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Abstract: Enhancing the spatial resolution of hyperspectral image (HSI) is of significance for
applications. Fusing HSI with a high resolution (HR) multispectral image (MSI) is an important
technology for HSI enhancement. Inspired by the success of deep learning in image enhancement,
in this paper, we propose a HSI-MSI fusion method by designing a deep convolutional neural network
(CNN) with two branches which are devoted to features of HSI and MSI. In order to exploit spectral
correlation and fuse the MSI, we extract the features from the spectrum of each pixel in low resolution
HSI, and its corresponding spatial neighborhood in MSI, with the two CNN branches. The extracted
features are then concatenated and fed to fully connected (FC) layers, where the information of
HSI and MSI could be fully fused. The output of the FC layers is the spectrum of the expected HR
HSI. In the experiment, we evaluate the proposed method on Airborne Visible Infrared Imaging
Spectrometer (AVIRIS), and Environmental Mapping and Analysis Program (EnMAP) data. We
also apply it to real Hyperion-Sentinel data fusion. The results on the simulated and the real data
demonstrate that the proposed method is competitive with other state-of-the-art fusion methods.
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1. Introduction

Hyperspectral images (HSIs) contain rich spectral information, which is beneficial for
discriminating between different materials in the scene. Due to the discriminative ability, HSI has
been applied in many fields, including target detection [1], mineral exploitation [2], and land cover
classification [3]. Earth observation applications often need HSI with high spatial resolution. However,
the spatial resolution of HSI is often limited because of the trade-off between the spatial and spectral
resolution (e.g., Hyperion HSI is of 30 m spatial resolution). Compared with HSIs, multispectral
images (MSI) have wider bandwidth, and are often of higher spatial resolution (e.g., ASTER MSI is of
15 m resolution). Fusing low resolution (LR) HSIs with a high resolution (HR) MSIs is an important
technology to enhance the spatial resolution of HSI [4,5].

Several HSI-MSI fusion algorithms have been proposed in the last decades [4–20]. HR HSI can
be reconstructed by combining endmember of LR HSI and an abundance of HR MSI. According
to this principle, several unmixing based fusion methods have been proposed. For example, in [6],
HSI and MSI were alternatively unmixed by applying nonnegative matrix factorization in a coupled
way; thus, HR HSI was reconstructed with the endmember and the HR abundance under a linear
mixture model. This method was also used to fuse Hyperion HSI with ASTER MSI and produce HSI
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with 15 m resolution [7]. Similarly, by exploiting the sparsity prior of endmembers, a fusion method
based on sparse matrix factorization was proposed in [8]. It was also used to fuse MODIS HSI with
Landsat 7 ETM + MSI, and to enhance the resolution of MODIS HSI by 8 times [9]. HR HSI can also be
reconstructed with a dictionary. In [10,11], a spatial dictionary was learned from HR MSI, and HR HSI
was then reconstructed via joint sparse coding. In [12,13], a spectral dictionary was learned from LR
HSI, then it was used to reconstruct HR HSI based on the abundance map of MSI. The HSI-MSI fusion
problem could also be solved in a variation framework [14–17]. Wei et al. [14] proposed a variation
model for the HSI-MSI fusion whereby the sparsity prior of HSI was exploited as a regularizer. Other
than the sparsity regularizer, a vector-total-variation regularizer was used in [15], a low rank constraint
and a spectral embedding regularizer were designed for fusion in [16]. In [17], a maximum a posteriori
fusion method was proposed by exploiting the joint statistics of endmembers under a stochastic mixing
model. A new concept, “hypersharperning”, was proposed in [18], and applied to Worldview-3 data
in [19], which aims at fusing LR HSI in the short-wavelength infrared bands with HR HSI in the visible
and near infrared bands of the same sensor.

Most of the above fusion methods suffer from three major drawbacks. Firstly, they are based on
hand-crafted features such as the dictionary, which can be regarded as low-level feature with limited
representative ability. Secondly, they rely on prior assumptions, such as the linear spectral mixture
assumption in [6–9], and the sparsity prior in [10–14]. Quality degeneration may be caused if these
assumptions do not fit the problem. Finally, optimization problems are often involved in the testing
stage, making the HSI reconstruction time-consuming. Recently, deep learning has attracted research
interests due to its ability to automatically learn high-level features, and its high non-linearity [21–28],
which is of great potential for modeling the complex nonlinear relationship between LR and HR HSIs in
both the spatial and spectral domains. Compared with the hand-crafted features, the features extracted
by deep learning are hierarchical: both of the low-level and high-level features can be extracted, which
would be more comprehensive and robust for reconstructing HR HSI. In addition, deep learning is
data-driven; it does not rely on any assumption or prior knowledge. After the off-line training, only
feed forward computation is needed in the testing stage of deep learning, which would make the HSI
reconstruction fast. Therefore, the performance is expected to be improved if deep learning is applied
to the spatial enhancement of HSI.

Among the typical deep learning models, convolutional neural networks (CNN) are the most
widely used model for single image enhancement. Several CNN-based image super-resolution
methods has been proposed [29–33]. The success of CNN in image super-resolution could be
summarized by the following three points. Firstly, CNN is built upon 2-D convolution computation,
which could naturally exploit the spatial correlation of images. Secondly, CNN with deep architecture
has large capacity and flexibility for representing the mapping between LR and HR images [34].
Thirdly, compared with other deep learning models, such as stacked auto-encoders (SAE) [35], due to
the weight sharing and local connection scheme, CNN often has fewer connections, and is less prone
to over-fitting [36].

Inspired by the success of CNN in single image enhancement, in this study, we propose a
deep CNN with a two-branch architecture for the fusion of HSI and MSI. In order to exploit the
spectral correlation of HSI and fuse the MSI, the spectrum of LR HSI and the corresponding spatial
neighborhood in HR MSI is used as input pair of the network. We extract the features from the
spectrum of LR HSI and the corresponding neighborhood in MSI with the two CNN branches. In order
to fully fuse the information extracted from HSI and MSI, the extracted features of the two branches
are concatenated and then fed to fully connected (FC) layers. The final output of the FC layers is the
spectrum of the expected HR HSI.

