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Abstract: City surveillance enables many innovative applications of smart cities. However,
the real-time utilization of remotely sensed surveillance data via unmanned aerial vehicles (UAVs)
or video satellites is hindered by the considerable gap between the high data collection rate and
the limited transmission bandwidth. High efficiency compression of the data is in high demand.
Long-term background redundancy (LBR) (in contrast to local spatial/temporal redundancies
in a single video clip) is a new form of redundancy common in Earth observatory video data
(EOVD). LBR is induced by the repetition of static landscapes across multiple video clips and
becomes significant as the number of video clips shot of the same area increases. Eliminating
LBR improves EOVD coding efficiency considerably. First, this study proposes eliminating LBR by
creating a long-term background referencing library (LBRL) containing high-definition geographically
registered images of an entire area. Then, it analyzes the factors affecting the variations in the
image representations of the background. Next, it proposes a method of generating references for
encoding current video and develops the encoding and decoding framework for EOVD compression.
Experimental results show that encoding UAV video clips with the proposed method saved an average
of more than 54% bits using references generated under the same conditions. Bitrate savings reached
25–35% when applied to satellite video data with arbitrarily collected reference images. Applying
the proposed coding method to EOVD will facilitate remote surveillance, which can foster the
development of online smart city applications.

Keywords: big surveillance video data; high efficiency compression; redundancy across videos;
background; moving objects

1. Introduction

Dynamic Earth observatory video data (EOVD) has enabled many innovative smart city
applications (e.g., smart transportation, sewage disposal monitoring, and disaster management).
Remote surveillance via unmanned aerial vehicles (UAVs) and video satellites has become a new trend
in smart city development. However, receiving the EOVD immediately after its capture in order to
meet the real-time demands of dynamic remote sensing data analysis and service in smart cities is
a key problem.
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The substantial gap between the EOVD data collection rate and the transmission bandwidth has
greatly restricted remote surveillance applications in smart cities. Taking satellite Jilin-1 as an example,
a single frame of satellite video data is about 12,000 × 5000 pixels with frame rate of 15 fps, resulting
in 20 Gbps of video data. However, the transmission channel for real-time transmission between
satellites and the Earth is only 10–20 Mbps. Even with the latest coding standard—high-efficiency
video coding (HEVC) with a compression ratio of 300:1—the gap to be bridged is still 3- to 6-fold;
thus, efficient data compression techniques are in high demand. Although the situation is alleviated
to some extent for data transmission from short distance UAVs, the situation deteriorates rapidly as
the data receiving distance increases. To solve this problem, much work has been done to reduce the
data size through dictionary learning-based data representation. One excellent work is the incremental
K-SVD method for spatial big data representation [1,2]. Another representative work is the low-rank
dictionary [3,4]. However, as we focus on the representation of continuous data sequences in the pixel
domain, these methods cannot be directly applied to compress the remote sensing video data.

EOVD are video clips taken from high space (e.g., 500–600 km for video satellites and hundreds
of meters for UAVs) in which the majority of the picture’s content is landscape with small foreground
objects, in contrast to the common videos with foreground objects as the major content. Moreover,
remote surveillance for smart city applications produces large overlaps in the surveillance video data
collected over an extended time period. Since the landscape changes slowly, the overlapping areas
will have similar backgrounds across video clips, giving rise to a new form of redundancy, called
long-term background redundancy (LBR) in this paper. Taking all the videos on a large temporal scale,
LBR becomes significant as the background repetition dramatically increases. Thus, eliminating LBR in
EOVD will significantly improve coding efficiency and support real-time smart city video applications.

Most widespread video coding strategies commonly adopt intra/inter-frame prediction to explore
similarities in local spatial/temporal domains [5,6], effectively eliminating most local redundancies
within a single video clip. Moreover, to further reduce the redundancy in ground surveillance video
data induced by static backgrounds, Reference [7] proposed generating short-term, high-quality
reference frames of backgrounds to improve the prediction accuracy for those areas. While this study
achieved efficient coding for a single video source, the similarity measurement is subject to changes in
visual appearances due to projection and illumination variations of the background on large spatial
and temporal scales.

