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Abstract: Monitoring the dynamics of the productivity of ocean water and how it affects fisheries
is essential for management. It requires data on proper spatial and temporal scales, which can
be provided by operational ocean colour satellites. However, accurate productivity data from
ocean colour imagery is only possible with proper validation of, for instance, the atmospheric
correction applied to the images. In situ water reflectance data are of great value due to the
requirements for validation and reflectance is traditionally measured with the Surface Acquisition
System (SAS) solar tracker system. Recently, an application for mobile devices, “HydroColor”, was
developed to acquire water reflectance data. We examined the accuracy of the water reflectance
measures acquired by HydroColor with the help of both trained and untrained citizens, under
different environmental conditions. We used water reflectance data acquired by SAS solar tracker and
by HydroColor onboard the BC ferry Queen of Oak Bay from July to September 2016. Monte Carlo
permutation F tests were used to assess whether the differences between measurements collected
by SAS solar tracker and HydroColor with citizens were significant. Results showed that citizen
HydroColor measurements were accurate in red, green, and blue bands, as well as red/green and
red/blue ratios under different environmental conditions. In addition, we found that a trained citizen
obtained higher quality HydroColor data especially under clear skies at noon.
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1. Introduction

Improved understanding of the long-term spatio-temporal productivity of coastal oceans is of
fundamental importance for the management of natural resources, especially fisheries [1]. However,
the scale of ocean productivity data is generally poor due to constraints related to research ship-based
data acquisition. Operational ocean colour satellites such as MODIS-AQUA, VIIRS, and Sentinel-3
can provide data at the required scale; however, data validation is required [2,3]. These satellites
measure water reflectance at different wavelengths, which is the basis for the models used to derive
concentration of chlorophyll, a proxy for the ocean’s productivity [4]. Limitations on the use of
satellite-derived reflectance measurements to retrieve accurate chlorophyll concentrations exist [5].
These limitations are generally a function of inaccurate atmospheric correction of the satellite measured
signal and consequently inability to relate this signal to chlorophyll concentrations [6–9].

The successful use of satellite data requires in situ data to validate both the atmospheric correction
and the chlorophyll derived concentrations [10]. Validation of atmospheric correction models, generally,
makes use of data acquired with the AERONET (atmospheric transmittance data) and AERONET-OC
(water reflectance data) sensors, which are globally distributed, but do not offer sufficient data in
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certain regions [11–13]. Specifically, on the west coast of Canada, there is a lack of sufficient in situ
water reflectance data for validation of atmospherically corrected imagery [9,14].

A variety of different instrumentations and techniques for measuring in situ water reflectance
exists [15,16]. For instance, the Hyperspectral Surface Acquisition System (HyperSAS, Satlantic Inc.,
Halifax, NS, Canada) is a common instrument used to measure above-water reflectance (Rrs) [17–19],
and has been used extensively in the Salish Sea [9,14,20–22]. Recently, the Surface Acquisition System
(SAS) solar tracker system, which tracks the position of the Sun for an optimal geometry of data
acquisition, has also been used on local waters [23]. A disadvantage of these instruments is that they
are both relatively expensive, thus making it difficult to acquire ocean reflectance on a large spatial
scale. An alternative is to engage the public, or “citizen scientists”, in ocean reflectance data acquisition
to improve the spatial and temporal domain of the data [24].

Citizen science generally refers to the participation of non-scientists in a scientific research
project [25]. Although the engagement of citizens allows researchers to gain data on a larger scale
with less cost, the quality of citizen scientist data could be a concern. Therefore, citizen science data
accuracy assessment is first assessed with regards to effectiveness for the scientific framework [26–28],
with consideration of accuracy based on providing specialized training [28], and statistical solutions
for potential biases [29].

Citizen science has been widely used in different fields, predominantly terrestrial
projects [27,28,30,31] and a few ocean related projects [32–35]. With increasing popularity of
sensor-equipped (e.g., inclinometer, digital compass, GPS, camera) and programmable mobile devices,
many mobile sensing applications have been developed and can be used to acquire water data
for scientific research [36]. Presently, there are many useful mobile sensing applications available
to citizens, such as: (1) “EyeonWater” (formerly “Citclops”) developed based on the Forel-Ule colour
index system for distinguishing the colours of water bodies [37]; (2) “Creek watch” for the public to
report the water flow rate and the amount of water trash [38]; (3)“Marine LitterWatch” for monitoring
different kinds of trash in the ocean [39]; (4) “Secchi3000” water quality measurement system for
measuring the Secchi depth and turbidity [40]; (5) “HydroColor” for monitoring water quality [41];
and (6) “Algal Watch” for evaluating occurrences of algae with both spatial and temporal scales [42].
To the best of our knowledge, EyeonWater, Algal Watch, and Marine LitterWatch have been used for
citizen marine data acquisition in published citizen science studies [42–44]. In addition, the accuracy of
EyeonWater measurements has been demonstrated in controlled laboratory conditions [45] and ocean
satellite reflectance [24]. Other than EyeonWater and Algal Watch, the accuracy of the information
derived by the public from these applications is still unknown.