We consider three main contributions in this work:

• We propose learning the mapping between LR and HR HSIs via deep learning, which is of high
learning capacity, and is suitable to model the complex relationship between LR and HR HSIs.
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• We design a CNN with two branches extracting the features in HSI and MSI. This network could
exploit the spectral correlation of HSI and fuse the information in MSI.

• Instead of reconstructing HSI in band-by-band fashion, all of the bands are reconstructed jointly,
which is beneficial for reducing spectral distortion.

The rest of this paper is organized as follows. In Section 2, some basics on deep learning-based
image super-resolution are presented. In Section 3, we give the proposed HSI-MSI fusion method
based on deep learning, including the architecture of the network and the training scheme. Experiment
results on the simulated and real HSI are presented in Section 4. Discussions on the experiment results
are in Section 5. We make the conclusions in Section 6.

2. Background of CNN Based Image Super-Resolution

CNN has been successfully applied to spatial enhancement of single images [29–33]. In [29],
Dong et al. proposed a super-resolution CNN network (SRCNN). As shown in Figure 1, the CNN
architecture for super-resolution is composed of several convolutional layers. The input of the network
is the LR image, which is first up-scaled to the same size of its HR version. Activity of the i-th feature
map in the l-th convolutional layer can be expressed as [36]

Fl
i = g(bl

i + ∑
j

wl
i,j ∗ Fl−1

j ) (1)

where Fl−1
j ∈ Rp×q is the j-th feature map in the (l − 1)-th layer that connected to Fl

i in the l-th

convolutional layer. p, q are the number of rows and columns of Fl−1
j . wl

i,j ∈ Rw×w is the convolutional

kernel for Fl−1
j associated with the i-th output feature Fl

i , and w is the size of the kernel. bl
i is bias.

∗ denotes the convolutional operator. The size of Fl
i is (p− w + 1)× (q− w + 1). g(·) is a nonlinear

activation function, such as rectified linear units (ReLU) function g(x) = max(0, x) [36]. The output
of the network is the expected HR image. In the training stage, the mapping function between the
up-scaled LR and HR images can be learned and represented by the CNN network. In the testing
stage, the HR image is reconstructed from its LR counterpart with the learned mapping function.
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Figure 1. A typical CNN architecture for super-resolution of single image.

Inspired by this idea, some other CNN based super-resolution methods have also been proposed.
For example, a faster SRCNN (FSRCNN) was proposed by adopting a deconvolution layer and
small kernel size in [30]. Kim et al. [31] pointed out that increasing the depth of CNN is helpful
for improving the super-resolution performance. A very deep CNN for super-resolution (VDSR)
was proposed and trained with a residual learning strategy in [31]. In [32], the authors proposed
an end-to-end deep and shallow network (EEDS) composed of a shallow CNN and a deep CNN,
which restored the principle component and the high-frequency component of the image respectively.
In order to reduce the difficulty of enhancing the resolution by a large factor, the authors in [33]
proposed a gradual up-sampling network (GUN) composed of several CNN modules, in which each
CNN module enhanced the resolution by a small factor.

Other than single image super-resolution, CNN also shows the potential in HSI super-resolution.
The mapping between LR and HR HSIs can be learned for super-resolution by different deep learning
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models, such as 3D-CNN [37]. A deep residual CNN network (DRCNN) with spectral regularizer
was proposed for HSI super-resolution in [38]. In [39], a spectral difference CNN (SDCNN) was
proposed, which learns the mapping of spectral difference between LR and HR HSIs. CNN has also
been applied to pan-sharpening. In [40], HR panchromatic image was stacked with up-scaled LR
MSI to form an input cube, a pan-sharpening CNN network (PNN) was used to learn the mapping
between the input cube and HR MSI. A deep residual PNN (DRPNN) model was proposed to boost
PNN by using residual learning in [41]. In [42], in order to preserve image structures, the mapping
was learned by a residual network called PanNet in the high-pass filtering domain, rather than the
image domain. Multi-scale information could be exploited in mapping learning. In [43], Yuan et al.
proposed a multi-scale and multi-depth CNN (MSDCNN) for pan-sharpening, whereby each layer
was constituted by filters with different sizes for the multi-scale features.

The above CNN-based super-resolution methods are also summarized in Table 1. Despite the
success of CNN in super-resolution and pan-sharpening, two issues still exist when applying deep
learning to HSI super-resolution. On the one hand, the CNN models for single image super-resolution
mainly deal with the spatial domain, while for HSI, the deep learning model should also exploit
the spectral correlation of HSI, and jointly reconstruct different bands. On the other hand, some
auxiliary data (e.g., MSI) of the same scene with HSI is often available; these auxiliary data can provide
complementary information for HSI super-resolution. The means to fuse HSI with these auxiliary data
in the deep learning framework still lacks study.

Table 1. A summary of CNN based image super-resolution methods.