Several multisource data coding schemes have been proposed in recent years, which mainly focus
on coding image sets from arbitrary views. Some researchers [8–10] have utilized scale-invariant
feature transform (SIFT) features to measure the similarity between blocks from different images.
Due to their invariance to rotation and robustness to illumination changes, SIFT features can build
correlations among different images, thus achieving inter-image prediction to explore redundancies
among multisource images. The same idea has been extended to duplicated video clips [11], where the
redundancies between video clips are eliminated by referencing the basic video clip after adjusting
for projection and illumination. While these methods have provided excellent ideas for exploiting
redundancies across data sources within a dataset, the matched image blocks in pixel domains from
different sources usually do not relate in reality and thus are not suitable for matching large areas like
backgrounds in EOVD.

A reference library that records information common to all video data (e.g., libraries of
two-dimensional (2D) vehicle images [12] or three-dimensional (3D) vehicle models [13,14] to eliminate
redundancies caused by the repetition of similar vehicles) could efficiently eliminate redundancies
across video clips. Unlike references from a dataset, a library-based method normally presents the basic
knowledge of the encoded content and transformation. It is more efficient than only selecting references
in the pixel domain, because this method reveals how the images relate in reality. Our method was
developed based on this idea but focuses on using a library of backgrounds rather than foregrounds to
eliminate LBRs in EOVD.
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In this study, we developed a long-term background referencing library (LBRL)-based EOVD
coding scheme according to the characteristics of the EOVD. First, we discussed the LBR induced by
similarities among video clips taken of the same area throughout a temporal scale. Then, we analyzed
the factors causing image representation variations of the background in different video clips. Based on
that analysis, we proposed how to develop an LBRL for remote surveillance applications in smart
cities. Next, we proposed a method to generate references based on the LBRL and the adjusted impact
factor. Finally, we developed an encoding and decoding framework for EOVD compression.

Video clips from UAV and from video satellites were used to conduct experiments to evaluate the
performance of the proposed method. A reference library built using the same conditions as those of
the encoding video clips was used in the UAV case to represent how a good background reference can
help to reduce the bitrate, and the results revealed that the proposed method can achieve 54% bitrate
savings on average over the main profile of HEVC. In the satellite case, LBRL was developed from
a Google Earth image [15], which attempted to simulate the usage of real historical remote sensing
data. In this case, the bitrate savings were around 25%. In addition, we also tested to what extent
different impact factors contribute to the bitrate savings.

There are three main contributions of this work:

(1) We analyzed the characteristics of Earth observatory video data, and discovered the long-term
background redundancy among the videos collected of the same location at different times,
which provides a chance to further compress the EOVD.

(2) We introduced the concept of a referencing library (the LBRL) as the fundamental infrastructure
to facilitate the real-time collection of EOVD, which will further enhance online smart
city applications.

(3) We proposed an LBRL-based reference generation method and the coding framework for EOVD,
which can significantly reduce the bitrate compared to the coding standard for a single video
source, helping to alleviate the difference between data collection bitrate and the space to Earth
transmission bandwidth.

The remainder of this paper is organized as follows: Section 2 provides a literature review
regarding related work. A detailed analysis of the LBR of EOVD and the development of an LBRL to
eliminate LBR is illustrated in Section 3. The LBRL-based reference generating and encoding framework
is developed in Section 4. Section 5 reports our experimental results, and Section 6 concludes the paper.

2. Related Work

Our work is related to the current single video coding method, the coding method for ground
surveillance data considering the scene redundancy, and the coding method for multisource video
clips. Therefore, we review the coding method from these three aspects.

2.1. Video Compression of Satellite Videos

In the initial stages of satellite development, satellite data were stored as remote sensing
images. Satellite image compression methods can be divided into two methods: prediction-based
and transformation-based. Prediction-based methods [16–18] use encoded pixels to estimate
the current pixel value based on the correlation between pixels or bands of satellite images.
Transformation-based methods [19,20] regard satellite data as a generalized, stationary random
field [21]; its three-dimensional orthogonal transformation [22] maximizes the information
concentrated in a small number of transform coefficients, thereby removing the maximum amount of
spatial redundancy and inter-spectrum redundancy. The above methods were designed for a single
image frame. Although they effectively removed spatial redundancy in the image, removing the
redundancy caused by the correlation between the images was difficult. In recent years, with the
development of video satellites, general video compression standards have been integrated into
satellites. For example, Skysat [23], a video satellite launched by Skybox, was outfitted with video
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compression standard H.264 [5]. General video compression standards use local spatial-temporal
prediction models in small-scale space-time ranges to process local, short-term data; they cannot,
however, remove geographical background redundancy from satellite video.