We assessed the feasibility of using the HydroColor application to acquire water reflectance data
under different environmental conditions with the help of both trained and untrained citizens onboard
the British Columbia ferry Queen of Oak Bay across the Salish Sea. This assessment was performed
based on the comparison between citizen HydroColor data and SAS solar tracker data acquired
simultaneously on the ferry under different time and cloud cover conditions using Monte Carlo
permutation F tests. This project can potentially help with providing in situ Rrs data for validating
atmospheric correction of satellite imagery by increasing the spatial-temporal match-ups between in
situ Rrs and satellite imagery. This evaluation will allow us to consider expanding HydroColor data
acquisition to “fisher scientists”, an initiative of the Salish Sea Marine Survival project and Ocean
Networks Canada (https://marinesurvivalproject.com), thus providing data at a larger spatial scale.

2. Methods

2.1. Study Area

Sampling was conducted along the ferry route from Departure Bay, Nanaimo to Horseshoe Bay,
West Vancouver in the area of the Salish Sea, west coast of Canada (Figure 1). This ferry route crosses
the Strait of Georgia (SoG), which is a wide semi-enclosed sea approximately 220 km in length between
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the mainland of British Columbia and Vancouver Island [46]. The water productivity of the SoG
is profoundly affected by the outflow of the Fraser River, which generally peaks in June [47,48].
Phytoplankton abundance in the SoG varies seasonally, and is generally highest in the spring and
followed by a weaker boom in the fall [9,46]. This variability is associated with the Fraser River plume,
tidal mixing, wind, and cloud cover [48]. Turbidity in the SoG has been found to be high at the surface,
particularly in the spring and summer coinciding with the Fraser River freshet [49]. In this region,
measurements of above-water reflectance (Rrs) at visible and near infra-red wavelengths show a large
magnitude range from 0.001 to 0.027 sr−1 at 400–750 nm due to the variable concentrations of water
optical constituents [21]. Spectrally, Phillips and Costa [21] have shown that Rrs in the SoG is typically
low in the blue wavelengths, high in the green, and low again in the red wavelengths, typical of coastal
water bodies [50–52].

Figure 1. Map showing the study ferry route from Departure Bay, Nanaimo to Horseshoe Bay,
West Vancouver, in the Salish Sea.

2.2. Dataset

Rrs, turbidity, and chlorophyll-α (Chlα) measurements were acquired along the Queen of
Oak Bay ferry route between 1 July and 5 September 2016. Rrs was derived from data collected
by ferry passengers with the mobile application HydroColor, and an autonomous hyperspectral
radiometer system, SAS solar tracker system.

2.2.1. Citizen HydroColor Measurements

Citizen water reflectance data (Rrs,H) were collected by HydroColor developed by Leeuw and
Boss [41], and available on both Android and iOS mobile devices. This application uses the camera to
detect the light intensity coming from the water and sky, and then calculates the red, green, and blue
reflectance (denoted as Rrs,H(R), Rrs,H(G), and Rrs,H(B), respectively). HydroColor leverages the
GPS, compass, and inclinometer in mobile devices to ensure users obtain precise measurements
with an azimuth angle of 135◦ from the Sun and a zenith angle of 40◦ from the nadir according to
the optimal geometry defined by Mobley [53]. For measuring Rrs,H , the user takes a photo of an
18% exposure photography grey card, a photo of the sky, and a photo of the water in the correct
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direction denoted by green arrows (illustrated in Figure 2). These photos are used to derive downward
plane irradiance, sky radiance, and water leaving radiance, respectively. From these measurements,
water reflectances of red, green, and blue wavelengths are calculated, and turbidity (0-80 NTU),
concentration of SPM (g/m3), and the backscattering coefficient in the red spectra (m−1) are estimated
based on Gordon et al. [54] and Neukermans et al. [55].

Figure 2. HydroColor interfaces of: (a) data collection; and (b) analysis. The correct direction is set
when the lower green arrow rotates to align with the north arrow on the compass and the upper green
arrows are lined up with the short green line on the inclinometer in (a).

HydroColor measurements were acquired from July to September 2016 every Friday to Monday
during two ferry routes: morning (8:30–10:10 a.m.) with a solar zenith angle range from 40.5◦ to 67.6◦

and noon (12:50–2:30 p.m.) with a solar zenith angle range from 17.4◦ to 39.3◦ [56]. Three iPad mini 4
(Apple Inc., Cupertino, CA, USA) tablets with the HydroColor application were used to acquire data,
and two 18% photography grey cards were installed on the railing of the ferry deck for photo taking
(Figure 3).

Figure 3. The setting of 18% photography grey cards attached to the ferry railing.