Name Descriptions Usage and Limitations

SRCNN [29] a CNN with three layers

single image super-resolution; can not
be directly applied to HSI

VDSR [31] a very deep CNN; residual learning is used

EESS [32] deep CNN branch restores image details; shallow CNN
branch restores principal component

GUN [33] cascade of several CNN module; each module enhance image
by a small factor

FSRCNN [30] accelerated version of SRCNN; deconvolution layer is used

3D-CNN [37] 3D-CNN; 3D convolution in each layer HSI super-resolution; can not fuse
auxiliary data (e.g., MSI)DRCNN [38] residual CNN; spectral regularizer is used in loss function

SDCNN [39] CNN to learn the spectral difference

PNN [40] CNN for pan-sharpening

MSI pan-sharpeningDRPNN [41] residual CNN for pan-sharpening

PanNet [42] residual CNN; learn mapping in high-frequency domain

MSDCNN [43] two CNN branches with different depths; multi-scale kernels
in each convolutional layer

3. HSI and MSI Fusion Based on Two-Branches CNN

3.1. The Proposed Scheme of Deep Learning Based Fusion

The previous deep learning-based single image super-resolution methods learn the mapping
between LR and HR images in the spatial domain. In this study, we propose learning the mapping
between LR and HR HSIs in the spectral domain, where the relationship between LR and HR HSIs is
similar to that of the spatial domain. We give an example in Figure 2. The left image in Figure 2a is an
original HR image cropped from AVIRIS Indian pine data. The right image in Figure 2a is a simulated
LR image, which is firstly down-sampled from the HR HSI by a factor of two, and then up-scaled to
the same size of the HR HSI. In Figure 2, it can be seen that the LR image is highly correlated with
its HR version, but that the LR image is blurred, and that some high-frequency component is missed
in the LR image. In Figure 2b, we select two different land-covers and give their spectra. It is clear
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that the spectrum in the LR HSI is also highly correlated with its counterpart in the HR HSI, and some
high-frequency component in the spectrum of LR HSI is missed, as shown in Figure 2b.

Therefore, the mapping between LR and HR HSIs in the spectral domain has a similar pattern to
that of the spatial domain. Instead of learning the mapping in the spatial domain, in this study, we learn
the mapping between the spectra of LR and HR HSIs. Three advantages are considered here. Firstly,
the deep learning network extracts features from the spectrum of LR HSI, the spectral correlation
of HSI could be exploited by deep learning. Secondly, the deep learning network would output
the spectrum of the expected HR HSI, so all of the bands of HR HSI could be jointly reconstructed,
which is beneficial for reducing the spectral distortion. Thirdly, we propose to extract features from
the spectrum of LR HSI. Compared with extracting features from a 3D HSI block, this involves less
computation and lower network complexity.

We propose a framework of deep learning based HSI-MSI fusion in Figure 3. A deep learning
network is used to model the mapping between the spectra of LR and HR HSIs. In order to fuse MSIs,
we should also extract the features from the MSIs with the deep learning model. The features extracted
from the HSI and MSI would be fused by the deep learning network. After learning the mapping
function, the deep learning model could reconstruct the spectrum of the HR HSI.
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3.2. Architecture of the Two Branches CNN for Fusion

According to the framework in Figure 3, we design a CNN model with a two-branch architecture
for HSI-MSI fusion, as shown in Figure 4. The two CNN branches are devoted to extracting the features
from the LR HSI and the HR MSI. The LR HSI is firstly up-scaled to the same size with the HR MSI,
features are extracted by the two branches from the spectrum of each pixel in the up-scaled HSI, and
its corresponding spatial neighborhood in the HR MSI. The HSI branch takes spectrum sLR

n of the n-th
pixel in the up-scaled HSI as input, after l layers of convolutional operation in Equation (1), we could
extract features FHSI

l(sLR
n ) from the LR HSI. It should be noted that the input sLR

n is a 1-D signal.
Therefore, all of the convolutional operations in this branch reduce to 1-D computation, so all of the
convolutional kernels and feature maps per convolutional layer in this branch reduce to 1-D case.

In order to fuse the spatial information in the MSI of the same scene, the corresponding spatial
neighboring block PHR

n ∈ Rr×r×b in the MSI (as shown in the red box in Figure 4) of the n-th pixel is
used as input for the MSI branch, where r is block size (it is fixed to 31 × 31 in the experiment), and b is
the number of bands of MSI. All bands in MSI are used for fusion in this branch. After l convolutional
layers in this branch, we can extract features FMSI

l(PHR
n ) from the MSI.
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It is noted that FHSI
l(sLR

n ) and FMSI
l(PHR

n ) are obtained by vectorizing the feature maps of the
HSI and MSI branches respectively. In order to fuse the information of HSI and MSI, we concatenate
the extracted features FHSI

l(sLR
n ) and FMSI

l(PHR
n ), then simultaneously feed them to the FC layers.

The output of the (l + 1)-th layer is

Fl+1(sLR
n , PHR

n ) = g
{

Wl+1 · [FHSI
l(sLR

n )⊕ FMSI
l(PHR

n )] + bl+1
}

, (2)

where Wl+1 and bl+1 are the weight matrix and the bias of the FC layer, respectively. ⊕ means
concatenating the HSI features and the MSI features. FC layers are adopted here because they could
fully fuse the information of HSI and MSI. After several FC layers, the output of the last FC layer is the
reconstructed spectrum of the expected HR HIS

ŝHR
n = WL · FL−1(sLR

n , PHR
n ) + bL, (3)

where WL and bL are the weight matrix and the bias of the L-th FC layer, respectively. FL−1(sLR
n , PHR

n )

is the feature vector of the (L − 1)-th FC layer. All the convolutional kernels, weight matrices and
bias values in the network are trained in an end-to-end fashion. In the testing stage, we extracted the
spectrum of the up-scaled HSI from each pixel and its corresponding neighborhood block in the HR
MSI, then fed them to the trained network. The output of the network is the spectrum of the expected
HR HSI. After putting back the reconstructed spectrum to each pixel, a HR HSI could be obtained.
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In the training stage, the LR HSI is firstly up-scaled to the same size of the HR MSI. Although the
up-scaled HSI has the same size with the HR HSI, it is still blurring, as shown in Figure 4. The purpose
of up-scaling is to match the size of LR HSI to that of HR MSI and HR HSI. This strategy has also
been adopted in other deep learning-based image super-resolution methods, for example, in [29,30,34].
The deep learning model is trained to learn the mapping between up-scaled HSI and HR HSI. In the
testing stage, we should also firstly up-scale the LR HSI to the size of the HR HSI using the same
interpolation algorithm as the training stage, then feed it to the trained deep learning network. In this
way, an HR HSI with better quality could be recovered.