2.2. Video Compression of Surveillance Videos

Surveillance videos characteristically have fixed scenes and slight changes in the background.
For these characteristics, surveillance video compression methods can be divided into LRSD (low-rank
sparse decomposition)-based and background modeling methods. LRSD-based methods [24–26]
employ LRSD to decompose the input video into low-rank components representing the background
and sparse components representing the moving objects, which are encoded by different methods.
Background modeling methods [7,27–30] use background modeling technology to build background
frames for reference that improve the compression efficiency by improving the prediction accuracy.
These surveillance video compression methods only apply to local spatial-temporal redundancy in
single-source video; they do not consider the similarity of the background when the same region is
captured by multisource satellite videos and cannot cope with apparent differences in the area due to
shooting time, posture, height, and other factors.

2.3. Video Compression of Multisource Image/Video Data

Multisource image/video data refers to the collection of images/videos obtained by multiple
shooting devices at various times from different positions. They contain a large number of similar
images with common pixel distributions, features, and backgrounds. With the development of cloud
technology, cloud-based image compression has attracted substantial interest [8,31,32]. These methods
use cloud historical data to compress images by searching for similar images in the cloud data as
a reference to improve prediction accuracy. Concurrently, compression methods [9–11,33,34] for
image sets were developed using cloud historical data as a reference. The basic idea is to cluster
images via image content, organize those images into a pseudo sequence, and code them like a video.
The compression methods for multisource image/video data are designed from the perspective of
image features, which usually mine similarities between image blocks by matching feature points.
Moreover, multiscale features for image representation are proposed to extend representation from
single payload to multiple payloads, as being proposed in References [35–38], which is also a way
to build relations between multiple data sources. However, computational complexity is high, and
the actual correspondence between the selected image block and the coding object is often lacking,
which is not conducive to large-area matching.

3. Long-Term Background Referencing Library

First, this section will exploit LBR in EOVD and discuss what factors are important to eliminate
LBR. Then, we develop an LBRL to represent the long-term background.

3.1. A New Redundancy Induced by Background Repetition

LBR is a new type of redundancy found in remotely captured video clips shot of the same location.
It is caused by the similarity among the repeated background in different video clips. In the long term,
LBR shows the following characteristics: structural consistency and appearance variance. To facilitate
its expression, with A representing the area shot by a certain video clip and A the entire area of a smart
city, A ⊂ A. The background represented in a video clip of area A is denoted as B.

Structural consistency: Since landscapes change slowly, the structure of a certain area can be
assumed to be consistent within a time period. Therefore, different video clips shot of this area will
reveal the same structure of the area. As shown in Figure 1a, there are two frames taken from two
video clips shot of the same location at different time by two satellites. Even though there are some
differences in the image representations, we can easily judge that this is the same place according to
the same structure.
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Appearance variance: Due to the different conditions under which the video clips are captured,
such as natural conditions (e.g., atmosphere, illumination) and device conditions (e.g., sensors),
the images representations of the same area will have some variations. As shown in Figure 1a and the
magnified part in Figure 1b, we can find variances in viewing angle, color, and quality. Thus, we discuss
the appearance variance in these aspects.
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Figure 1. Appearances of two video clips shot of the same location at different time by two different
satellites. (a) A sample frame taken from each of the video clips; the same structure indicates the same
location. (b) Magnified area showing the variances in projection, color, and quality.

(1) Projection difference: a location in a specific video clip can be represented by the projection of
that area into the image plane, which is:

B = Pv(A) (1)

where B is the background in a picture and Pv(A) is the projection of area A into a video clip.
Since the projection is decided by the position and angle of the camera, it changes for every frame.

(2) Radiometric difference: the color of an image is affected by changes in the area’s environmental
radiation. Radiation changes can be modeled because the factors causing them, such as
illumination, are limited in the long term. Therefore, the image representation of an area can be
expressed as follows:

IR(B) = MI ·B = MI ·Pv(A) (2)

where MI is a radiation model that converts from the reference background to the current image,
and IR(B) is the image representation of the background after radiation change.

