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Abstract: This study uses an airborne Light Detection and Ranging (LiDAR) survey, historical
aerial photography and historical climate data to describe the character and dynamics of the
Nogahabara Sand Dunes, a sub-Arctic dune field in interior Alaska’s discontinuous permafrost zone.
The Nogahabara Sand Dunes consist of a 43-km? area of active transverse and barchanoid dunes
within a 3200-km? area of vegetated dune and sand sheet deposits. The average dune height in the
active portion of the dune field is 5.8 m, with a maximum dune height of 28 m. Dune spacing is
variable with average crest-to-crest distances for select transects ranging from 66-132 m. Between 1952
and 2015, dunes migrated at an average rate of 0.52 m a~ . Dune movement was greatest between 1952
and 1978 (0.68 m a~!) and least between 1978 and 2015 (0.43 m a~!). Dunes migrated predominantly
to the southeast; however, along the dune field margin, net migration was towards the edge of the
dune field regardless of heading. Better constraining the processes controlling dune field dynamics at
the Nogahabara dunes would provide information that can be used to model possible reactivation of
more northerly dune fields and sand sheets in response to climate change, shifting fire regimes and
permafrost thaw.
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1. Introduction

Active dune fields and sand sheets occur on all seven continents of the globe and cover an area of
approximately 5,000,000 km? [1]. Sand dunes and sand sheets (sand bodies lacking dune topography)
are the direct product of the transport and accumulation of wind-driven sand into bedforms [2,3].
The formation and transformation of dunes and sand sheets represent a landscape response to dynamic
global and regional climatic change, ecological succession and disturbance events [4,5]. For example,
large, now-inactive Pleistocene-aged dune fields and sand sheets found across the globe suggest that
increased availability of fine-grain material and atmospheric conditions conducive to aeolian transport
were characteristic of that time [6]. Changes in precipitation, vegetation and ice-sheet extent through
the Holocene led to stabilization of these features [6]. In this way, modern active dune fields, especially
in cold climates, can serve as a valuable proxy for the study of past and present landscape change with
respect to climate [6,7].
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Approximately 100,000 km? of active and stable aeolian sand deposits occur in the Arctic and
sub-Arctic today [6]. Compared to temperate and tropical region dunes, these cold-climate dunes
reside in boreal ecosystems with environmental conditions including non-arid climate, periglacial
histories, the presence of permafrost and/or seasonally-frozen ground and dynamic fire regimes [8].
Surface moisture is an important attribute governing sand movement [9], and permafrost has
the potential to influence dune movement and structure through interactions with soil moisture.
Interactions between blowing sand and snow can also produce unique niveo-eolian features including
laminated interbedding and hummocky terrain following snow melt [2]. While dry sand, even if
below freezing, would not be inhibited, as is the case on Mars and in Antarctica where permafrost is
common [10], exposed frozen ground can immobilize sand and inhibit saltation [11]. The influence of
these conditions on sand-dune morphology, especially in regards to permafrost and seasonally-frozen
sediment, remains poorly studied compared to warm-climate dunes.

Today, dormant sand dunes and sand sheets underlay extensive sections of Alaska [12,13].
Active inland dune fields are confined to the ~62-km? Great Kobuk Sand Dunes (GKSD), 8-km?
Little Kobuk Sand Dunes (LKSD) and the ~43-km? Nogahabara Sand Dunes [14,15]. This study
describes the morphometry and dynamics of the Nogahabara dunes using a recent airborne LiDAR
dataset, historical aerial photographs and climate data analysis. To the authors” knowledge, this is the
first LIDAR dataset dedicated to a sub-Arctic dune field. This study quantifies a number of physical
characteristics of the Nogahabara Sand Dunes, including dune crest height, orientation, spacing
and migration rate for two time frames since 1952. These datasets allow for characterization and
comparison between this cold-climate dune field and temperate dune fields for which comparable data
are available. Available historical weather records were summarized to assess if changes in climate
in Alaska since the early 1950s can explain changes in dune-crest migration rates in the Nogahabara
dune field. Given the abundance of stabilized, cold-region sand dunes and sand sheets, this study
provides useful information pertaining to active and stable cold-climate dunes with respect to ongoing
climate change, increases in the frequency and severity of wildfires in Arctic and Boreal regions and
permafrost thaw. These results could provide insight for other cold-climate dunes on Earth, as well as
extraterrestrial bodies including Mars.

Study Area

The Nogahabara dunes represent one of the many sub-Arctic dune fields found in the Northern
Hemisphere [6,12,16-21]; however, it is one of only two active inland dune fields found in Alaska [14].
The dunes are roughly 43 km? in area [22] and located in the discontinuous permafrost zone about
460 km west-northwest of Fairbanks, Alaska (Figure 1). The dunes lie within the Koyukuk Wilderness
Area and the Koyukuk National Wildlife Refuge (Figure 1). The region was unglaciated during
the Last Glacial Maximum [23]. Land cover consists of a successional mosaic of boreal vegetation
shaped by interactions between wildfire, sediment transport from river flooding and the occurrence
of discontinuous permafrost [24,25]. The modern climate is sub-Arctic. The nearby village of Galena
(90 km to the south-southeast) has a mean annual air temperatures (MAAT) of —3.27 °C (1981-2010).
Mean annual precipitation as measured in Galena between 1981 and 2010 is 310 mm (http://climate.
gi.alaska.edu/Climate/Normals). Seasonal weather varies from average summer highs of over 20 °C
in July to winter lows exceeding —40 °C typically in January.