As part of the BC Ferries and Parks Canada Coastal Naturalist Program, a biologist (the same
person for the entire sampling period), called a Coastal Naturalist (CN), was trained to use the
HydroColor application (trained citizen) before working with ferry passengers (FP, untrained citizens).
For quality control, only adults (age 18 or older) were invited to collect data. The established protocol
was that the CN gave a 25-min presentation prior to inviting FP to collect data, so a minimum level of
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information was provided to FP (Figure 4). A total of 446 FP were involved in data collection resulting
in a total of 1270 HydroColor samples acquired by CN and FP.

Figure 4. Coastal Naturalist doing presentation and helping passengers collect data.

HydroColor data and images were first sorted by environmental conditions: (1) cloud cover; and
(2) solar zenith (route time); and subsequently by (3) level of training (Table 1). Cloud cover conditions
affect the quality of the Rrs data because the reflectance of clouds is brighter than the background
sky and therefore produces cloud glitter effects [53]. The time effect was considered because, as the
solar zenith angle becomes larger, there is less radiance that is backscattered from the ocean water [57];
consequently, a lower reflectance signal is expected to be detected in the morning. Subsequently,
HydroColor data were classified into three categories according to photo quality within the white
square (Figure 5): perfect, good, and bad. A sample was classified as “perfect” if all three photos (water,
sky, and grey card) had no shadows or other contaminants (Figure 5a); as “good” if only one of them
was less than 1/3 contaminated (Figure 5b); and as “bad” if more than one photo was contaminated,
or if any of the water reflectance values were zero (Figure 5c). Typical reasons for bad photos were:
(1) shade covering grey card or water; (2) white foam or sun glint in the water photo; and/or (3) the
photo was entirely different from the object, for example a sky image captured for the photo titled
“water”. Conditions (1) and (2) are generally considered as main sources of contamination for Rrs

measurements [41,58,59]. Only perfect and good samples were considered in the statistical analyses.

Table 1. The levels of effects on HydroColor data quality.

Effects Fators Levels Description

Environmental
Conditions

Time Morning 8:30–10:10 a.m. with solar zenith angle 40.5◦–67.6◦

Noon 12:50–2:30 p.m. with solar zenith angle 17.4◦–39.3◦

Cloud Cover
Clear No cloud in the sky
Cloudy Patchy clouds in the sky
Overcast Clouds covering the sky

Training N/A Trained Data acquired by CN
Untrained Data acquired by FP
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Figure 5. Example of HydroColor measurements by quality: (a) perfect; (b) good; and (c) bad.

2.2.2. Autonomous SAS Solar Tracker Measurements

The SAS solar tracker was installed aboard the ferry to obtain precise Rrs measurements for
comparison with HydroColor. The system was mounted in the front of the upper deck of the vessel
to avoid capturing the vessel structure or its shadow in the measurements [23]. This instrument
has three sensors to simultaneously acquire high precision hyperspectral measurements of
water-surface radiance, Lt(λ), sky radiance, Ls(λ), and sky irradiance, Es(λ), where λ is the
wavelength from 350 to 800 nm, at a 3-nm resolution. The SAS solar tracker automatically adjusts
its sensors’ pointing angles to the correct geometry setting with respect to the vessel’s heading angle
and the local sun azimuth angle according to Hooker and Morel [60]. Measurements were acquired
continuously when the ferry was travelling and the solar zenith angle was less than 60◦ [56].

The raw SAS solar tracker data were processed by the automated raw data processing software
PySciDon [61] in a 90-s interval, and the above-water reflectance Rrs,SAS(λ) was calculated according
to Ruddick et al. [62]:

Rrs,SAS(λ) =
Lt(λ)− ρskyLs(λ)

Es(λ)
(1)

ρsky = 0.0256 + 0.00039W + 0.000034W2, when
Ls(750)
Es(750)

< 0.05 (2)

ρsky = 0.0256, when
Ls(750)
Es(750)

≥ 0.05 (3)

where ρsky is the proportion of sky radiance that is reflected off the surface of the water and is dependent
on wind speed W, and on the proportion of cloud cover in the sky radiance measurements. A similar
approach has been effectively used by other researchers in this region [9,14,21]. The wind speed
obtained from the Government of Canada website (http://climate.weather.gc.ca/) was the average
of the hourly wind speeds at buoy 46146 (49.340 N 123.730 W), which is near the mainland, and at
Entrance Island (49.209 N 123.811 W), near Nanaimo, both, the closest to the ferry route.

http://climate.weather.gc.ca/
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To allow statistical comparison with Rrs,H , Rrs,SAS(λ) was convolved into three broader spectral
bands (red, green, and blue) using the spectral sensitivity function (SSF) of the iPad:

Rrs,SAS(i) =
∑800

λ=400 Rrs,SAS(λ)SSFi(λ)

∑800
λ=400 SSFi(λ)

, i = R, G, B; (4)

where Rrs,SAS(i) is the water reflectance of the ith band, i = R, G, B represents red, green, and blue
channels, respectively; SSFi(λ) is the spectral sensitivity function of the ith band; and Rrs,SAS(λ)

is the above-water remote sensing reflectance acquired by SAS solar tracker and computed by
Equations (1)–(3).

