds of the
data and validated with the remaining fold.

In order to avoid the overfitting problem, we followed a simple recommended approach to
compare classifiers using cross-validation [41] by carrying out the classifier parameters’ tuning task
using only the training data. The procedure is as follows:

i We created a training set T = A − k for each of the k subsets of the dataset A
ii We divided the training set T into subsets t1 and t2; these subsets were used for training and

tuning respectively. The subset of variables or features used to fine tune the classifiers are the
same set of variables selected for each model, as shown in Section 3.1.

iii When the parameters of the classifier were tuned for maximum accuracy, we re-ran each of
the models with the initial larger training set T. We chose values of the tuning parameters that
maximizes the average of Sensitivity and Specificity metrics. This criterion is recommended for
conservation studies where omission error is undesirable [42].

iv The classification precision indicators were calculated using the fold k as the validation data.
v Mean and standard deviation of the precision indicators were calculated for comparison analysis.

As performance indicators, we used Cohen’s kappa value and the area under the curve (AUC)
from the receiver operating characteristic (ROC) theory [43,44]. Cohen’s kappa values were calculated
using a confusion matrix constructed with the results obtained by classifying the verification data.
However, because of the imbalance in the proportion of data between the two land cover types,
the result was biased toward the larger one of the two. Thus, analyzing the performance of the
models with a probability threshold of 0.5 will under-predict the occurrence of the rarest class [45,46].
To avoid this effect, we used the ROC curve to determine the corresponding optimum threshold of each
classification analysis by selecting the threshold value that maximizes the average of Sensitivity and
Specificity. Using the new calculated threshold value for each classification result in the cross-validation
procedure, we constructed the corresponding confusion matrices from which Cohen’s kappa values
were calculated. The AUC value is threshold independent, which means it gives a value of overall
accuracy based on many different probability thresholds. The value of AUC varies from 0.5 to 1.0
(a perfect fit), and we calculated it with the R software package pROC.

We ranked the performances of all of the models obtained with each fold and calculated the mean
value of the ranks obtained per model [47]; a higher rank (1 being the highest rank) would indicate
a higher performance indicator value. The mean ranks of the performance indicators were compared
as well as the corresponding mean and standard deviation. Also, Friedman tests were carried out to
determine if the various models yielded statistically different AUC and Cohen’s kappa values [48].
The test was conducted using the mean rank of the performances of all of the models. If the p-value of
the test was significant (p < 0.05), we could reject the null hypothesis that the difference in classification
performances between the models is zero. Then, using the Nemenyi post-hoc test, we carried out a
pairwise multiple comparison of ranks and determined which models show a significant performance
difference compared to the others by using the critical distance (CD) [49]. This test is conservative and
robust when analyzing a small amount of unbalanced data. The CD value was calculated as follows:

CD = qα

√
k(k + 1)

6N
, (13)

where N is the number of folds, k is the number of models to be compared, α is the confidence level,
and qα is the critical value based on the Studentized range statistic that depends on the significance
level α and k.

Finally, we attempted to determine if, given the same set of variables, a particular MLA would
produce a better classifier for “Andes mountain forest” vs. “shrubs” classification. For this, we
conducted Nemenyi post-hoc statistical tests to test to determine if there is a significant difference
between the performance indicator values of a particular model produced by RF, SVM, and kNN.
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3. Results

3.1. Selection of Variables and Constructed Models

Table 3 shows the total Akaike weights used to rank the variables in order of importance to
differentiate Andes mountain forest and shrubland. The most important variables are the mean values
of elevation, MSAVI, and the reflectance in the NIR band (B5 in Table 1). Table 4 shows the matrix of
Pearson correlations. With the exception of the mean reflectance of Band 5, all of the mean reflectance
values of the Landsat 8 OLI bands are correlated with each other. Elevation has a strong negative
correlation with NDVI, which reflects a decrease in green vegetation mass along the altitude gradient
observed during the field surveys. Although NDVI is correlated with all variables except aspect,
MSAVI was only correlated with NDVI. Elevation also showed a high correlation with the mean
reflectance of short wavelength infrared 2 (B7). Since Elevation showed a higher Total AIC value,
Elevation was preferred over B7.

Table 3. Total sum of the Akaike weights for the variables in the study. Higher values indicate
greater importance.