Dunes in various states of activity make up the greater Nogahabara Sand Dunes area.
Transverse dunes are asymmetrical linear dunes oriented at right angles to prevailing winds.
Barchan dunes are crescent shaped with their crescent tips pointed down-wind. Distinct barchan
dunes are absent in Nogahabara; however, two circular portions of active dunes are comprised of
clearly discernable dunes that resemble a complex combination of transverse and barchanoid dune
forms [22]. Dunes most resembling transverse dunes span portions of the active dune field with their
slipfaces oriented predominantly to the southeast (Figure 2). There is a deflation zone southeast of the
centroid of the larger of the two active areas [22] where dune orientation is more erratic. The transition
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from dune to forest is marked by a large slipface that runs the complete circumference of the active
dune fields ([22]; Figure 3a). The sole mechanical analysis of the dunes yielded a modal grain size of
2.75 on the Krumbien phi scale (~0.149 mm), and earlier surveys suggested that the grain size was
sorted from west to east with finer grains located to the east [22]. Sparse vegetation can be found
throughout the active dunes and includes patches of open spruce (Figure 3b). Early reports stated that
dune migration was to the northeast and east or southeast [26,27]. Later aerial photointerpretation
suggested the major transport direction to be to the west and northwest with a secondary summer
direction to the east [22].
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Figure 1. Location of Nogahabara dunes with respect to Alaska and other major inactive dune fields
or sand sheets including Great Kobuk Sand Dunes (GKSD) and Little Kobuk Sand Dunes (LKSD).
Permafrost extent based on Pastick et al., 2015. Aeolian deposits based on Karlstrom, 1964;
Jorgenson et al., 2008.

Lobes of inactive and recently stabilized dunes protrude from the active field (Figures 2 and 3c).
These stabilized dunes are more vegetated with forest of varying ages following repeated wildfire.
Transverse barchanoid dune forms are still clearly discernable especially in winter suggesting periods
of recent stabilization or reactivation. Large scalloped scarps mark the boundary between these
stabilized dunes and adjacent forests. One southern lobe of stabilized dunes exhibits unusual
rosette-like bedforms (Figure 2) where transverse dune forms radiate out from a central point in
the lobe. Rosette dunes have been described elsewhere along the Koyukuk River and in other stabilized
Alaskan dune fields including the Shaw Creek Sand Dunes, Tetlin Sand Dunes and Kantishna Sand
Dunes [22,28].

The Koyukuk River Valley region (3200 km?) consists of stabilized longitudinal and parabolic dunes,
as well as sand sheet deposits suggested to be glacio-fluvial in origin ([15]. Radiocarbon dates from
calcretes presumed to have formed during periods of dune activation suggest that Nogahabara dune field
formation had occurred by 10.5-8.1 ka [29]. Sequential paleosols, as well as 190-640 + 60 C!4-year-old
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spruce forests preserved and exposed within the active dune field reveal more recent cycles of dune
stabilization and reactivation [30].
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Figure 2. Active Nogahabara Sand Dune (brown region within the solid line) and surrounding inactive
lobes (green regions within the broken line) addressed in this study. Yellow squares denote where dune
migration rates were subsampled. Subsample area i41 is located on a rosette dune feature. All graphics
overlie 2015 LiDAR-derived DEM.

The dunes are particularly important because they contain unique assemblages of plants thought
to represent relict Beringia flora [31]. A disjunct Asian sedge (Carex sabulosa) occurring in the dunes is
listed as critically imperiled in Alaska and Canada. Alaskan bugseed (Corispermum hyssopifolium) also
occurs in the dunes and has been listed as vulnerable due to its restricted range in Alaska [32].
Yukon lupine (Lupinus kuschei) is a globally vulnerable species primarily found in the Yukon
Territories, but with disjunct populations in the dunes. Additionally the dunes are the habitat for
rare and/or endemic subspecies of animals including an endemic sandy tiger beetle (Cicindela limbata
nogahabarensis) [33] and the rare Alaska tiny shrew (Sorex yukonicus).