The SSF of the iPad mini 4 was not available from the manufacturer, and therefore the SSF
of the iPhone 5 [41] was used instead after examining for interchangeability. HydroColor data
acquired with the iPad mini 4 and the iPhone 5 under a clear sky and green water conditions during
11:30 a.m.–12:30 p.m. on 10 October 2016 were compared. The magnitude and variability of mean
difference of the Rrs,H between these devices were small, particularly for the red band (Table 2).
The mean absolute percentage differences of bands were relatively small compared with a similar study,
69%, 67%, and 77% for red, green, and blue respectively [45], which compared the differences of three
bands generated by the iPhone 5 camera’s SSF and the CIE1931 two-degree colour matching function.
Therefore, we assumed that using the iPhone 5 camera’s sensitivity function as an alternative was
acceptable when the actual function was unavailable.

Table 2. Descriptive statistic of the difference in reflectance between HydroColor on the iPhone 5 and
iPad mini 4. PD is the mean absolute percentage difference.

Band n Mean S.D PD (%)

Red 48 0.0002 0.0008 40
Green 48 −0.0014 0.0025 28
Blue 48 −0.0013 0.0024 30

2.3. Statistical Analyses

Data analyses included examinations of: (1) whether environmental conditions and training affect
HydroColor photos’ quality; and (2) whether Rrs,H is accurate compared to Rrs,SAS and, if not, whether
Rrs,H can be corrected. We used RStudio version 1.0.136 [63] for all analyses.

First, we used contingency tables and Person’s chi-squared tests on the analysis of the quality
of HydroColor photos with environmental conditions (cloud cover and sun zenith) and training to
obtain a preliminary understanding of citizen data quality and to assess whether these factors were
significant. Second, we analysed the qualified Rrs,H and Rrs,SAS to assess whether the citizen Rrs,H was
accurate enough for scientific purposes under all environmental conditions. This analysis considered
the Rrs values for the blue, green and red bands and the ratios of any two bands’ Rrs (red/green,
blue/green, and red/blue) for both SAS solar tracker (denoted as Rrs,SAS(R/G), Rrs,SAS(B/G), and
Rrs,SAS(R/B), respectively) and HydroColor (denoted as Rrs,H(R/G), Rrs,H(B/G), and Rrs,H(R/B),
respectively). Band ratios are generally used in ocean colour chlorophyll algorithms, especially the
blue/green ratio [8,64]. All bands and band ratios were considered to be independent and identically
distributed random variables.

To assess the accuracy of Rrs,H , we evaluated the significance level of mean differences between
time-matched Rrs,H and Rrs,SAS. For this analysis, the differences between Rrs,H and Rrs,SAS was
denoted as:

ccdijk = Rrs,SAS,ijk − Rrs,H,ijk,

i = 1, 2, 3, 4, 5, 6; j = 1, 2, 3, 4; k = 1, ..., nj

where Rrs,SAS,ijk and Rrs,H,ijk are the above-water reflectance acquired by SAS solar tracker and
HydroColor under the ith band or ratio and the jth environmental condition, respectively. The index
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i = 1, ..., 6 represents the red, green, and blue bands and red/green, red/blue, and blue/green band
ratios, respectively; index j = 1, ..., 6 represents clear sky morning, cloudy morning, overcast morning,
clear sky noon, cloudy noon, and overcast noon respectively; and index k represents the sample
number of the jth environmental condition.

For each band or band ratio, we first tested the normality of dij·, and subsequently a Monte Carlo
permutation F test was used to examine whether the mean of dij· was significantly different to zero
under all environmental conditions [65]. The permutation test is a nonparametric statistical test that
does not require distributional assumption, for instance, the normal distribution of standard statistical
methods [66].

For those bands and band ratios that showed the mean dij· were significant, we built piecewise
models with environmental condition variables (Equation (5)) to correct the Rrs,H based on the
corresponding Rrs,SAS for future HydroColor data acquisition. The correction error was examined by
leave-one-out cross-validation method, the idea and algorithm of which are well documented [67,68].
The leave-one-out error we used was root mean squared error, which has the same scale as Rrs.

E(Rrs,corrected) = β0 + β1Rrs,H + β2Cloud + β3Time

+β4Rrs,H × Cloud + β5Rrs,H × Time
(5)

Time =

{
0, morning

1, noon
; Cloud =

{
0, clear

1, cloudy

3. Results

3.1. HydroColor Photos Quality

A total of 1270 HydroColor citizen samples were collected, in which the number classified as
perfect, good, and bad samples were 791, 276, and 203, respectively. The distributions of perfect, good,
and bad categories versus training, sun zenith, and cloud cover are shown in Tables 3–5, respectively.