Variable Elev. MSAVI B5 NDVI Aspect

Total AIC weight 0.88 0.81 0.80 0.62 0.58

Variable B6 B7 B2 B3 B4

Total AIC weight 0.53 0.48 0.46 0.43 0.37

Elev.: elevation; NDVI: normalized difference vegetation index; MSAVI: modified soil-adjusted vegetation index;
B2, B3, B4, B5, B6, and B7: mean reflectance values of bands 2, 3, 4, 5, 6 and 7 of the Landsat 8 OLI scene.

Table 4. Pearson correlation matrix for the variables in the study. Significant low correlation values
are shaded.

B2 B3 B4 B5 B6 B7 NDVI MSAVI Elev.

B2
B3 0.97 ***
B4 0.93 *** 0.96 ***
B5 0.00 0.11 *** −0.05 ***
B6 0.51 *** 0.58 *** 0.62 *** 0.04 ***
B7 0.62 *** 0.67 *** 0.73 *** −0.11 *** 0.95 ***

NDVI −0.70 *** −0.69 *** −0.81 *** 0.51 *** −0.51 *** −0.67 ***
MSAVI −0.39 *** −0.38 *** −0.43 *** 0.34 *** −0.22 *** −0.32 *** 0.65 ***

Elev. 0.44 *** 0.44 *** 0.57 *** −0.44 *** 0.43 *** 0.53 *** −0.69 *** −0.34 ***
Asp. 0.06 *** 0.06 *** 0.05 *** 0.05 *** 0.13*** 0.10*** −0.02 *** −0.01 *** 0.02 ***

*** p < 0.001.

Using Tables 3 and 4, we chose uncorrelated variables of great importance to build models that
contained one vegetation index. We also included the same models without the topographic variables
to test whether the model accuracy increased when these variables were included. Following these
criteria, we built models with the following features:

• M56EA: MSAVI, Band 5, Band 6, elevation, and aspect
• M56: MSAVI, Band 5, and Band 6
• NA: NDVI and aspect
• N: NDVI
• PC: Principal components 1, 2, and 3
• TC: Tasseled cap bands 1, 2, and 3

We also compared models produced by the SVM and RF algorithms using all the variables
available: mean reflectance from the bands 2 to 7, NDVI, MSAVI, and mean values of elevation and
topographic aspect. These models were denoted as SVM:All and RF:All.
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3.2. AUC and Cohen’s Kappa Results

Tables 5 and 6 show the mean rank calculated for all the models using AUC and Cohen’s kappa
values, respectively, obtained by the 10-fold cross-validation procedure.

Table 5. Models ranked by AUC values obtained by 10-fold cross-validation.

MLA:Model Mean Rank Mean SD BCI 2.5% BCI 97.5%

SVM:All 5.9 0.81 0.10 0.75 0.85
SVM:PC 7.1 0.78 0.11 0.72 0.85
RF:TC 7.2 0.79 0.11 0.73 0.86
RF:All 7.4 0.79 0.11 0.72 0.84
RF:PC 8.0 0.78 0.11 0.70 0.84
RF:M56EA 8.1 0.78 0.10 0.71 0.83
SVM:TC 8.2 0.77 0.11 0.71 0.85
SVM:M56 8.6 0.76 0.12 0.69 0.84
kNN:M56 8.8 0.75 0.15 0.65 0.82
kNN:M56EA 9.3 0.75 0.08 0.71 0.81
kNN:TC 9.4 0.75 0.10 0.69 0.81
SVM:M56EA 10.2 0.73 0.14 0.65 0.81
RF:M56 11.3 0.72 0.14 0.64 0.79
kNN:PC 11.3 0.73 0.10 0.67 0.79
RF:NA 12.4 0.70 0.08 0.65 0.74
RF:N 12.8 0.69 0.07 0.65 0.73
kNN:NA 15.4 0.63 0.11 0.56 0.69
kNN:N 15.6 0.65 0.10 0.59 0.71
SVM:N 16.6 0.52 0.20 0.42 0.65
SVM:NA 16.9 0.61 0.12 0.55 0.69

SD: standard deviation; BCI: bootstrap confidence interval calculated by bootstrap analysis with 1000 repetitions.

Table 6. Models ranked by Cohen’s kappa values obtained by 10-fold cross-validation.