Figure 3. (a) Western portion of the Nogahabara Dune field where dunes are migrating to the southwest;
(b) ground view of wind-affected sand, sparse vegetation and scattered trees representative of the
Nogahabara sand dunes; (c) Oblique view of active and recently stabilized sand deposits.
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2. Materials and Methods
2.1. Remote Sensing Data

2.1.1. Airborne LiDAR and Orthophotography

In September 2015, airborne LiDAR data were collected over the dune field using a Riegl brand
LMS-Q240i laser scanner. The scanner was set to 10,000 laser shots per second and a £30 degree
beam sweep. The LiDAR scanner was rigidly attached to an OXTS brand Inertial+2 GPS/IMU unit.
A Trimble R7 GPS receiver fed into the GPS/IMU unit (Figure 4). The raw data were processed into
a point-cloud that represented land surface returns. The point cloud data were further processed
to remove low level noise along adjacent flight lines to create a more suitable representation of the
land surface. In a Micro-station/TerraSolid software environment, both TerraScan and TerraModeler
were utilized to analyze and classify the raw point cloud. During this process, the point cloud data were
classified to achieve a pseudo-bare earth digital elevation model using a combination of automated
bare-earth algorithms and comprehensive manual cross-section edits. The corrected and processed
point cloud data were converted to a 2-m resolution DEM for further analysis. Aerial photography
was simultaneously collected using a Nikon D800 paired with the same GPS/IMU unit as used with
the LiDAR scanner to produce an orthomosaic with a final horizontal resolution of 10 cm.

Figure 4. Configuration of the LiDAR scanner (silver), GPS (yellow) and camera (black, background)
within the aircraft. LIDAR scanner and camera are pointing through portholes in the belly of the aircraft.

2.1.2. Historical Aerial Photos

Historical aerial photographs were used to assess dune migration rates from July 1952, July 1978
and September 2015. Black and white areal imagery (1:42,000) was acquired on 5 July 1952 from a 6400-m
elevation, and color infrared imagery (1:61,016) was acquired on 27 June 1978 from an 18,289-m elevation.
Both the 1952 image (ARCGAL000160099) and 1978 image (AR6386000900145) were downloaded from the
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USGS EarthExplorer website (http:/ /earthexplorer.usgs.gov/). Image resolution of the three aerial photo
scenes was 0.6 m (1952), 0.9 m (1978) and 0.1 m (2015). Each image was independently georegistered based
on the 2015 orthophoto mosaic using ArcMap 10.2.2. Twenty ground control points were established
across each scene using living trees, shrubs and stable bluff faces. All georegistration achieved an RMS
error less than 2 m.

2.2. Climate Data Analysis

Local climate data are unavailable for the dunes; thus, data are summarized for the villages of
Galena and Huslia (90-km and 45-km distance, respectively). Hourly weather records for Galena
(September 1942-December 2016) and Huslia (1994-2016) were acquired from the National Climate Data
Center (https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly). Hourly temperature data were summarized
into mean daily temperatures (MDT), thawing degree days (TDD) and freezing degree days (FDD).
All available MDT were used to calculate MAAT. Annual means for air temperature, and annual total
FDDs and TDDs were derived for all calendar years with at least some data available for all twelve months.
Significant data gaps existed within the Galena weather record for 1 November 1945-31 May 1953 and
1 January 1972-31 December 1972. Subsequently, the years 1942, 1945-1952 and 1972 were excluded
from annual summaries. Temperature data from 2000 and 2001 were also excluded on the basis of being
inflated for unknown reasons. Data from 2004 were excluded from Huslia’s annual summaries due to
missing data for February 2004-December 2004.

Wind speed and direction are available for Galena and Huslia beginning in 1942
and 1994, respectively. Using the Bagnold logarithmic wind profile equation [34] and an anemometer
height of 10 m, wind speeds below 6.5 m/s were estimated to be insufficient to transport sand
particles characteristic of Nogahabara. Wind speeds in excess of 6.5 m/s and their respective direction
were summarized to produce wind roses for three periods corresponding to the aerial photograph
intervals (1942-1945, 1953-1978 and 1978-2015) and divided by season; winter (January, February
and December), spring (March-May), summer (June-August) and fall (September—-November).

2.3. Dune Feature Characterization

Physical measurements including spacing, heading and length can provide a means to
characterize the field-scale organization of an active or inactive dune field [10]. A known dune ridge
location is required for these parameters. Dune ridge locations were programmatically delineated
for September 2015 using ArcMap 10.2.2. The ArcMap spatial-analyst curvature toolset calculated
the surface curvature of the LIDAR-derived DEM at 2-m resolution. A positive curvature indicates
the surface is upwardly convex at that cell. A negative curvature indicates the surface is upwardly
concave at that cell. A value of 0 indicates the surface is flat. The spatial-analyst filter tool and
an LOW filter type were used to smooth the curvature raster twice. The smoothed raster was
reclassified into three natural breaks (jenks) classes. The two lowest classes were reclassified as
NoData, and the uppermost class (1.08-28.08) was reclassified as 1 to identify convex dune ridge areas.
The resultant raster was converted to a polygon feature utilizing the simplified polygon option in
ArcMap. The spatial-statistics-calculate-area tool calculated the area (m?) for all polygons. All polygons
with areas less than 300 m? were deleted after visual comparison showed they were too small to contain
dune features with definable ridges. Following small feature deletion, the cartography-smooth-polygon
tool was used to smooth the remaining polygons in conjunction with a PEAK smoothing algorithm
at 50-m resolution. The union tool filled donut holes within the polygons with the ‘gaps allowed’
option unchecked. The automated filling of gaps erroneously filled some inter-dune spaces, so
manual detection and deletion of those resultant polygons was needed. Next, the eliminate tool was
implemented to dissolve filled donut-hole polygons into their larger host polygons. All vertices of the
resultant shapefile were converted to points using the feature vertices-to-points tool. From these points,
Thiessen polygons were created. This process indirectly delineates the centerline of each polygon and
is the basis for final dune ridge location. The Thiessen polygon features were converted to simple lines,
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and then only lines that fell completely within polygons demarcating the ridge areas were retained.
Subsequent comparison of dune ridge lines with the base DEM provided validation of the proper
location of the ridge. Dune ridges were considered properly located when they aligned with the
maximum elevation of the dune.