The training effect was significantly associated with the quality of HydroColor data (X2
2 = 236.3,

p < 0.001). The CN (trained) acquired a significantly much higher percentage of perfect data than
the FP (untrained) (Table 3). We also observed that data acquired at noon (lower sun zenith) showed
slightly higher quality than data acquired in the morning (higher sun zenith) (65% versus 58% of the
“perfect category”) (Table 4). The association between HydroColor data quality and the time of day
was also significant (X2

2 = 14.2, p < 0.001). Moreover, the association between HydroColor image
quality and cloud cover was significant (X4

2 = 48.5, p < 0.001). Table 5 shows that clear conditions had
a higher percentage of perfect data than cloudy or overcast conditions. The highest percentage of bad
data (28%) was with overcast conditions since most of the Rrs,H values (58 samples, 89% of the bad
data) were zero with this condition.

Table 3. Contingency table of the number (percentage) of HydroColor images by data quality and
image collector.

Image Collector Image Quality Total
Perfect Good Bad

CN 636 (77%) 128 (16%) 60 (7%) 824
FP 155 (35%) 148 (33%) 143 (32%) 446

Total 791 276 203 1270
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Table 4. Contingency table of the number (percentage) of HydroColor images by data quality and time
of day.

Time Image Quality Total
Perfect Good Bad

Morning 313 (58%) 115 (21%) 110 (21%) 538
Noon 478 (65%) 161 (22%) 93 (13%) 732
Total 791 276 203 1270

Table 5. Contingency table of the number (percentage) of HydroColor images by data quality and
cloud cover.

Cloud Cover Image Quality Total
Perfect Good Bad

Cloudy 397 (61%) 154 (23%) 105 (16%) 656
Clear 260 (67%) 93 (24%) 33 (9%) 386

Overcast 134 (59%) 29 (13%) 65 (28%) 228
Total 791 276 203 1270

3.2. Accuracy and Correction of Rrs,H

For the perfect or good categories, Rrs,SAS were first matched with the corresponding Rrs,H data
by time stamps; a total of n = 214 matches were considered in the analysis. Bad category Rrs,H were
removed from analyses.

The descriptive statistics for matched Rrs,SAS and Rrs,H show that the mean and standard deviation
of all bands of Rrs,H were slightly higher than the corresponding statistics of Rrs,SAS (Table 6). The range
and trend of both Rrs,SAS and Rrs,H were similar to another study in this region [21].

Table 6. Descriptive statistics of SAS solar tracker and HydroColor water reflectance for different bands
and band ratios. All values are in units of sr−1, except the band ratios that are unitless.

Instrument n Band Mean S.D Minimum Maximum

SAS Solar
Tracker 214

Red 0.007 0.005 0.001 0.039
Green 0.010 0.008 0.001 0.058
Blue 0.008 0.005 0.001 0.041

Red/Green 0.689 0.075 0.530 0.971
Red/Blue 0.872 0.144 0.543 1.341

Blue/Green 0.801 0.085 0.599 1.090

HydroColor 214

Red 0.011 0.008 0.001 0.046
Green 0.016 0.010 0.002 0.064
Blue 0.012 0.008 0.001 0.049

Red/Green 0.681 0.105 0.250 1.011
Red/Blue 0.954 0.309 0.333 4.000

Blue/Green 0.740 0.120 0.200 1.286

The nonparametric Monte Carlo permutation F tests were deemed appropriate because the
normality tests indicate that the differences between Rrs,SAS and Rrs,H for the perfect and good
category in most bands and band ratios were not normally distributed. Results of the permutation F
tests showed that there were no significant differences between the mean difference and zero under
any environmental conditions for red, green bands, and the red/green, red/blue ratios, except for the
blue band and the blue/green band ratio, which showed that the true mean difference was significant
(Table 7). In addition, Rrs,H tended to overestimate the Rrs signals for all bands compared to Rrs,SAS,
although the overestimations were low (Table 7). When only perfect category Rrs,H were evaluated,
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the difference of blue band Rrs,H and Rrs,SAS was not significant; however, the blue/green ratio Rrs,H
was still significant (Table 8).

Table 7. Statistical summary of the difference between SAS solar tracker and perfect and good quality
HydroColor water reflectance in all bands and ratios. Fobs statistics and p values are the result of
nonparametric Monte Carlo permutation F tests for testing whether the true mean difference of Rrs,H

and Rrs,SAS differed from zero.

Band/Band Ratio n Mean S.D Minimum Maximum Fobs p

Red 214 −0.004 0.005 −0.04 0.01 23.00 0.44
Green 214 −0.006 0.006 −0.04 0.01 34.61 0.13
Blue 214 −0.004 0.005 −0.02 0.01 29.55 0.02

Red/Green 214 0.008 0.081 −0.31 0.42 0.70 0.83
Red/Blue 214 −0.082 0.242 −2.88 0.40 6.78 0.07

Blue/Green 214 0.060 0.109 −0.28 0.56 17.71 0.01

Table 8. Statistical summary of the difference between SAS solar tracker and perfect quality HydroColor
water reflectance in blue bands and blue/green ratio. The Fobs statistics and p values are the results of
the nonparametric Monte Carlo permutation F tests for testing whether the true mean difference of
Rrs,H and Rrs,SAS differed from zero.