MLA:Model Mean Rank Mean SD BCI 2.5% BCI 97.5%

SVM:All 4.9 0.43 0.13 0.37 0.53
RF:TC 7.8 0.35 0.17 0.28 0.48
SVM:M56EA 7.9 0.36 0.20 0.26 0.48
RF:PC 8.4 0.32 0.11 0.26 0.38
RF:M56EA 8.9 0.33 0.12 0.26 0.42
RF:All 9.0 0.32 0.12 0.25 0.39
SVM:TC 9.0 0.35 0.22 0.26 0.56
SVM:M56 9.2 0.32 0.13 0.25 0.40
RF:NA 9.5 0.31 0.14 0.21 0.38
RF:M56 9.9 0.29 0.18 0.19 0.41
kNN:M56 10.5 0.29 0.09 0.24 0.35
kNN:N 11.0 0.30 0.20 0.18 0.42
kNN:M56EA 11.4 0.29 0.15 0.22 0.41
SVM:PC 11.5 0.27 0.15 0.20 0.40
kNN:NA 11.6 0.26 0.11 0.21 0.36
RF:N 11.7 0.26 0.12 0.16 0.32
kNN:PC 12.4 0.25 0.10 0.20 0.33
SVM:NA 13.1 0.22 0.16 0.13 0.31
kNN:TC 13.1 0.24 0.08 0.19 0.28
SVM:N 19.6 0.03 0.03 0.02 0.06

SD: standard deviation; BCI: bootstrap confidence interval calculated by bootstrap analysis with 1000 repetitions.

We can observe that the model with the highest AUC and Cohen’s Kappa mean values was
produced by the SVM algorithm: SVM:All. In contrast, SVM:N and SVM:NA had the lowest mean
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values of the performance indicators. This result suggests that the performance of a classifier produced
by the SVM algorithm is highly related to the dimensionality of the training dataset.

3.3. Non-Parametric Tests for Multiple Comparisons

The Friedman test results showed a significant difference in the AUC (X2 = 62.29, df = 19,
p = 1.7 × 10−6) and Cohen’s kappa (X2 = 47.46, df = 19, p = 3.1 × 10−4) values of all the models.
This indicates that at least one model has different performance values (i.e., it is safe to reject the null
hypothesis that all the classification models perform the same). Therefore, we could proceed with the
Nemenyi post-hoc test.

We carried out the comparative analysis of all of the models using the mean rank calculated
using AUC and Cohen’s kappa values. Using the calculated value of CD = 9.3760, we connected the
groups of models that have statistically similar values of performance indicators (Figures 3 and 4).
For the AUC test (Figure 3), only the distance between the rank of the worst model (SVM:NA) and the
three best models (SVM:All, SVM:PC, and RF:TC) were greater than the CD value. This indicates that
these three models performed significantly better than the rest, and that the models SVM:NA, SVM:N,
and kNN:N are, statistically, the worst performing models. We also noticed that the model produced
by the kNN method with the highest mean value of performance indicators (kNN:M56, AUC = 0.75,
Cohen’s Kappa = 0.29) and the worst performing models belong to the same group determined by CD.
On the other hand, the models produced by the SVM and RF methods with the highest mean value of
performance indicators (SVM:All, AUC = 0.81, Cohen’s Kappa = 0.43; RF:TC, AUC = 0.79, Cohen’s
Kappa = 0.35) showed no significant difference.

The Cohen’s kappa value comparison (Figure 4) shows that the model SVM:All and other nine
models have mean Cohen’s kappa values that are statistically different from the worst performing
model: SVM:N. However, the only model with a kappa value high enough to reach moderate
agreement (>0.4) is SVM:All.
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Figure 3. Critical Difference (CD) diagram for the Nemenyi test showing the results of the statistical
comparison of all models against each other by mean ranks based on AUC values (higher ranks, such
as 5.9 for SVM:All, correspond to higher values of AUC). Classifiers that are not connected by a bold
line of length equal to CD have significantly different mean ranks (Confidence level of 95%).
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Figure 4. Critical Difference (CD) diagram for the Nemenyi test showing the results of the statistical
comparison of all models against each other by mean ranks based on Cohen’s Kappa values (higher
ranks, such as 4.9 for SVM:All, correspond to higher values of Cohen’s Kappa). Classifiers that are not
connected by a bold line of length equal to CD have significantly different mean ranks (Confidence
level of 95%).