Dune height was determined using the spatial-analyst aggregate tool and the minimum DEM cell
values at a 50-cell (100-m) resolution. This process generated a reduced-resolution DEM of the greater
Nogahabara study area and effectively removed small-scale topographic features from the raster.
The data-management resample tool was applied to the aggregate raster to return to a 1-cell (2-m)
resolution using bilinear-resampling techniques. Dune height was calculated as the difference between
this resampled raster (identical in resolution and extent to the original DEM) and the original DEM.

2.4. Dune Migration Analysis

Dune migration rates were estimated within ten active and three inactive randomly selected
subsample areas (Figure 2) using the digital shoreline analysis system (DSAS Version 4.3).
This approach (DSAS) has been used to track river bank erosion, thermokarst lake expansion and
a multitude of coastal settings [35-37]. Each subsampling area was roughly 0.6 km by 0.7 km.
Slipface position was used as a consistent proxy to measure changes in dune position between
the three sets of imagery as has been used in several previous studies [38—41]. The line where the
slipface meets the inter-dune space was digitized utilizing the high contrast between sunlit slipfaces
and indirectly illuminated inter-dune spaces. Both the 1952 and 1978 imagery appear to have been
taken when the Sun angle was near 150 degrees. To achieve consistent dune delineation conditions in
2015, a hillshade raster was derived using the LIDAR DEM and identical solar conditions with a Sun
angle of 150 degrees and a solar altitude of 44 degrees.

The base of dune ridge slipfaces were digitized for the 1952 and 1978 georeferenced imagery and
the 2015 hillshade DEM within an ArcMap edit session. The scale of view was maintained between
1:1000 and 1:3000 as features were traced. An average digitizing uncertainty was determined for
each year by tracing a dune feature ten times, then measuring the residual distances between traces.
This assessment was performed both for a portion of the dunes where there was high contrast
(significant overlap in all ten traces) and on a section where there was low contrast (more variability
between the ten traces). The digitizing uncertainty in high and low contrast areas was averaged
together to get the associated digitizing uncertainty. The 2015 LiDAR had a position uncertainty of
8 cm (in the x and the y dimension) and a digitizing error of 2 m (1 pixel). The 1978 aerial photo
imagery had a root mean square (RMS) registration uncertainty of 1.62 m and a digitizing uncertainty
of 2 m (2.2 pixels). The 1952 air photo imagery had a RMS registration uncertainty of 1.18 m and
a digitizing uncertainty of 3 m (5 pixels). The total positional error for dune ridges within each year
was determined via summation in quadrature of the individual uncertainties (2.0 m for 2015, 3.04 m
for 1978 and 3.43 m for 1952).

The digital shoreline analysis system (DSAS Version 4.3) was used to first establish measurement
locations at 50-m spacing for all major dunes identified within selected subsampling areas and then to
calculate dune migration statistics [42]. End point rates were calculated for three periods within the
active dune features; 1952-1978, 1978-2015 and 1952-2015. Poor resolution of the 1952 imagery in the
vegetated, inactive dune field only allowed for analysis of features between 1978 and 2015. Within each
time frame, the standard deviation of the migration rate was calculated by finding the square root of
the sum of the squares of each of the two dune crest positional errors and dividing that value by the
number of years within the respective time frame.
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3. Results

3.1. Dune Characteristics

The LiDAR data provided a digital elevation model at an unprecedented scale for this location.
This allowed for visualization and mapping of dune forms in and surrounding the Nogahabara
Sand Dunes. Active dunes and immediately adjacent inactive dunes overlie three interpreted
relic longitudinal dunes of unknown age (Figure 2). These dunes are oriented with their long
axis at approximately 45 degrees. Within the active dune field, ten secondary dunes underlie the
modern active dune crests (Figure 2). These secondary dunes are oriented at roughly 138 degrees.
Their historical migration direction would have been to the southwest or northeast. The present-day
active dune field currently occupies 42.5 km? when delimited by near-zero percent vegetation cover
along the margins; shrubs, sedges, mosses and spruce trees remain sparsely scattered across the dunes.
Active primary dune features are numerous and highly variable with 654.6 km and 765.9 km of dune
crest features delimited within the active and inactive dunes, respectively.