3.3. Training of the Two Branches CNN

All the convolutional kernels, weight matrices, and bias values in the network are trained
by minimizing the reconstruction error of the HR HSI spectra. The Frobenius norm is used to
measure the reconstruction error in the loss function. The set of training samples is denoted as{

sLR
n , PHR

n , sHR
n
}

, (n = 1, 2, . . . N), and the loss function is written as

J =
1
N

N

∑
n=1
||sHR

n − ŝHR
n ||

2
F, (4)

where N is number of training samples. For the n-th training sample, sLR
n is the spectrum of LR HSI,

PHR
n is the corresponding spatial neighborhood in HR MSI, and sHR

n is the spectrum of HR HSI. ŝHR
n is

the reconstructed spectrum of HR HSI. The loss function is optimized using the stochastic gradient
descent (SGD) method with standard back-propagation [44].

4. Experiment Results

In this section, the performance of the proposed fusion algorithm (denoted as Two-CNN-Fu) is
evaluated on several simulated and real HSI datasets. We first evaluate the proposed method on the
simulated data by comparing it with other state-of-the-art fusion methods. In order to demonstrate the
applicability of the proposed method, we also apply it on real spaceborne HSI-MSI fusion. Because
the original HR HSI is not available in this case, and there is no reference HSI for assessment,
we use our previously proposed no-reference HSI quality assessment method in [45] to evaluate
the fusion performance; land-cover classification accuracy of the fused HSI is also used to evaluate the
fusion performance.

4.1. Experiment Setting

Two datasets are used in the experiment. The first dataset was collected by an Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) sensor [46], which consists of four images captured over
Indian Pines, Moffett Field, Cuprite, and Lunar Lake sites with dimensions 753 × 1923, 614 × 2207,
781 × 6955 and 614 × 1087, respectively. The spatial resolution is 20 m. The dataset was taken in the
range of 400~2500 nm, with 224 bands. After discarding the water absorption bands and noisy bands,
162 bands remained. The second one is Environmental Mapping and Analysis Program (EnMAP) data,
which was acquired by HyMap sensor over Berlin district on August 2009 [47,48]. The size of this data
is 817 × 220 with spatial resolution 30 m. There are 244 spectral bands in the range of 420~2450 nm.

Higher resolution MSIs as relative to future earth observation hyperspectral sensors are available.
But due to the fact that earth observation HSIs with reference (at higher spatial resolution for evaluation)
are not available, simulations are often used. The above HSI datasets are regarded as HR HSI and
reference image, and both LR HSI and HR MSI are simulated from them. The LR HSI are generated
from the reference image via spatial Gaussian down-sampling. The HR MSI is obtained by spectrally
degrading the reference image with the spectral response function of Landsat-7 multispectral imaging
sensor as filters. There are six spectral bands of the simulated MSI, which cover the spectral regions of
450~520 nm, 520~600 nm, 630~690 nm, 770~900 nm, 1550~1750 nm, and 2090~2350 nm, respectively.
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We crop two sub-images of 256 × 256 from Indian pines and Moffett Field from the AVIRIS dataset,
and one sub-image of 256 × 160 from Berlin from the EnMAP dataset as testing data. Fifty thousand
samples are extracted for training each Two-CNN-Fu model. There is no overlapping between the
testing region and the training region. The network is trained on the down-sampled data; the original
HR HSI does not appear in training, and is only used as an assessment reference.

The network parameters of our deep learning model are given in Table 2. The deep learning
network needs to be initialized before the training. All of the convolutional kernels and weight matrix of
the FC layers are initialized from Gaussian random distribution, with standard variance of 0.01 and a
mean 0. The bias values are initialized to 0. The parameters involved in the standard stochastic gradient
descent method are learning rate, momentum, and batch size [44]. The learning rate is fixed at 0.0001,
momentum is set to 0.9, and the batch size is set to 128. The number of training epochs is set to 200.

Table 2. The parameter setting of the network architecture.

Number of filters per conv. layer 20 (HSI branch)
30 (MSI branch)

Size of filter per conv. layer 45 × 1 with stride 1 (HSI branch)
10 × 10 with stride 1 (MSI branch)

Number of neurons per FC layer 450 (The first two FC layers)
Number of HSI bands (The last FC layer)

Number of conv. layers 3 (HSI branch)
3 (HSI branch)

Number of FC layers 3

4.2. Comparison With State-of-the-Art Methods

In this section, we compare our method with other state-of-the-art fusion methods. The
compared methods are: the coupled nonnegative matrix factorization (CNMF) method [6], the sparse
spatial-spectral representation method (SSR) [12], and the Bayesian sparse representation method
(BayesSR) [13]. The Matlab codes of these methods are released by the original authors. The parameter
settings in the compared methods first follow the suggestions from the original authors; we then
empirically tune them, to achieve the best performance. The number of endmembers is a key parameter
for the CNMF method; it is set to 30 in the experiment. The parameters in the SSR method include the
number of dictionary atoms, the number of atoms in each iterations, and the spatial patch size, which
are set to 300, 20, and 8 × 8, respectively. The parameters in the BayesSR method consist of the number
of inferencing sparse coding in Gibbs sampling process, and the number of iterations of dictionary
learning, which are set to 32 and 50,000, respectively. It is noted that all the compared methods fuse
LR HSI with HR MSI. Although there are some deep learning-based HSI super-resolution methods,
such as 3D-CNN [37], only LR HSI was exploited in these methods. Therefore, they are not used for
comparison for reasons of fairness.

The fusion performance is evaluated by peak-signal-noise-ratio (PSNR, dB), structural similarity
index measurement (SSIM) [49], feature similarity index measurement (FSIM) [50], and spectral angle
mean (SAM). We calculate PSNR, SSIM, and FSIM on each band, and then compute the mean values
over the bands. The indices on the three testing data are given in Tables 3 and 4. The best indices
values are highlighted in bold.