(3) Quality difference: EOVD image quality is affected by many factors. Some are related to the
sensor itself, such as the optical imaging system, electrical signal conversion, and motion of
the platform. These factors remain stable for a certain video clip, leading to consistent quality
degradation for that video clip. Therefore, the image representation of an area can be expressed
as follows:

I(B) = Mq·IR(B) = Mq·MI ·Pv(A) (3)

where Mq is the quality degradation of a certain satellite, and ID(B) is the final image
representation of the area.
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3.2. Development of an LBRL

Current video coding standards using intra- and inter-frame prediction are very efficient at
eliminating short-term redundancies. However, using such a prediction method across multiple video
clips is uncommon, mostly because of how the image representation changes due to variations in
projection, radiation, and quality. As a result, the same area is recorded every time it is captured,
leading to a waste of transmission bandwidth.

Creating an LBRL to eliminate LBR addresses this redundant transmission issue. Ideally,
an LBRL should do the following:

(1) Be able to cover the entire area of smart city applications.
(2) Be robust enough to handle changes in image representation due to various viewing angles.
(3) Be compatible with changes in the visual appearance of the background caused by radiation

changes and quality degradation.

Therefore, we proposed an LBRL composed of basic, high-resolution reference images of a smart
city’s area, which can support three essential transformations: projection transformation related to
each frame, and radiometric adjustment plus quality adjustment related to a video clip. The formation
of the LBRL is shown in Figure 2.
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redundancy (LBR) elimination. (a) Corrected historical images registered at corresponding locations in
the scale of a smart city, forming the foundation library of the LBRL; (b) projection transformation; (c)
radiometric adjustment; (d) quality adjustment.

We used historical, geographical registered images that had been corrected to develop an LBRL of
an area for EOVD referencing. These images were stitched together to cover the entire area of a smart
city. The geographical attribute was used to facilitate image matching during the referencing process
in the EOVD encoding. The approximate area was determined according to the initial video’s data
positioning. Image data in an LBRL can be updated when a static ground change is detected from new
video data.

Since the three transformations were highly related to each video clip, we did not include them
in the LBRL but made the transformations available within the LBRL-based reference generator,
which will be described in the next section.
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4. LBRL-Based Reference Generation and Coding Framework

This section first details how to generate references from an LBRL for a newly collected video
clip through geometrical matching for projection transformation, radiometric adjustment, and quality
adjustment of the background image. Then, it describes the encoding and decoding scheme based on
a generated background reference. An overview of the proposed LBRL-based EOVD coding framework
is illustrated in Figure 3.

4.1. Generating a Background Reference

Prediction from references is known to be the most important process in the current video coding
process to remove redundancies. As in block-based prediction, coding efficiency is directly related to
the similarity between the reference and the current encoding frame. We generated background
references for the current frame in the following sequence: geometrical matching, radiometric
adjustment, and quality adjustment.

4.1.1. Geometric Matching

The initial position of a captured video clip is decided through the satellite global positioning
system (GPS), which is used to decide an approximate captured area in the geographical registered
library. A buffer is added outside the approximate captured area to cope with the positioning error
of GPS. The reference image containing the captured area with the buffer is then cropped for the
geometrical matching between the reference image and the captured video frame.
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Geometrical matching to the LBRL locates the correct shooting area of the current frame
and transforms the area reference image from the LBRL to the target frame through projection
transformation. This process consists of downsampling the reference image, matching correspondence
points, estimating the perspective transformation, and resampling the image.

SIFT feature matching [39] is normally used to find correspondence points. Due to differences
in resolution, quality, and radiation between the basic area image from the LBRL and the current
frame, however, sufficient correspondence point pairs often cannot be obtained, resulting in incorrect
matches. Therefore, we first downsampled the high-resolution image from the LBRL to convert it
to an image with ground resolution similar to the video data. The ground resolution of the current
video was obtained from satellite documentation. The approximate shooting area was estimated
from the online geopositioning of the satellite imagery. Then, to match the downsampled reference
image with the current video frame, we adopted the improved SIFT matching method [40] that was
developed for multisensor remote sensing image matching, which developed a distinctive order based
on a self-similarity descriptor that was robust against illumination differences.

Based on correspondence point pairs, the perspective transformation was estimated by solving
the following mapping functions:

xc
i =

a0xr
i + a1yr

i + a2

a6xr
i + a7yr

i + 1
and yc

i =
a3xr

i + a4yr
i + a5

a6xr
i + a7yr

i + 1
(4)

where (xc
i , yc

i ) are the coordinates of points in the current video and (xr
i , yr

i ) are the corresponding points
in the downsampled reference images from the LBRL. After estimating the perspective transformation,
we generated the geometrically transformed reference image Ig

r using Equation (4).