Tables 7 and 8 show the results of the Nemenyi test for pairwise comparison of the classification
performance of machine learning algorithms per model using AUC and Cohen’s kappa as the
performance indicator, respectively. The test shows a significant difference in Cohen’s kappa value in
only three cases. In one case, it shows that RF can generate a better performing classifier than kNN
when using principal components. In the other two cases, it shows that the RF and kNN algorithms
can produce a classifier for Andes mountain forests with a kappa value significantly higher than the
SVM algorithm when using the NDVI as the only classification feature.

Table 7. p values of the Nemenyi post-hoc tests for multiple comparisons. The table shows the p
values resulting from the pairwise comparisons of AUC values produced by classifiers using the same
variables but produced by different MLAs. No significant differences (p < 0.05) are observed.

Model 1: M56EA Model 2: M56

kNN SVM kNN SVM
SVM 0.97 – SVM 0.64 –
RF 0.90 0.97 RF 0.97 0.50

Model 3: NA Model 4: N

kNN SVM kNN SVM
SVM 0.90 – SVM 0.64 –
RF 0.50 0.26 RF 0.64 0.17

Model 5: PC Model 6: TC

kNN SVM kNN SVM
SVM 0.26 – SVM 0.37 –
RF 0.17 0.97 RF 0.78 0.78
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Table 8. p values of the Nemenyi post-hoc tests for multiple comparisons. The table shows the p values
resulting from the pairwise comparisons of Cohen’s Kappa values produced by classifiers using the
same variables but produced by different MLAs. Significant differences (p < 0.05) are underlined.

Model 1: M56EA Model 2: M56

kNN SVM kNN SVM
SVM 0.17 – SVM 0.97 –
RF 0.64 0.64 RF 0.64 0.50

Model 3: NA Model 4: N

kNN SVM kNN SVM
SVM 0.94 – SVM 0.02 –
RF 0.57 0.37 RF 1.0 0.02

Model 5: PC Model 6: TC

kNN SVM kNN SVM
SVM 0.261 – SVM 0.173 –
RF 0.037 0.644 RF 0.065 0.896

4. Discussion

4.1. Aspects of Land Cover Classification in the Andes Mountain Region

The Andes region has a complex topography. Its altitudinal range yields an environmental
gradient that contains a variety of ecosystems, vegetation communities, and forest formations.
Human pressure on the Andes mountains puts natural resources such as its mountain forests at
risk. The evaluation and monitoring of forest conditions is very important for conservation activities
and land cover mapping is one important tool to accomplish them. Remote sensing is widely used to
monitor large areas at relatively low cost and produce the necessary maps for forest monitoring. This
study provides an important contribution on the selection of better classification techniques to create
more accurate maps for Andes mountain forests.

Mapping and monitoring large areas of vegetation in semi-arid environments using remote
sensing techniques is challenging. One issue is the collection of good quality training data, because the
terrain and mixed vegetation introduce noise to the data [50]. Such is the case for the Andes mountain
terrain, and its remaining low-density forest consisting of a mixed population of native tree species and
shrubs. Hence, robust classification methods are essential for mapping this type of forest. Well-known
parametric methods such as the maximum likelihood method (ML) have been used for forest mapping
using remote sensing data, as well as more complex non-parametric algorithms such as RF, SVM,
and kNN which, unlike ML, do not require prior knowledge of the underlying probability density
function. In particular, RF and SVM have been shown to outperform ML because they can handle large
multivariate and highly collinear datasets [51], which are provided by multispectral (e.g., LANDSAT,
SPOT) and newer hyperspectral (e.g., AVIRIS, EO-1Hyperion) high resolution imagery.

When sampling data from a rare land cover type, it is necessary to select a sampling method
that enables statistically robust comparisons and logistically feasible sampling within the available
budget and staff capacity. However, classification analysis using machine learning algorithms is only
as effective as the quality and quantity of the training data they are learning from. We combined an
exhaustive field survey within the study area and an indirect sampling method to gather enough data
to cover the reflectance variability of Andes mountain forest within the study region (Cuzco, Peru).
For this reason, the direct application of these results is restricted to a region of the Andes where
forest communities with the same species composition and vegetation structure exist. Given our data
collection strategy, we were able to identify models that have the highest and lowest classification
performance by using a conservative statistical test (significance level = 5%).
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4.2. Comparison of MLA Classifiers

By comparing the performances of classifiers produced by the same machine learning algorithm
(MLA) in Tables 5 and 6, we observed higher performances in models using the Modified Soil-adjusted
Vegetation Index rather than the Normalized Difference Vegetation Index. This can be explained by
the effect of soil brightness over the NIR-red band ratio [52], which affects NDVI. On the other hand,
MSAVI is less sensitive to changes in soil brightness (due to soil background variations) and shadows
than NDVI. This suggests that MSAVI could be a better variable to classify different vegetation types
in arid and semi-arid regions where the vegetation cover rate is low. Also, the model SVM:All shows
the highest mean AUC and Cohen’s kappa values, which suggests that SVM:All is the best model for
classifying Andes mountain forests and shrubland.