Active dune heights averaged 5.8 m with a maximum dune height of 28.1 m. Inactive dune heights
averaged 4.9 m with a maximum of 22.1 m (Figure 5). These maximum dune heights occurred on the
western portion of the active dunes fields and are due to a combination of accumulated sand overlying
poorly-defined near surface bedrock. Mean crest-to-crest spacing is variable throughout the dune field.
Dune spacing was very regular within some portions of the active dune field (Transects b, ¢, d) and
irregular in others (Transects a, e). Four transects within the active dunes had average dune spacing
that ranged from 66 m to 132 m (Figure 6).
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Figure 5. Dune height derived from methods described in Section 2.3. Transects a—e delineate elevation
profiles depicted in Figure 6. The inset image depicts results from automated dune ridge identification.
The base image is the LIDAR-derived DEM.



Remote Sens. 2018, 10, 792 9 of 19

- 1 1A
10T—66m| R I
S/ LU "|1||II Ly |
0

0 500 1000 1500 meters

10 T =95m | |

gl' A : S N O | VN TS '|I'
0 500 1000 1500 2000 2500meters

10/ |T= 105m| : |

O meters T meters Q meters

5

Q

£

d 0 500 1000 1500 2000 2500 3000 3500 meters
g 10 T=108m

Eg‘l ! LA A M L | . LA LA

e O 500 1000 1500 2000 2500meters

Figure 6. (a—d) The variety of mean dune spacing (T = transect length (m)/dune ridges (n)) from within
the active dunes; (e) dune spacing within an inactive rosette dune feature. Red lines indicate dunes
identified by the authors for each transect.

3.2. Migration Rates

Between 1952 and 2015, active dunes in the Nogahabara dune field migrated on average, to the
southeast or south, at a rate of 0.52 + 0.21 ma~" (Figure 7, Table 1). Two prominent dune headings are
visible in the mapped dune crests. While the majority of the dunes migrated to the southeast, roughly
at 165°, a central, semi-deflated portion of the dunes has a mean dune heading of approximately
200° (Figure 2). This is the same region Koster et al.’s [22] mapping efforts described as having linear
arrangements of blowouts. Additionally, dune crests located near the periphery of the active dune field
migrated toward the edge of the dune field regardless of heading. This migration gives the impression
of the expansion of the dune field outward into the surrounding forest.

Dune migration rates are spatially variable (Table 1). The three greatest average migration rates for
individual subsample areas were 0.84 & 0.06 m a~! (Region a62), 0.81 £ 0.06 m a~! (Region a83) and
0.80 & 0.06 m a~! (Region a109; Table 1). These higher rates were associated with migration directions
between 120° and 125°. The three lowest average migration rates of individual subsample areas were
0.25 +0.06 m a~! (Region a128), 0.32 & 0.06 m a~! (Region a67) and 0.33 & 0.06 m a~! (Region a45) and
were associated with dunes migrating to the south (200°) and north (340°), respectively. Within inactive
dunes, migration rates were estimated to be near zero (0.06 4- 0.06 m a~!) and give a good indication
of the total error in interpretive and georegistration measurements (Table 2). No large-scale dune
activation or stabilization was observed between 1952 and 2015. Portions of the dune field that
appeared active or stable in 1952 remained in the same state through the period of study.

Dune migration rates were also variable temporally. Dune migration rates between 1952 and
1978 averaged 0.68 &+ 0.31 m a1, but between 1978 and 2015, the average migration rate decreased
to 0.43 & 0.16 m a~!. Between 1952 and 1978, the greatest migration rate was 1.13 + 0.18 m a~!
(Region a62), while the lowest migration rate was 0.32 + 0.18 m a~! (Region al128). Between 1978 and
2015, the greatest migration rate was 0.63 &= 0.09 m a~! (Region a62), while the lowest migration rate
was 0.21 £ 0.09 m a~! (Region a128). Some subsample areas saw a marked change in migration rates
between time periods, while others (Regions a93, a26) remained near constant (Table 1).

3.3. Historical Climate Conditions

Mean annual air temperature for the Nogahabara region as indicated by the Galena and Huslia
weather records has fluctuated between 0 and —6 °C, but shows no overall trend (Figure 8a). There was
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a slight negative trend in freezing degree days measured at Galena, but little to no change in thawing
degree days (Figure 8b). Temperature records in Huslia are not long enough to determine regional
trends with confidence, but MAAT at Huslia closely tracks Galena MAAT.