It can be seen that our proposed Two-CNN-Fu method has competitive performance on the
three testing data. In Table 3, the PSNR, SSIM, and FSIM of our results are higher than those of
compared methods, which means that our fusion results are closer to the original HR his, with fewer
errors. The SSR method is based on spatial-spectral sparse representation; a spectral dictionary is first
learned with the sparsity, and then combined with the abundance of MSI to reconstruct the HR HSI.
While in the CNMF method, the endmember of LR HSI and the abundance of MSI are alternatively
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estimated in a coupled way, the estimated endmember and the abundance would be more accurate,
so CNMF could achieve better performance than SSR. The BayesSR method learns the dictionary in a
non-parametric Bayesian sparse coding framework, and often performs better than the parametric SSR
method. The best performance is achieved by Two-CNN-Fu on the three testing data. Two-CNN-Fu
extracts hierarchical features, which are more comprehensive and robust than the hand-crafted features
in [6,12,13]. The performance of Two-CNN-Fu demonstrates the effectiveness and potential of deep
learning in the HSI-MSI fusion task. In order to verify the robustness over a larger resolution ratio
between LR HSI and HR MSI, we also simulate the LR HSI by a factor of four, and then fuse it with
MSI. The Two-CNN-Fu also performs better than other methods, as shown in Table 4. The PSNR
curves over the spectral bands are presented in Figure 5. It can be found that the PSNR values of
Two-CNN-Fu are higher than compared methods in most bands.

Table 3. The evaluation indices of different fusion methods on the three testing data by a factor of two.

Testing Data Index SSR [12] BayesSR [13] CNMF [6] Two-CNN-Fu

Indian pines

PSNR (dB) 31.5072 33.1647 33.2640 34.0925
SSIM 0.9520 0.9600 0.9650 0.9714
FSIM 0.9666 0.9735 0.9745 0.9797
SAM 3.6186◦ 3.4376◦ 3.0024◦ 2.6722◦

Moffett Field

PSNR (dB) 28.3483 31.0965 31.4079 31.7860
SSIM 0.9317 0.9499 0.9568 0.9661
FSIM 0.9558 0.9694 0.9734 0.9788
SAM 3.9621◦ 3.7353◦ 3.1825◦ 2.7293◦

Berlin

PSNR (dB) 30.0746 29.8009 32.2022 34.8387
SSIM 0.9373 0.9272 0.9569 0.9684
FSIM 0.9512 0.9468 0.9705 0.9776
SAM 2.8311◦ 3.2930◦ 1.4212◦ 1.0709◦

Table 4. The evaluation indices of different fusion methods on the three testing data by a factor of four.

Testing Data Index SSR [12] BayesSR [13] CNMF [6] Two-CNN-Fu

Indian pines

PSNR (dB) 30.6400 32.9485 32.7838 33.6713
SSIM 0.9516 0.9601 0.9603 0.9677
FSIM 0.9651 0.9730 0.9696 0.9769
SAM 3.7202◦ 3.5334◦ 3.1227◦ 2.8955◦

Moffett Field

PSNR (dB) 27.3827 29.4564 30.7893 31.4324
SSIM 0.9181 0.9274 0.9509 0.9621
FSIM 0.9477 0.9561 0.9684 0.9752
SAM 4.7584◦ 4.4500◦ 3.3972◦ 2.8697◦

Berlin

PSNR (dB) 29.7133 29.2131 30.1242 31.6728
SSIM 0.9357 0.9265 0.9464 0.9531
FSIM 0.9516 0.9420 0.9586 0.9608
SAM 2.9062 5.6545 3.8744 2.2574
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It is worth noting that the result of our Two-CNN-Fu method has the lowest spectral distortion
among the compared methods in most cases, as shown in Tables 3 and 4. Our deep learning
network directly learns the mapping between the spectra of LR and HR HSIs. The objective function
Equation (4) for training the network aims at minimizing the error of the reconstructed spectra
of HR HSI. In addition, instead of reconstructing HSI in a band-by-band way, our deep learning
model jointly reconstructs all bands of HSI. These two characteristics are beneficial for reducing the
spectral distortion.

We present parts of the reconstructed HSIs in Figures 6–8. In order to visually evaluate the
quality of different fusion results, we also give pixel-wise root mean square error (RMSE) maps, which
reflect the errors of reconstructed pixels over the whole bands. It is clear that the fusion result of our
Two-CNN-Fu method has fewer errors than the compared methods. The compared methods rely
on hand-crafted features such as the dictionary. Their RMSE maps have materials-related patterns,
which may be caused by the errors introduced in dictionary learning or endmember extraction.
Our Two-CNN-Fu method reconstructs the HR HSI based on the mapping function between LR and
HR HSIs, which is trained by minimizing the error of the reconstructed HR HSI, so the fusion result of
Two-CNN-Fu has fewer errors.
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Figure 6. Reconstructed images (band 70) and root mean square error (RMSE) maps of different
fusion results by a factor of four. The testing image is cropped from Indian pines of AVIRIS data with
size 256 × 256. (a) result of SSR [12]; (b) result of BayesSR [13]; (c) result of CNMF [6]; (d) result of
Two-CNN-Fu; (e) RMSE map of SSR [12]; (f) RMSE map of BayesSR [13]; (g) RMSE map of CNMF [6];
(h) RMSE map of Two-CNN-Fu.