Band/Band Ratio n Mean S.D Minimum Maximum Fobs p

Blue 151 −0.004 0.005 −0.02 0.01 17.46 0.26
Blue/Green 151 0.060 0.094 −0.27 0.52 13.66 0.01

Given the statistically significant observed differences between Rrs,H and Rrs,SAS for the
blue/green ratio, a linear model was built to correct Rrs,H(B/G) based on Rrs,SAS(B/G) (Equation (6)).
The overcast condition was not included in this model because of the low number of samples (n = 1 for
noon, n = 0 for morning).

Rrs,corrected(B/G) = 0.599 + 0.241Rrs,H(B/G) + 0.097Cloud

−0.146Time − 0.084Rrs,H(B/G)× Cloud

−0.213Rrs,H(B/G)× Time

(6)

Time =

{
0, morning

1, noon
; Cloud =

{
0, clear

1, cloudy

This can also be written as piecewise models, respectively:

Rrs,corrected(B/G) =


0.453 + 0.028Rrs,H(B/G), clear noon

0.550 − 0.056Rrs,H(B/G), cloudy noon

0.599 + 0.241Rrs,H(B/G), clear morning

0.696 − 0.157Rrs,H(B/G), cloudy morning

This linear model was significant (F5,207 = 16.18, p < 0.001) with a weak adjusted
R2(0.26). The prediction performance was assessed by the leave-one-out root mean squared error.
Results showed that the magnitude of error was small (0.074), but the percentage of this error compared
with mean was high (124%). The correction model does solve the underestimation problem in the
original Rrs,H(B/G) with a fairly high improvement rate (42%). However, Figure 6b also shows a
horizontal trend for the morning conditions. This discrepancy may be a result of the small sample
sizes of these conditions for parameter estimation.
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Figure 6. Comparison of the Rrs,SAS(B/G) with: (a) the original Rrs,H(B/G); and (b) the corrected
Rrs,corrected(B/G). The dashed line represents a one-to-one relationship.

4. Discussion

The objective of this study was to examine the accuracy of water reflectance measurements
acquired by citizens using the HydroColor application, aiming to provide recommendations for
extending the use of Hydrocolor to “fisher scientists”. Although other mobile sensing applications exist,
HydroColor is the focus of this research. Water reflectance samples from HydroColor and SAS solar
tracker were collected on the BC Ferry Queen of Oak Bay crossing the Strait of Georgia daily, during July
to September 2016. The main findings show that the HydroColor citizen data are accurate compared
with hyperspectral instrument data for most bands and band ratios; however, citizen level of training
and environmental conditions play a role in the data quality.

4.1. Citizen Participation and Data Quality

During the study period, which corresponds to the regional tourist season, over 200,000 passengers
per month travelled along the ferry route from Departure Bay to Horseshoe Bay (traffic data provided
by BC Ferries: http://www.bcferries.com/about/traffic.html). The total number of passengers

http://www.bcferries.com/about/traffic.html
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participating in the data collection was lower than the number attending the educational talk just
before the measurements. In addition, the total sample number acquired by regular citizens (FP)
was lower than the trained citizen (CN) (Table 3, 446 versus 824). This result suggests that either:
(1) volunteer participation for this type of data acquisition may not be as effective, similar to the
findings by Kotovirta et al. [42] studying the surface algal bloom citizen monitoring data; or (2) the used
methodology prevents larger volunteer participation. The first can be dealt with using an incentive
mechanism, such as micro-payments [69]. The second, most likely in this case, could be prevented by
having more trained citizens aboard the ferry to help passengers with data acquisition.

In our methodological framework, only one trained citizen, “the coastal naturalist”, was allowed
to guide passengers interested in participating in the experiment (a requirement from BC Ferries).
The CN frequently had several people asking questions after the presentation, making it difficult to
help all passengers who were willing to acquire data. It would have been useful to have more than one
trained citizen (CN) to help with the data collection. In addition, only adults (over age 18) were allowed
to participate in data collection. Interestingly, children showed a large interest in using HydroColor for
data acquisition, and it would be a valuable experiment to obtain data quality measures for various
age groups in future studies.

The CN (trained citizen) collected a higher number of samples of higher quality than the
passengers (untrained citizen) (77% versus 35%, Table 3). This result was not a surprise as the CN had
an educational background in environmental science and received training on the use of HydroColor
before working on this program. When classifying the untrained citizens’ samples, the main errors were
associated with capturing the ship’s shadow and white foam in water photos (Figure 5c). Given the
required geometry for data acquisition azimuth angle of 135◦ from the Sun [41], and the size of
the ferry structure, the ship’s shadow and foam are likely to appear in some of the water photos
if care is not taken. Focused training such as that given to the CN, can help with improving skills
to avoid these errors. The training effect is highly significant (p < 0.001), which implies that a
certain degree of training is necessary for high-quality water reflectance sample acquisition using
HydroColor. This finding is similar to other studies working with plant species/phenophase [26] and
terrestrial invertebrate biodiversity [28]. Volunteers, having around six hours of previous training,
could correctly identify 91% of the plant phenophases for a variety of species compared with experts
(Fuccillo et al., 2015). The volunteers’ sampling performance for invertebrates, with training in the
field, is similar to (p > 0.05) expert researchers [28]. Thiel et al. [34] indicated that appropriate training
varies from study to study and should be considered before instructing volunteers.