4.1.2. Radiometric Adjustment

We employed the color transfer model proposed in Reference [41] to adjust the radiation of the
geometrically transformed reference image Ig

r to correspond with the current video frame. Since video
data is recoded in the YUV color space, the radiometric adjustment was also conducted in this color
space. Since a YUV color space is similar to a lαβ color space, in which the first channel is lightness
and the other two channels are color components, we adopted a color transform model similar to the
one proposed for the lαβ color space in our work:

 Yt

Ut

Vt

 =


σY

c
σY

s
0 0

0 σU
c

σU
s

0

0 0 σV
c

σV
s



 Ys

Us
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−
 Ys

Us

Vs


+

 Yc

Uc
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where
[

Yt Ut Vt

]T
and

[
Ys Us Vs

]T
are the color values in the radiometrically adjusted

reference images Ic
r and Ig

r , respectively.
[

Ys Us Vs

]T
and

[
σY

s σU
s σV

s

]T
are the mean and

standard deviations of YUV from Ig
r , while

[
Yc Uc Vc

]T
and

[
σY

c σU
c σV

c

]T
are the current

frame’s values. By using this model, the color of the reference Ig
r was adjusted according to the color

statistics of the current frame.

4.1.3. Quality Adjustment

Images in the current satellite video data usually appeared blurrier than the reference image;
thus, the quality of the reference image was adjusted to correspond to the quality of the current video
frame. In this paper, we adjusted the quality based on the previously obtained reference image Ic

r after
geometrical matching and radiometric adjustment, generating the final reference image Ir.
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We applied a 2D Gaussian blur filter to simulate the quality degradation of the satellite video.
Since we assumed the quality degradation was homogeneous over the whole image, we adopted
an isotropic Gaussian model and set the mean of the Gaussian distribution to 0, leaving the standard
deviation σ to be defined according to the difference between Ic

r and the current video frame.
In practice, a Gaussian blur filter can be converted to a 5× 5 kernel, the values of which can

be represented by a polynomial of σ according to their distance to the kernel center. In this way,
the image value after Gaussian blur can be represented by a function of σ; thus, σ can be obtained by
minimizing the pixel value differences between Ic

r after Gaussian blur and the current frame. To reduce
computational complexity, we stochastically selected N 5× 5 blocks from Ic

r and their corresponding
pixels from the current frame and minimized the objective function to obtain the optimized parameter
σ as follows:

argmin
σ

∑N
k=0

(
G(σ) ∗ Bk

r − pk
c

)
(6)

where Bk
r is the kth block from Ic

r , and pk
c is the kth corresponding pixel value from the current frame.

G(σ) is the Gaussian kernel, whose values are defined by the parameter σ as follows:

aij =
1

∑ij a′ij
·a′ij (i, j = −2,−1, 0, 1, 2) (7)

a′ij = e−
(i2+j2)

2σ2 (i, j = −2,−1, 0, 1, 2) (8)

The final reference image Ir was obtained by G(σ) ∗ Ic
r . The next section will introduce how to

use an LBRL reference image to encode and decode EOVD.

4.2. Encoding and Decoding Scheme

The LBRL-based encoding and decoding of satellite videos requires the LBRL reference image at
both the encoding and decoding ends. Figure 4 illustrates the overall LBRL-based encoding framework.
The encoding process can be described as follows:
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Step 1. Generating the background reference. Initially, or for an I frame, f I , we used the proposed
LBRL-based reference generation method described in Section 3.1 to initialize a background
reference (denoted by Ir in Figure 4) for the encoding of I frames. Since the generated background
reference was not sent, we needed to send the control data together with the encoded frame to
reconstruct the reference at the decoder. The control data for generating the background reference
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was denoted as Prg, including the perspective transformation matrix PT =

 a0 a1 a2

a3 a4 a5

a6 a7 1

 in

geometric matching,
[

Yc Uc Vc

]T
and

[
σY

c σU
c σV

c

]T
in radiometric adjustment, and σ

in quality adjustment. The generated background reference was stored in a temporal buffer in the
encoder to update the reference for subsequent frames. At the same time that a newly generated
Ir was put into the reference buffer, previous data were removed from the buffer.