Figure 7. Time series of dune migration within the a9 subsample area (see Figure 2). At this location,
dune migration is to the southeast (~140°). (a) The dunes as they appear in the 1952 imagery and
the digitized slipface position (orange line); (b) the same region as seen in the 1978 imagery and the
digitized slipface position (green line) relative to the 1952 position (orange line); (c) the same region as

seen in the 2015 LiDAR DEM and the digitized slipface location (blue line) relative to the 1978 (green)
and 1952 (orange) locations.
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Table 1. Dune ridge characteristics from active subsample areas (n = 10).
Subsample Area
Physical Dune Features al28 al30  al09 a93 a83 a67 a62 a45 a26 a2l a9 AVG.
total active dune length (m) 3901 41249 5933 5239 4036 5708 5430 6784 6157 6462 5581 5396
active migration features 6 13 11 9 11 9 6 14 15 11 9 10
mean dune height (m) 7.3 9 53 45 49 53 7.1 3.6 6.3 51 6 6
min dune height (m) 0.5 1.2 0.8 0.8 1.5 11 14 0.6 0.5 0.6 1 1
max dune height (m) 18.1 18.8 114 9.1 9.7 139 13.6 9.2 20.1 10.5 14.4 14
dune height stdev (m) 4.6 3.7 22 1.6 1.6 2.7 2 1.6 32 2 2.3 3
mean dune heading (°) 340 20/140 125 360/110 120  rosette 120  36/200 250 180 140 165
1952-1978 mig rate (ma—lysw 032 0.45 1.05 0.55 1.11 0.43 1.13 0.48 0.37 0.67 0.93 0.68
1978-2015 mig rate (ma—h ¢ 021 0.4 0.59 0.59 0.6 0.25 0.63 0.22 0.39 0.4 0.42 0.43
1952-2015 mig rate (ma~1y* 0.25 0.41 0.8 0.57 0.81 0.32 0.84 0.33 0.39 0.51 0.64 0.52

& stdev = £0.18, ¢ stdev = £0.09, * stdev = £0.06. stdev is derived from the error associated with image resolution
and digitizing error, hence the identical stdev values within each time frame. Migration rate truncated to “mig rate”.

Table 2. Dune ridge characteristics from inactive subsample areas (n = 3).

Subsample Area

Physical Dune Features i77 i50 i41 AVG.
total active dune length (m) 7052 8395 5558 7002
active migration features 4 5 8 6
mean dune height (m) 3 5 3.14 4

min dune height (m) 0.6 0.7 0.6 1
max dune height (m) 7.5 11.7 10.1 10
dune height stdev (m) 1.1 2.2 1.8 2
mean dune heading (°) 165 NA 315 240
1978-2015 mig rate (mafl) O 0.09 0.04 0.04 0.06

¢ stdev = £0.09 stdev is derived from the error associated with image resolution and digitizing error, hence the
identical stdev values within each time frame. Migration rate truncated to “mig rate”.
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Figure 8. Climate summaries for Galena and Huslia including (a) mean annual air temperature and
(b) annual totals of freezing and thawing degree days. FDD, freezing degree days; TDD, thawing
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In Galena, the prevailing winds are from the north throughout most of the year with a marked
change during summer months when winds emanate from the southwest (Figure 9). In Huslia, annual
winds are also variable with the prevailing winds emanating from the north/northeast, except in
summer, when winds can also emanate from the southwest (Figure 10). In Galena, predominant
seasonal winds appear to have remained consistent in their origins since 1942. Some small deviation
may be explained by missing data from the earlier half of the record. Data are most consistent
through the 1979-2015 period and best depict the seasonal trends in wind speed and direction
(Figure 9). Huslia wind speed and direction are slightly different from Galena possibly due to regional
topographic differences. While these data are the best proxy for wind conditions at the Nogahabara
Sand Dunes, their marked differences suggest that conditions at Nogahabara could be different and
emphasizes the need and value of direct measurements.

Winter 1942-1952 Spring 1942-1962 Summer 1942-1952 Fall 1942-1952

e DAY

e it ity
L IO T

ol i v

' Ve

Summer 1979-2015

T
4 T~
ANV e

Wind speed (m/s)
O6.5-7 O7-8 [[@8-9 MW9-10 MW10-11

Figure 9. Wind roses summarizing seasonal patterns of winds in excess of 6.5 m/s for the
three study periods. Winter captures January, February and December. Spring captures March, April
and May. Summer captures June, July and August. Fall captures September, October and November.
Station ID: WBAN-26501.



Remote Sens. 2018, 10, 792 13 of 19

Winter 1994-2016 Spring 1994-2016 Summer 1994-2016 Fall 1994-2016

Wind speed (m/s)
06.5-7 O7-8 [@8-9 MWS-10 MWE10-11

Figure 10. Wind roses summarizing seasonal patterns of winds in excess of 6.5 m/s for Huslia, AK.
1994-2016. Station ID: WBAN-26552.

4. Discussion

4.1. Morphology and Dynamics of Dunes in Cold vs. Temperate Regions

Cold-climate dunes often possess unique origins and seasonal controls on sediment transport
not present in warm-climate dune fields. Many cold-climate dunes owe their origins to sediment
produced from glacial and glacio-fluvial transport, as well as glacier-dependent wind regimes [43].
Modern cold-climate dunes, with the exception of polar dunes, experience less aridity than
warm-climate dunes. Therefore, summer rainfall and winter snow accumulations are more likely for
these systems, which can reduce sediment transport rates and produce unique bedding patterns [44].