Besides training, the patience of citizen scientists is also a concern for data quality; for instance,
some volunteers did not finish crabs’ size measurements in a study by Delaney et al. [32] since these
volunteers thought this process was tedious. In our case, passengers needed the patience to find
the correct direction for taking high quality samples. Another approach to improve crowdsourcing
data quality suggested by Rogstadius et al. [70] is to emphasize intrinsic motivation such as helping
other people.

4.2. Environmental Variables and Data Quality

Similar to many studies [53,57,60,71], our results demonstrated the importance of environmental
variables (sun zenith and sky condition) on above-water reflectance (Rrs) measurement quality.
HydroColor data quality was found to be better (p < 0.05) during the noon (time: 12:50–2:30 p.m.,
solar zenith: 17.4◦ to 39.3◦) ferry run than the morning (time: 8:30–10:10 a.m., solar zenith: 40.5◦ to
67.6◦) run (Table 4). A higher percentage of bad samples acquired in the morning (21% versus 13%)
was most often due to contamination by the shadow of the ship on the water photos. As sun zenith
angle increases, the shadow of the vessel becomes larger and consequently more likely to be detected
as part of a sample [71]. In addition to the shadowing effect, the water-leaving radiance is highly
related to the time of day or solar zenith [57,72]. Atmospheric attenuation of solar irradiance in the
visible and near-infrared spectra decreases as the solar zenith angle decreases [72]. At lower zenith
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angles, higher irradiance reaches the ocean surface, and therefore more of the water-leaving radiance is
detected by the sensor [57]. In our study, morning runs in late August and the beginning of September
happened when zenith angles were between 60.0◦ and 67.6◦. At these angles, less irradiance reaches the
ocean surface, and consequently less radiance from the water is available for detection by the camera.
As a result, it is difficult to detect and calculate satisfactory water reflectance samples in these runs.
These findings concur with other studies, showing that a lower sun zenith angle reduces the effects of
sun glint, low solar irradiance, weak water-leaving radiance, and wave-shadowing [53,57,71,72].

Sky condition also affected the quality of the data. Higher quality HydroColor data were collected
under clear sky conditions than under cloudy and overcast conditions, and the cloudiness effect
was significant (p < 0.05, Table 5). This finding is consistent with existing studies recommending
a clear sky condition for Rrs measurement [53,60,71]. In principle, atmospheric light attenuation in
clear sky conditions, mostly due to Raleigh scattering, is relatively more constant than in cloudy or
overcast conditions [72]. Further, the reflection of clouds in the water is brighter than the reflectance of
blue sky; therefore, more skylight reflected from the water surface was detected by the water-viewing
sensor under cloudy conditions [53,71]. Hooker and Morel [60] show that the cloudiness effect is not
systematically detected if cloud cover is under a certain threshold. Larger and lower-level cloud cover
has a higher effect on the Rrs measurements by increasing the magnitude of radiance reflected into the
sensor [53].

In addition, to affirm the importance of collecting data under a clear sky, we also found that
HydroColor data acquired under overcast conditions were overall the poorest quality; in particular,
a relatively large percentage of bad samples (89%) showed water reflectance values equal to zero.
This is likely due to the lower sensitivity of the iPad mini 4 camera at low irradiance conditions.
This result corroborates the work of Salisbury [72] that illustrated that less measurement radiance
signal can be detected under a hazy sky because of blurry shadows, and the work of Garaba and
Zielinski [71] that showed that light is more diffuse in hazy skies than clear skies.

Beyond assessing HydroColor data quality, we examined comparisons between HydroColor
and the gold standard SAS solar tracker to determine how accurate HydroColor can be as an optical
instrument to measure Rrs. The evaluation of the accuracy of qualified (classified as perfect and good
quality) HydroColor citizen data revealed the larger mean and higher variability (Table 6) for the
observed three bands in relation to the SAS solar tracker data (Rrs,SAS). A possible reason for this
result is that different ρsky values were used to calculate Rrs and Rrs,SAS. The ρsky is used to remove
the proportion of the sky radiance that is reflected off the water surface and detected by the water
radiance sensor [53]. In a flat sea surface, the reflected sky radiance can be prescribed by viewing
geometry alone, according to the Fresnel reflectance [6]. However, the sea surface is usually wavy
due to wind, and therefore the surface reflects sunlight from a range of directions other than only the
viewing angle [53]. The ρsky value used to calculate Rrs,H was set to a constant 0.028 in the HydroColor
application [41], while the value used for Rrs,SAS was computed by Equations 2 and 3, which is
related to wind speed and sky condition. The comparisons of HydroColor data and calibrated Water
Insight Spectrometer (WISP) data by Leeuw and Boss [41] does not show that HydroColor tends to
overestimate Rrs when the same ρsky is applied to calculate the above-water reflectance.