4.3. Applications on Real Data Fusion

In order to investigate the applicability of the proposed method, we apply the proposed method to
real spaceborne HSI-MSI data fusion. The HSI data was collected by Hyperion sensor, which is carried
on Earth Observing-1 (EO-1) satellite. This satellite was launched in November 2000. The MSI data was
captured by the Sentinel-2A satellite, launched on June 2015. The spatial resolution of Hyperion HSI is
30 m. There are 242 spectral bands in the spectral range of 400~2500 nm. The Hyperion HSI suffers from
noise; after removing the noisy bands and water absorption bands, 83 bands remained. The Sentinel-2A
satellite provides MSIs with 13 bands. We select four bands with 10 m spatial resolution for the fusion.
The central wavelengths of these four bands are 490 nm, 560 nm, 665 nm, and 842 nm, and their
bandwidths are 65 nm, 35 nm, 30 nm, and 115 nm, respectively.
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Figure 8. Reconstructed image (band 200) and root mean square error (RMSE) maps of different fusion
results by a factor of two. The testing image is cropped from Berlin of EnMAP data with size 256 × 160.
(a) result of SSR [12]; (b) result of BayesSR [13]; (c) result of CNMF [6]; (d) result of Two-CNN-Fu;
(e) RMSE map of SSR [12]; (f) RMSE map of BayesSR [13]; (g) RMSE map of CNMF [6]; (h) RMSE map
of Two-CNN-Fu.

The Hyperion HSI and the Sentinel-2A MSI in this experiment were taken over Lafayette, LA, USA
in October and November, 2015, respectively [51]. We crop sub-images to 341 × 365 and 1023 × 1095
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as study areas from the overlapped region of the Hyperion and Sentinel data, as shown in Figure 9.
The remainder of the overlapped region is used for training the Two-CNN-Fu network.

In this experiment, our goal is to fuse the 30 m HSI with the 10 m MSI, and then generate a 10 m
HSI, so a Two-CNN-Fu network that could enhance HSI by a factor of three should be trained. In the
training stage, we first down-sample the 30 m Hyperion HSI and 10 m Sentinel-2A MSI into 90 m and
30 m, by a factor of three, respectively. Then we train a Two-CNN-Fu network that could fuse the
90 m HSI with the 30 m MSI, and reconstruct the original 30 m HSI. This network could enhance HSI
by a factor of three. We assume that it could be transferred to the fusion task of 30 m HSI and 10 m
MSI. By applying the trained network to the 30 m HSI and the 10 m MSI, an HSI with 10 m resolution
could be reconstructed. The network parameters are set according to Table 2, except that the number
of convolutional layers in the HSI branch is one, because we only use 83 bands of the Hyperion data.
The maximal number of convolutional layers in the HSI branch is one, in this case.

The fusion results of different methods on the study area are presented in Figure 10. The size of
the fusion result is 1023 × 1095. In order to highlight the details of the fusion results, we also display
two small areas by enlarging them in Figures 11 and 12. It is clear that there is some noise in the
results of SSR and CNMF, as shown in Figure 11b,d. In Figure 12, we also find that some details in
the results of SSR and CNMF are blurred, as indicated in the dashed box. The results of BayesSR and
Two-CNN-Fu are sharper and cleaner, and our Two-CNN-Fu method produces the HR HSI with higher
spectral fidelity. It is clear that the spectral distortion of BayesSR is heavier than our Two-CNN-Fu
results, if we compare them with the original LR images. The color of the BayesSR results seems to
be darker than the original LR image. Spectral distortion in the fusion would affect the accuracy of
applications such as classification.
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Figure 9. The experiment data taken over Lafayette, (a) illustration of Hyperion and Sentinel-2A data,
the red part is Hyperion data, the green part is Sentinel-2A data, the white part is the overlapped
region, the yellow line indicates the study area; (b) color composite (bands 31, 21, 14) of Hyperion data
in the study area with size 341 × 365; (c) color composite (bands 4, 3, 2) of Sentinel-2A data in the study
area with size 1023 × 1095.

It is noted that the Hyperion HSI and the Sentinel-2A MSI in this experiment were not captured
at the same time; the temporal difference is about one month. Some endmembers may change during
this month, which may be one of the factors that lead to the spectral distortion. Even though nearly
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all of the fusion results in Figures 11 and 12 suffer from the spectral distortion, our Two-CNN-Fu
method generates results with less spectral distortion, which demonstrates the robustness of the
proposed method.
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(c) result of CNMF [6]; (d) result of Two-CNN-Fu.

In order to assess the performance quantitatively, we evaluate the fusion results using the
no-reference HSI quality assessment method in [45], which would give quality scores for each
reconstructed HSI. In this no-reference assessment method, some pristine HSIs are needed as training
data to learn the benchmark quality-sensitive features. We use the original LR Hyperion data
after discarding the noisy bands as training data. The quality score measures the distance of the
reconstructed HSI and the pristine benchmark; a lower score value means better quality. The quality
scores of different fusion results are given in Table 5. The best index is highlighted in bold. It is clear
that the score of our fusion result is lower than others. This means that our method is competitive with
other compared methods. The larger score values of the compared methods may be caused by the
spectral distortion, or the noise in the fusion results.
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Table 5. The no-reference quality assessment scores of different results on Hyperion-Sentinel fusion.

Methods SSR [12] BayesSR [13] CNMF [6] Two-CNN-Fu

Scores [45] 22.8317 20.9626 22.8317 20.2425
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Figure 12. False color composite (bands 45, 21, 14) of the enlarged area in the yellow box of Figure 10,
size of the area is 200 × 200, (a) the original 30 m Hyperion data; (b) fusion result of SSR [12]; (c) fusion
result of BayesSR [13]; (d) fusion result of CNMF [6]; (e) fusion result of Two-CNN-Fu.

Land-cover classification is one of the important applications of HSI. In this experiment, we test
the effect of different fusion methods on the land-cover classification. Land-cover information is
provided by Open Street Map (OSM) layers [52]. According to the OSM data, there are 12 classes of
land-covers in the study area. We select parts of the pixels from each class as ground truth, as shown in



Remote Sens. 2018, 10, 800 15 of 23

Figure 13 and Table 6. Two classifiers, Support Vector Machine (SVM) [53] and Canonical Correlation
Forests (CCF) [54], are used in the experiment due to their stability and good performance. The SVM
classifier is implemented with the LIBSVM toolbox [55], and the radial basis function is used as kernel
function of SVM. The regularization parameters in SVM are determined by five-fold cross-validation in
the range of [2−10, 2−9, . . . , 219, 220]. The parameter involved in the CCF classifier is the number of trees;
we set it to 200 in the experiment. Fifty samples of each class are randomly chosen for training the
classifiers; the remainder of the ground truth are used as testing samples. We repeat the classification
experiment 10 times, and then report the mean value and standard variance of overall accuracy in
Table 7. The best indices are highlighted in bold.