Step 2. Updating the background reference. For P frames, fP, immediately after an I frame,
the radiometric conditions and quality degradation did not vary markedly, only the projections
changed slightly. Therefore, we only updated the perspective transformation from the background
reference for the last frame. The output control data was denoted as Pru, including a new PT
matrix. The updated reference image was then added to the reference buffer.

Step 3. Calculating candidate modes and performing predictions. A generated or updated background
reference was added to the coding reference list. For any I frame, besides the traditional
intra-picture prediction, a long-term prediction (denoted by ml) taking Ir as the additional
reference could also be performed. Since inter-picture prediction is normally more efficient
than intra-picture prediction, it is more efficient at reducing the bitrate. Then, for P frames,
both short-term (denoted by ms) and long-term predictions could be selected by referring to the
adjacent frames or background reference, respectively. As proven by Reference [3], a high-quality
background reference can help reduce the bitrate of blocks in P frames.

Step 4. Encoding and reconstructing the current block. Rate-distortion was applied to select the best
encoding mode. By performing the predictions, residuals (denoted as Res) were computed and
encoded by transform, scaling, quantization, and entropy coding. Frames were reconstructed
(denoted as Rec f ) to provide short-term frame references by reconstructing each block by adding
the block reference to the decoded block residuals. The reconstructed frames were stored in the
reconstructed frame buffer to provide the reference list.

After encoding a video clip, the parameters for the reference generation and prediction, as well as
encoded residuals, are output. After being transmitted from the remote sensing platforms to the server
on Earth, video clips are decoded by reconstructing the background references from the LBRL using
the reference generating or updating parameters.

5. Experiments and Results

5.1. Experimental Setup

We evaluated the effectiveness of the proposed LBRL-based EOVD compression method by
carrying out extensive experiments. Two types of EOVD datasets were used in this paper as follows:

Video clips from UAVs: Four video clips from UAVs captured over Yangtze river park,
Wuhan, China, were employed to evaluate performance, as shown in Figure 5a. These video clips
were captured once a day for four consecutive days by a Yuneec Typhoon H UAV. The flight height
was fixed at 100 m. Each original video clip contained 300 frames of 1080p (1920 × 1280) resolution,
15 fps. The videos contain slow flight and fast flight. Two other videos in the same area were captured
to extract frames as data to develop a reference image library for this test. In total, the area contained
nine stitched key frame pictures.

Video clips from satellites: Four video clips from satellite Jilin-1 over Valencia, Spain were used in
the experiment (Figure 5b), containing two video clips of building, one of farmland, and one of seaside
areas. To facilitate the coding process, we did not directly use the original 12,000 × 5000 resolution,
but cut out video clips with a of size 1080p with 300 frames, 15 fps. As access to the historical satellite
data was limited in our experiments, images from Google Earth [15] were employed as the LBRL
images. The Google Earth images were already geographically registered images with high resolutions.
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Because the reference images for the UAV video clips were captured by the same device under
similar conditions, this group of tests mainly focused on evaluating how effective the background
library was at video coding. The reference images for the satellite video clips came from a different
satellite under significantly different sensing conditions. This reality scene was used to test whether
the algorithm for radiometric and quality adjustments in reference generation was effective.

In the experiment, we conducted two implementations of the proposed method based on two
standard codecs for different testing purposes (details shown in Table 1). It can also be implemented
on other codecs since it mainly provides an extra encoding reference. The first implementation
was based on the low-delay configuration of an HEVC test model HM16.8, named LBRL-HEVC.
This implementation was compared to the unmodified HEVC codec to test the effectiveness of the
proposed method on EOVD compression, since HEVC can achieve the highest compression ratio.
This testing was implemented at a four-core Intel i5 CPU on a 2.6 GHz platform.
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Figure 5. Typical frames from experimental data. (a) Unmanned aerial vehicle (UAV) video clips;
(b) satellite video clips.

Although HEVC has achieved a very high compression ratio, it is not commonly applied in practice
due to its computational complexity. In order to test the applicability of our method for practical
use, the second implementation was based on the x264 codec, named LBRL-x264, compared to the
unmodified model of x264. x264 is known as the fastest CPU implementation of video compression [42].
It is the most commonly used codec in the practice, including applications on UAVs and video satellite
platforms. This testing was implemented at Nvidia Jetson TX2, which was selected as one part of
an embedded system developed for a small satellite set to launch in the year 2020. Nvidia Jetson TX2
contains four ARM Cortex A57 cores and one GPU with 256 CUDA cores.