The results of this research provide new insights to the performance of RF, SVM, and kNN
algorithms in the context of mapping Andean forests over large areas with noisy data. Table 5 and
Figure 3 show that only three models with the highest ranks have a statistically better performance
than the lowest ranked model (SVM:NA), whereas the classification performances of the remaining
models were not statistically different. One way to choose from these three top-performing models is
to examine the performance indicator’s standard deviation. Of the three best models, SVM:All had
the highest mean AUC value and the smallest standard deviation followed by SVM:PC which uses
a transformation to reduce the dimensionality of the training data used by the former. When analyzing
the Cohen’s Kappa values (Table 6 and Figure 4) there are ten models that statistically out-perform
the worst model. It should be noted that none of these ten models were generated using the kNN
algorithm. The performance of kNN was low compared with the other methods, probably because
kNN has a greater reliance on data quality. Since this algorithm determines similarity by using the
minimum distance to the reference data, the performance of the algorithm is very sensitive to the
presence of outliers and noise in the data that was selected to train the classifier. Since Andes mountain
forest land cover data is inherently noisy, SVM and RF are more suitable methods for mapping this
type of terrain.

4.3. The Kappa Coefficient and Its Use as a Performance Indicator of Classification Models

This paper used the area under the curve (AUC) and the Cohen’s kappa coefficient for performance
assessment of the MLAs. In particular, the Cohen’s kappa coefficient is a measure that takes into
account the possibility of agreement by chance, and variations of it have been proposed to improve
it [53]. Its use has been met with intense discussion; for example, Pontius and Millones [54] pointed
out that Cohen’s kappa coefficient masks sources of error that are significantly different, and its
dependence on a comparison with chance agreement is not informative. Although other authors have
also criticized this indicator [55–58], to this day, Cohen’s kappa value is still a widely used metric in
remote sensing to report classification results [59–63]. For this reason, we recommend using additional
performance indicators to be used in conjunction with Cohen’s kappa value.

4.4. Machine Learning Algorithms and Contrast to Recent Research

Machine learning algorithms and their applications, such as regression and classification, have
been studied for many years. These applications depend on estimating the probability distribution of
the population data from samples, which is the most fundamental statistical approach [64]. A simpler
approach called density-ratio estimation involves estimating the ratio of probability densities instead
of the probability distribution. Density-ratio estimation has been used for predicting forest stand
attributes [65] and land cover detection [66], and its application in a framework of machine learning
has been proposed [67,68]. Future research should focus on deepening the application of this new
framework for probabilistic classification and determining whether or not this approach produces
more accurate results in the classification of mountain forests when using noisy data.
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5. Conclusions

In this study, we determined the best model to classify Andes mountain forests and shrubland
through a series of statistical comparisons using Landsat 8 OLI satellite data and land cover data. We
concluded that the highest classification performance was obtained from a SVM classification model
using the reflectance values from bands 2 to 7, NDVI, MSAVI, and the topographic variables elevation
and aspect.

Based on our statistical pairwise comparison of the MLAs per model (Tables 7 and 8), we found
that the SVM and RF algorithm produce comparable classifiers for distinguishing Andes mountain
forests and shrub land.

In contrast, the kNN models generally yielded lower ranks and lower mean values of performance
indicators when compared with the SVM and RF models. These results suggest that the kNN algorithm
had the lowest performance in the comparison test. One possible reason is that kNN is a “lazy learner”;
that is, this method does not create classification rules from training data that can be generalized when
classifying new data. Instead, it uses the training data (itself) to carry out the classification and predicts
the class label of the new data from the k closest neighbors. This approach is likely to be a problem in
classifying noisy training data which are derived from the variability of reflectance values in sparse
Andes mountain forests that commonly grow in association with shrubland.

In conclusion, the results of our statistical analyses suggest that SVM and RF are suitable machine
learning methods for producing accurate classifier for Andes mountain forests.
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