Table 6. The number of ground truth labeled in the study area.

Class Name Training Samples Testing Samples

forest 50 1688
grass 50 466
fallow 50 1856
garden 50 226

park 50 836
commercial 50 548
industrial 50 1618
residential 50 524

parking 50 918
road 50 1053
pond 50 375

reservoir 50 397
Total 600 10,505
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Table 7. The Overall Accuracy (OA) of different fusion results.

Classifier SSR [12] BayesSR [13] CNMF [6] Two-CNN-Fu

SVM 81.53 ± 1.18% 77.01 ± 0.97% 86.54 ± 0.98% 89.81 ± 0.86%
CCF 85.04 ± 0.64% 80.74 ± 0.73% 89.75 ± 1.50% 94.15 ± 0.47%
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In Table 7, it can be found that our fusion result can lead to competitive classification accuracy on
both SVM and CCF classifiers, and the classification results have similar trend on the two classifiers.
The classification accuracy of our fusion result is higher than that of the other three fusion methods.
As we can observe in Figures 11 and 12, the spectral distortion and noise of our fusion method
is less than that of other methods, which may explain why our classification accuracy is higher.
The classification map of Two-CNN-Fu fusion results is given in Figure 14. In Figure 14, most of the
land-covers can be classified correctly; even some details, such as roads and residential areas can be
classified well with the fusion enhanced image. Misclassification of some land-covers, such as forests
and gardens, may be caused by the similarity in spectra between these two land-covers. It is worth
noting that the fusion method can not be absolutely assessed by the classification accuracy, because our
labeled ground truth is only a subset of the study area, and the classification performance also depends
on the classifier. The aim of this classification experiment is to demonstrate that our proposed fusion
method has the potential to be applied in real spaceborne HSI-MSI fusion, and the reconstructed HR
HSI could result in competitive classification performance.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 23 
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classifier is CCF.

5. Some Analysis and Discussions

5.1. Sensitivity Analysis of Network Parameters

The architecture parameters of the deep learning model need to be tuned to achieve satisfactory
performance. It is theoretically hard to determine the optimal combination of these parameters. We
empirically tune the architecture parameters of Two-CNN-Fu, which are given in Table 2. In this
sub-section, sensitivity analysis of Two-CNN-Fu over these parameters is presented. We vary one
architecture parameter and fix others, then observe the corresponding fusion performance on a
validation set, which consists of 50 randomly selected patches of size 64× 64. It is noted that there is no
overlapping among the training set, the validation set, and the testing images. The PSNR indices of the
sensitivity analysis over the network parameter are given in Table 8. The best indices are highlighted
in bold.



Remote Sens. 2018, 10, 800 17 of 23

Table 8. PSNR (dB) indices of the sensitivity analysis over the network parameters.

Network Parameter Indian Pines Moffett Field Berlin

Size of conv. kernels in HSI branch
40 × 1 31.7423 31.7852 30.8647
45 × 1 32.3584 32.6985 31.3642
50 × 1 31.0257 31.3584 31.4375

Size of conv. kernels in MSI branch
9 × 9 32.3351 32.5304 30.9785

10 × 10 32.3584 32.6985 31.3642
11 × 11 31.6574 31.8458 30.9775

Number of kernels per conv. layer in
HSI branch

10 31.1474 31.2045 30.9775
20 32.3584 32.6985 31.3642
30 32.1054 32.5447 31.2875

Number of kernels per conv. layer in
MSI branch

20 32.2446 32.1454 31.0847
30 32.3584 32.6985 31.3642
40 31.7822 32.2841 31.1765

Number of neurons per FC layer
400 32.0454 32.3747 30.8749
450 32.3584 32.6985 31.3642
500 32.2042 32.4876 31.4756

Size of input patch of MSI branch
29 × 29 31.8624 32.3414 30.6987
31 × 31 32.3584 32.6985 31.3642
33 × 33 31.7457 31.9771 31.0876

Number of FC layers
2 31.8634 31.7985 31.1442
3 32.3584 32.6985 31.3642
4 32.2047 32.3847 31.3970

Number of conv. layers
2 31.9852 32.3247 31.1093
3 32.3584 32.6985 31.3642
4 - - 31.2595

The size of convolutional kernel should be large enough to collect enough information from the
spectrum of HSI and the corresponding spatial neighborhood of MSI. As shown in Table 8, it can be
found that the kernel size of 45 × 1 in the HSI branch and 10 × 10 in the MSI branch could lead to the
best results in most cases. It is noted that such kernel size would not result in the best performance on
EnMAP Berlin. However, the extent of performance decrease is not significant, so we fix the kernel size
to 45 × 1 in the HSI branch and 10 × 10 in the MSI branch in the experiment.

The number of kernels per convolutional layer is also an important parameter. In Table 8, the best
performance is obtained when we set 20 convolutional kernels per layer in the HSI branch, and
30 convolutional kernels per layer in the MSI branch. If the number of kernels is smaller, the deep
learning network can not extract enough features for the fusion. With the increase of kernel number,
the network would become more complex, and more parameters need to be trained, and more training
data is required. This may explain the performance drop with the increased number of kernels.

Higher level features that contain information about the HSI and MSI would be learned by the FC
layers. The size of the learned features is determined by the number of neurons per FC layer. If the
size is too small, the capacity of the network would be limited. In our experiment, the best result is
achieved when the number of neurons is set to 450 per FC layer in most cases. When the number of
neurons increases, the performance declines.