In the experiment, Bjøntegaard delta PSNR (BD-PSNR) and Bjøntegaard delta rate (BD-Rate) [43]
were utilized as the metrics for the objective evaluation of coding performance. We also included
subjective evaluation metrics for the satellite video data.

Table 1. Experimental configuration of two implementations.

Testing Platform Codec Detailed Settings

First Implementation
LBRL-HEVC vs. HEVC Four-core Intel i5-4210m CPU @ 2.60 GHz HM 16.8 [44]

Frame structure: Low Delay IPPP; GOP size = 8;
QP = 22, 27, 32, 37; Max partition depth = 4;

Fast search = Enable; Search range = 64;
Intra period = 8; Rate control = −1; SA0 = 1;

Second Implementation
LBRL-x264 vs. x264

Nvidia Jetson TX2 contains four ARM Cortex
A57 cores and one GPU with 256 CUDA cores

X264 [45]: version r2901
of 20 January 20 2018

Profile = baseline; GOP size = 8; Slice mode = 0;
QP = 22, 27, 32, 37; Preset = ultrafast; Keyint = 8;

Search range = 32; Rate control = −1;

5.2. Experiments with UAV Video Clips

In this experiment, the effectiveness of how a long-term background reference can improve the
encoding efficiency was tested. We used the first implementation of the proposed method LBRL-HEVC
against HEVC for this purpose.
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The image data used to build LBRL was collected under the same conditions with the to-be
encoded video clips. They were geographically corrected by using ground control points, and then
stitched together. The developed LBRL for UAV data is shown in Figure 6a, with the size of 12.69 MB.
Considering that the images in LBRL of UAV shared quite similar conditions with the UAV video data,
we only conduct geometric matching to generate the reference image, without radiometric adjustment
and quality adjustment. Taking one video clip in Figure 6d, the approximate area was firstly located in
the LBRL (red rectangle) and then cropped out, as shown in Figure 6b. The geometric matching and
transformation was conducted to convert the cropped image from LBRL to be of the same shape as the
frames of the video clip.

The total encoding performance gains of the proposed LBRL-HEVC compared with HEVC are
listed in Table 2 and the Rate-Distortion (RD) curve is shown in Figure 7. At the same PSNR,
the proposed method averagely decreases 54.18% bitrate over HEVC. This result also corresponds
to 4.32 dB PSNR gains over HEVC at the same bitrate. The bitrate reduction occurs mainly because
of the bit savings from the I frame. Most of the prediction modes of the I frame changed from
intra-frame prediction to inter-frame prediction, referencing the generated background reference
images. The P frame can also reference both the generated background reference images and its
previous frames.
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Figure 6. LBRL and reference images generation for UAV video clips. (a) The LBRL developed
for the UAV video clip test; (b) cropped area from the LBRL (red rectangle in (a)) according to the
to-be-encoded video clip; (c) geometrical transformed reference image; (d) to-be-encoded video clip.
First row—UAV video clip a; second row—UAV video clip d.

Table 2. The overall BD-PSNR (dB) and BD-Rate (%) of LBRL-HEVC vs. HEVC with UAV data.

UAV BD-PSNR BD-Rate UAV BD-PSNR BD-Rate

a 5.34 −62.77 c 3.51 −49.65
b 4.21 −53.32 d 4.21 −50.97

Average 4.32 −54.18
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Figure 7. RD curves of LBRL-HEVC and HEVC for four video clips from UAV data.

5.3. Experiments with Satellite Video Clips

The LBRL in this case consisted of satellite images downloaded from Google Earth, due to the
limited access to historical satellite data. Since the satellite video clips were in the city of Valencia,
Spain, we built the LBRL for this city. The total land area of Valencia was 134.7 km2, and the total size
of Google Earth images covering this city was 5.93 GB. The size of the library was proportional to the
land area, namely 45 MB/km2 on average. Even considering one of the biggest cities, New York City,
USA, with a land area of about 784 km2, the size of the LBRL is less than 35 GB.