According to the results, the observed differences between Rrs,H and Rrs,SAS for red and green
bands were not statistically significant (p > 0.05); however, the difference was significant for the
blue band (p < 0.05, Table 7). The result of lower accuracy in the blue band is also shown in the
work of Leeuw and Boss [41], which indicates that Rrs,H in the blue band has the highest median
percent error compared to the WISP among the three bands. Interestingly, when only perfect quality
Rrs,H was evaluated, the statistical analysis showed that the difference of blue band was no longer
significant (p < 0.05, Table 8). These results imply that minor contaminations in the HydroColor
photos still introduce errors in the accuracy of the Rrs,H for the blue band. The high sensitivity of minor
contaminations for the blue band may be caused by: (1) comparably weak blue signals, and therefore
subject to more variability due to noise (low signal-to-noise) [73]; (2) relatively high difference and
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variability between the true spectral sensitivity function and the substitute one; or (3) the fixed ρsky
programmed in HydroColor, making it difficult to precisely correct the effect of skylight; however,
the skylight is mostly contributed by blue band radiance due to Rayleigh scattering [74]. As such,
for accurate retrievals of above-water reflectance at the blue spectra using HydroColor, perfect data
quality is required.

The average values and variability (Table 7) of the difference between Rrs,H and Rrs,SAS were
higher for band ratios than for individual bands. The results of permutation F tests for band ratios
(Table 7) showed the difference between Rrs,H and Rrs,SAS of blue/green ratio was significant (p < 0.05),
while the other two ratios were not. The significant differences of the blue/green ratio were first
considered as an effect of the bad performance of the blue band with minor contaminations. However,
we note that, even discarding samples with contaminations, the significance was not eliminated
(p < 0.05, Table 8). Thus, a linear model with environmental factors as variables was developed to
correct the bias (Equation 6). Although this correction model was significant (p < 0.05), the low
adjusted R2(0.26) and the high percentage of correction error (124%) illustrated that it was not
satisfactory. Therefore, the magnitudes of individual bands are recommended to be used for scientific
purposes rather than band ratios, especially the blue/green ratio. The most likely explanation for this
negative finding is that the blue/green band ratio Rrs,H is highly sensitive to the differences between
Rrs,H and Rrs,SAS measurement protocols, which may result in a slight difference in measuring location
(different field of view—angle of the lens and different footprint on the water) and time. To clarify,
the SAS solar tracker was installed on the same side of the ship where the citizens acquired data, but
still at approximately 15 m distance horizontally. In addition, a Hydrocolor sample usually takes one
minute to finish collecting the grey card, sky, and water photos, whereas SAS solar tracker collected
the data with three sensors simultaneously. Atmospheric properties and water optical constituents are
continually changing, and therefore measured reflectance might be slightly different depending on
location and time; for instance, clear blue skies with fast cirrus clouds passing in front of the Sun may
suddenly change the downwelling irradiance. The studies of Toole et al. [6] and Leeuw and Boss [41]
have also mentioned that the deviations between two instruments are partly caused by imperfect
matching on time and location.

5. Conclusions

We have conducted the first evaluation of the accuracy of Hydrocolor samples collected by
citizens aboard a ferry based on a thorough statistical analysis. We have shown that water reflectance
measurements acquired by HydroColor can be used for data acquisition with trained citizen scientists;
however, we must be careful when using this method with untrained citizen science. We suggest that
oral and written instructions on the use of HydroColor are provided for the “fisher scientists” before
asking for their participation in data acquisition. In these instructions, we will recommend that the
data should be acquired under clear skies at noon to be high-quality samples. General sources of errors
are shadows in the grey card, white foam, shadows, and sun glint in water photos.

We showed that it is acceptable to use the spectral sensitivity function of the iPhone 5 as a
substitute for the actual function of the iPad mini 4. Nevertheless, the difference between spectral
sensitivity functions was likely a source of error. It would be better to acquire the true spectral
sensitivity function of the user device if the “fisher scientists” water reflectance samples need to be
compared with ocean colour imagery reflectance in the future.

Future work would include determining the quality of water reflectance samples using
HydroColor by “fisher scientists”, especially if the samples will be used as ground-truth data [42].
All images of HydroColor samples in this study were carefully checked for data quality. However,
it would be impossible for an individual to check the data with large datasets. Thus, an automated data
quality control system should be developed to enhance the reliability of “fisher scientists” data [75].

Systematic citizen science research should provide meaningful citizen involvement as well as use
thorough statistical analyses to evaluate the reliability and associated errors of the acquired data [76].
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The engagement of citizens not only provides more data needed in natural resource management,
but it also closes the gap between scientists and citizens [35].
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