Attributes of the Nogahabara dunes align with the existing knowledge of cold climate dunes.
The non-arid climate is attested by the surrounding spruce forests and wetlands. Dune migration rates
at Nogahabara are slow compared to warm-climate dunes (Table 3) and similar to the nearby GKSD.
These slow rates are due to seasonal rains and winter snow cover [45]. Seasonal snow cover barricades
sand from transporting winds, and seasonally-frozen water near the ground surface immobilizes
most of the sand during long winters. Warm-season rains also play a role in minimizing the sand
that is available to be lofted by wind. This agrees with other observations that Arctic dunes have
slower migration rates than warm-climate dunes [10,46]. Interestingly, the maximum migration rate
of Nogahabara dunes (nearly 1.0 m a l)is comparable to some warm-temperate [38] and arid low
latitude dune migration rates [47,48]. This suggests sediment transport events within Nogahabara
may be brief and intense in order to ‘keep pace’ with dunes in locations where sediment transport is
possible nearly year-round. Clearly, the present climate is not capable of promoting the large migration
rates (>10 m a~ 1) found in other arid mid- and low-latitude dune fields [40,49-51].

Dune migration rates appear to have been greater before 1978. The decrease in migration rates
after 1978 corresponds with a slight negative trend in freezing degree days as measured at Galena.
This slightly cooler period may have also experienced reduced winter precipitation, which would
have promoted greater winter-time sand transport. Such conditions are thought to have promoted
dune activation throughout Alaska during the Pleistocene. Future detailed measurements of local air
temperature, precipitation, ground temperature and sand transport at Nogahabara Sand Dunes would
help validate this hypothesis.

Alternating wind directions through the seasons, similar to those documented for Galena
and Huslia, may be a unique attribute responsible for shaping dune orientation, slowing overall
migration rates and producing the distinct radiating dune ridges of the Nogahabara Sand Dunes.
The dominant, sand-transporting winds at the GKSD are polar easterlies from November—April [45]
and are reflected by consistent dune orientation. In the case of Nogahabara dunes, the dominant
sand-transporting winds emanate from the northwest, as indicated by the orientation of the majority
of active dunes. Like Galena, winds must be seasonally or spatially variable across the dune field to



Remote Sens. 2018, 10, 792 14 of 19

produce dune migration in every direction, particularly along the margins. This variability produces
dunes that appear to be migrating “off” the active dune field in a radial fashion, which may be
the foundation for the distinctive rosette dune features in the region and the circular nature of
the Nogahabara dunes. A similar process was proposed for rosette dunes found near Dune Lake,
Alaska, in the Yukon-Kuskokwin River region [28]. Finally, a complex history of wind direction
since the Pleistocene appears to have produced multiple episodes of dune formation at Nogahabara.
The secondary dunes persisting in the active field suggest that prominent winds were historically
from the northeast or southwest; significantly different from today. The larger relict longitudinal
(or elongated parabolic) dunes also suggest a northeasterly wind with sediment transport to the
southwest [27].

In total, the patterns and processes found at the Nogahabara Sand Dunes and other cold climate
dune fields provide an excellent planetary analog site for studying how a water cycle influences
sand transport under conditions similar to those of Martian polar deserts, especially ancient Mars,
which studies suggest was warmer and wetter than the planet is today [52].

Table 3. Migration rates for cold and warm climate dunes.

Dune Field latitude Koeppen-Geiger Climate Rate (ma—1) Citation
Great Kobuk 67°00'N Polar (polar tundra) 0.5-1.5 [53]
Nogahabara 65°41'N Polar (polar tundra) 0.5-0.8 this study

Zuid-Kennemerland ~ 53°23'N Warm Temperate (fully humid warm summer) 0-6 [44]
Aberffraw 53°11'N Warm Temperate (fully humid warm summer) 1 [38]
Tunstall Sand Hills 51°09'N Arid (steppe, cold arid) 10 [54]
Alxa Plateau 40°30'N Arid (winter dry, cold arid) 53 [55]
Great Sand Dunes 37°47'N Arid (steppe, cold arid) 1.9-10.5 [56]
Gra“dFlz:ﬂ; Dune 55055 Arid (steppe, cold arid) 35 [40]
Imperial Valley 33°00'N Arid (winter dry, hot arid) 25 [51]
White Sands 32°48'N Arid (steppe, cold arid) 1-7 [47]
Agodones 33°00'N Arid (desert, hot arid) 0.08 [48]
Sinai Peninsula 30°30'N Arid (desert, hot arid) 11.9 [49]
Eastern Sahara 20°55'N Arid (desert, hot arid) 7.5 [57]
Ceara Coast 3°30'S Equatorial (summer dry) 17.5 [50]
Kuiseb River Delta 22°56'S Arid (desert, cold air) 4.2-18.9 [58]
Victoria Valley 77°22'S Polar (fully humid) 1.5 [10]

4.2. Cold Region Dunes and Permafrost

With the possible exception of elongated parabolic type dunes (hairpin dunes) described from
the GKSD, no specific dune forms characteristic of, or restricted to, periglacial and/or permafrost
environments have been observed [59]. Within the GKSD, no permafrost has been found within the
active dune field to date, and the field is characterized by typical transverse and barchan-like dunes.
Even when permafrost is present as is the case in Victoria Valley [10], where permafrost occurs 0.3-0.5 m
below the dune surface, many classic dune forms are common. Many sub-Arctic dunes do not possess
permafrost despite occurring within a permafrost zone. The Hietatievat dune field of northern Finland
was found to be free of permafrost due to thick winter snow cover [60].