The number of layers is an important parameter for deep learning model. With more layers, the
deep learning network would have a higher capacity, and could learn mapping functions that are more
complex. It is noted that the number of bands of AVIRIS Moffett Field and Indian pines data is 162, and
the maximal number of convolutional layers we can set is three, according to the architecture in Table 2.
In Table 8, it is clear that the best results can be obtained with three convolutional layers and three FC
layers in most cases. Therefore, we set three convolutional layers and three FC layers in our final network.

The sensitivity over the MSI patch size is also given in Table 8. It is worth noting that the network
parameters in Table 2 are selected with the fixed MSI patch size 31 × 31; this combination leads to the
best result in most cases. Therefore, an MSI patch that is smaller or bigger would result in a reduced
performance if we set the network parameters according to Table 2.
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The evolution of loss function values during the training are presented in Figure 15. The loss
function declines drastically in the first 20 epochs, then tends to be a constant after the big descent.
The loss function would decrease by a small margin after 160 epochs. Therefore, we set the number of
epochs to 200, which is adequate to converge to a local minimum and generate a satisfactory result.
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5.2. Robustness Analysis over Training Data

In the previous sections, we trained the Two-CNN-Fu network and tested the performance on data
collected by the same sensor. In this section, we investigate the robustness of the Two-CNN-Fu network
over the training data. We train the network on AVIRIS data and test the performance on EnMAP
Berlin data by transferring the pre-trained network to EnMAP Berlin data. Since the two sensors have
different numbers of spectral bands, the weight matrices of the first and the last FC layers need to be
fine-tuned on EnMAP data. Other layers of the pre-trained network could be transferred and utilized
directly. The evolution of the fusion performance over the epochs of fine-tuning is given in Figure 16.
It is clear that the fusion performance can approximate or even surpass the original network trained
on EnMAP data after only a few epochs of fine-tuning.

Although there is considerable difference in the spectral configurations of AVIRIS and EnMAP
data, the network trained on AVIRIS data can be generalized to EnMAP data after fine-tuning. This
can be explained by the hierarchy of deep learning. The bottom layers capture low-level features,
such as edges and corners. These features are generic, and could be transferred to different data or
sensors. The top layers extract features that are specific to the data, which need to be fine-tuned [56,57].
Therefore, when we apply Two-CNN-Fu to new data. Instead of training a whole network from scratch,
we could transfer a pre-trained network to the new data and fine-tune the FC layers with only a few
epochs. Satisfactory performance is expected to be achieved in this way.
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high-frequency features, such as the textures and edges in different orientations, could be extracted 
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Figure 16. Evolution of fusion performance over epochs of fine-tuning, the testing data is EnMAP
Berlin data, (a) the first and last FC layers are fine-tuned on EnMAP; (b) all of the three FC layers are
fine-tuned on EnMAP.

5.3. Visualization of the Extracted Features

To better understand the features extracted by the network, parts of the learned kernels and the
extracted features are visualized in this sub-section. In Figure 17, we show parts of the convolutional
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kernels in the MSI branch trained on EnMAP Berlin data. It can be observed that the convolutional
kernels in different layers reveal different patterns. For example, in Figure 17a, the first kernel in the
first row looks like Gaussian filter, whereas the first two kernels in the second row are like Laplacian
filters, which would extract high-frequency information, such as edges and textures. In Figure 17b,c,
the kernels in the second and third convolutional layers also reveal some patterns, but these kernels
are more abstract than those of the first layer.
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Figure 17. The kernels of different convolutional layers in MSI branch trained on EnMAP Berlin data,
(a) kernels of the first layer; (b) kernels of the second layer; (c) kernels of the third layer.

In Figure 18, we present parts of the feature maps in the MSI branch. The input MSI is simulated
from EnMAP Berlin data with size 128 × 128. As shown in the first three maps in Figure 18b, some
high-frequency features, such as the textures and edges in different orientations, could be extracted
in the first convolutional layer. This observation is also consistent with the patterns revealed by the
convolutional kernels in Figure 17a. Compared with the first convolutional layer, the feature maps in
the second and third convolutional layers are more abstract.
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We also give parts of the features extracted by different convolutional layers in the HSI branch
in Figure 19. The features are extracted from the spectrum located at (76,185) of the AVIRIS Indian
pines data. As shown in Figure 19a, the features extracted by the first convolutional layer in the HSI
branch are concerned with the shape and the high-frequency components. Similar to the MSI branch,
the features in the higher layers are more abstract than those of the first layer. Different layers extract
features from different perspectives; all these features would make contributions to the HSI and MSI
fusion task.Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 23 
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The training of Two-CNN-Fu is implemented on the Caffe platform [58], with a NVIDIA GTX 980Ti
GPU card. The training stage takes nearly two days if we set 200 epochs of training. Reconstructing the
HR HSI on the testing image costs less than 3 s; it is fast because there is only feed forward computation
in the testing stage. The comparison of running time of different fusion methods is shown in Table 9.

Table 9. Comparison of running time on the testing image.

Methods Testing Time

SSR [10] ~20 min
CNMF [5] ~1 min

BayesSR [11] ~10 h
Two-CNN-Fu ~3 s

6. Conclusions

In this paper, we propose a deep learning based HSI-MSI fusion method by designing a CNN
network with two branches which extract features from HSI and MSI. In order to exploit the spectral
correlation and fuse MSIs, we extract features from the spectrum of each pixel in an LR his, and its
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corresponding spatial neighborhood in MSI with the two CNN branches. The features extracted
from the HSI and MSI by the two branches are then concatenated and fed to FC layers, where the
information of HSI and MSI can be combined and fully fused. The output of the FC layers is the
spectrum of the expected HR HSI. In the experiment, other than the data simulated from the AVIRIS
and EnMAP dataset, we also apply the method to real spaceborne Hyperion-Sentinel data fusion.
The results show that our proposed method can achieve competitive performance on both simulated
and real data.
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