4.3. Potential Role of Fire, Permafrost Loss and Climate Change on Interior Alaska, Dune Field Activation and
Ecosystem Impacts

Large areas of land in Alaska have the potential to experience sand dune reactivation given
sufficient climate and landscape disturbance. Massive, now-dormant sand sheets cover Alaska’s
Coastal Plain, and Pleistocene-aged loess deposits are common within the interior of Alaska
(Figure 1). While these deposits are relicts of the vastly different climate of the Pleistocene and early
Holocene [12,61], there are historical instances of dune reactivation following removal of sufficient
amounts of overlying vegetation by physical or climactic events [54]. Climate alone can require
centuries to reactivate dunes [62]. A combination of climate-induced drying and fire can more rapidly
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activate dunes. In the GKSD, disruption of vegetation led to permafrost thaw, which promoted sand
transport out of canoe-shaped blow-outs [63]. This pattern is observed at the Nogahabara dunes in
recently-burned areas (Figure 11). Fire has played a role in dune reactivation or deflation in northern
Lapland [64], Finnish Lapland [20], eastern Canada [65] and the Great Lakes region [66]. Burning is
one of a suite of factors implicated in dune reactivation in both the American Midwest [67] and on
the Dutch coast [68]. Alternatively, an increase in air temperature and precipitation could lead to
a continuation of inactivation of the large and active sand dunes that became dormant during the
Pleistocene-Holocene transition. Increased snow cover and rain fall could further slow sediment
transport, permitting the establishment of litter and vegetation cover and the overall colonization of
now active dune fields.

Loss of permafrost or seasonally-frozen ground within inactive dune environments could also
lead to reactivation. Seasonally-frozen sand may limit the annual availability of sediment for wind
transport [6,69] and at the very least can preserve prehistoric aeolian deposits [5]. Such mechanisms are
proposed for the GKSD where semipermeable soil horizons may perch water tables, thereby increasing
near surface soil moisture [70]. The role of permafrost and seasonal frost in dune geomorphology
is insufficiently described [6], but potentially significant. In addition to landscape change on Earth,
the terrestrial relationships between sand-dune morphology and permafrost has been valuable for
interpreting sand-dune morphology on extraterrestrial bodies including Mars [46].

Figure 11. (a) Oblique aerial view of Nogahabara Sand Dunes and surrounding forest; (b) blow-out
feature within the previously inactive dune field following the 2015 fire.

Little is known about when the relict sand dunes, sand sheets and loess accumulations found
throughout Alaska were last active and for how long; nor is it exactly understood what environmental
factors caused dune activation or how they might respond to predicted changing climatic conditions.
Climate models for Alaska predict a warmer and drier climate, as well as increased fire frequency
and burn severity [8]. The Arctic and sub-Arctic have already experienced thirty years of climate
warming [71] and are expected to undergo further warming at rates greater than the rest of the
planet [72]. Investigating the interrelations of fire, permafrost, snow and sand dune morphology at the
Nogahabara Sand Dunes and elsewhere in the Arctic could provide important insight for management
decisions, species conservation and future landscape dynamics in Alaska and other cold-climate
dunes on Earth. The use of bio-physical models that model vegetation, permafrost, snow and fire
responses to climate, as well as the resulting mobility of sand dunes [73] could help develop predictive
models of sand dune response to climate change and better model change in areas characterized by
eolian deposits.

5. Conclusions

This study sought to characterize the Nogahabara dune field as it occurs today, to quantify how
active the dunes have been over the past 60 years and to examine possible drivers of sand dune
activity in the region. A key component of this study was the acquisition of LiDAR data and their
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incorporation with a mix of historical remote sensing datasets to facilitate this land change study.
Using a LIDAR-derived DEM and a GIS, we automated precise dune crest delineation as an objective
way to quantify dune spacing and orientation. We also used these data to estimate and depict dune
height across the field. Most significantly, we utilized 1952 black and white aerial imagery, 1978 color
infrared aerial imagery and the 2015 LiDAR to examine dune migration rates within the Nogahabara
Sand Dunes over the past 60 years. To date, no migration rates have previously been estimated
for Nogahabara. While some studies had estimated dune migration direction, these estimates often
disagreed and were based solely on the appearance of the dunes. Our study quantifies the last
60 years of dune movement and demonstrates the variety of dune migration directions at Nogahabara.
While we detected variation in dune migration rates through time, our assessment of potential climatic
drivers was inconclusive. Finally, the combination of LIDAR and orthophoto data collected over dunes
offers one of the most detailed and up-to-date geospatial datasets for the dunes and immediate area
and represents the first LIDAR campaign dedicated to a sub-Arctic dune field. It is hoped that these
data will continue to improve our understanding of this, as well as other cold-climate dune systems.
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