5.3.1. Intermediate Results from Background Reference Generation

The intermediate results for background reference generation from a Google Earth image
(Figure 8b) for a certain video clip (sample frame in Figure 8a) are presented in Figure 8c,d. It is easy
to notice that the Google Earth image is much shaper and the color is more brilliant than the captured
satellite videos, so besides geometric matching, we also conducted radiometric adjustment and quality
adjustment to generate the final reference image.
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Figure 8. Reference images. (a) Sample frame from satellite video clips building-1; (b) cropped image
from a large image downloaded from © Google Earth; (c) reference image Ig

r after geometric matching;
(d) reference image Ic

r from Ig
r after radiometric adjustment; (e) final background reference image

Ir from Ic
r after quality adjustment.

From the intermediate result, we can see that the proposed background referencing generation
method can successfully handle the image representation variances caused by illumination and
sharpness differences. However, current strategy will not work well with the problems which
cause a change of representation of remote sensing images: (1) shadow movement; (2) projection
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difference of tall buildings; (3) huge illumination change; (4) scene change due to seasons variation
e.g., vegetation; (5) landscape change. The solution to these problems might require multimode
reference images for one region in LBRL, together with image translation techniques and other
methods for background reference generation. An updating strategy for LBRL is also required to
handle the landscape change problem.

5.3.2. Results of LBRL-HEVC

The improvement of coding efficiency was tested first using the implementation LBRL-HEVC.
In this test, the coding results from references generated with only radiometric adjustment (Only-RA)
and with only quality adjustment (Only-QA) were also compared to analyze the effectiveness of the
radiometric and quality adjustment in generating good background references.

The coding results of LBRL-HEVC compared with HEVC are presented in Table 3. In general,
the average bitrate savings can reach up to 24.93%. Compared to the averaged bitrate savings with
UAV data, it was proven that the similarity of the background reference had great effectiveness on the
improvement of the EOV data compression ratio.

We can also notice that in different video clips with different video content, the highest bitrate
reduction appeared with farmland, where there were few tall buildings. Since we did not consider the
elevation change, we could not correct the projection difference in our geometric matching, leading to
low efficiency prediction for places containing projection differences. The seaside video clip had the
lowest bitrate reduction, which was probably due to the negative influence of waves in the water area.

Comparing the results from Only-RA and Only-QA with HEVC, the coding efficiency was
not obviously improved. This might be because with only one process, there were still great
differences between the background reference and the encoding video frames in the pixel domain,
resulting in non-valid inter-frame predictions. From the experimental data, we can conclude that
the quality adjustment was a bit more important than the radiometric adjustment for background
reference generation.

The RD curves for the tested satellite video clips are shown in Figure 9, revealing results similar
to those we obtained from Table 2. The RD curves for Only-RA and Only-QA almost overlapped with
HEVC, showing no significant improvement. The curves for the proposed method were higher than
the other curves for the four video clips, representing the general effectiveness of the proposed method
in bitrate reduction for satellite videos.

Table 3. The overall BD-PSNR (dB) and BD-Rate (%) of Only-RA, Only-QA, and LBLR-HEVC vs. HEVC
with satellite data.

Method Satellite Jilin-1 BD-PSNR BD-Rate

Only-RA
(Only Radiometric Adjustment)

Building-1 0.20 −5.08
Building-2 0.16 −4.75
Farmland 0.53 −9.65

Seaside 0.08 −3.83
Average 0.24 −5.83

Only-QA
(Only Quality Adjustment)

Building-1 0.26 −6.38
Building-2 0.26 −6.76
Farmland 0.61 −13.86

Seaside 0.22 −6.68
Average 0.34 −8.42

LBRL-HEVC
(Both RA and QA)

Building-1 1.19 −26.21
Building-2 0.95 −23.80
Farmland 1.76 −33.04

Seaside 0.65 −16.68
Average 1.14 −24.93
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Figure 9. RD curves of HEVC, Only-RA, Only-QA, and LBRL-HEVC from four satellite video clips.

In general, the implementation of the proposed method on HEVC (LBRL-HEVC) proved that we
can generate effective background references from the Google Earth images, and that the compression
ratio can be successfully increased. The bitrate reduction of satellite data was less than that of UAV
data, which was mainly due to the similarity between the reference image in LBRL and the current
video data.

5.3.3. Results of LBRL-x264

In this section, the effectiveness of the proposed method in the embedded system of real
applications is evaluated. The results of LBRL-x264 compared to x264 are presented in Table 4.
Similar to the results of LBRL-HEVC compared to HEVC, LBRL-x264 can reduce around 32.77% bitrate
compared to x264 at the same PSNR, and the quality improvement was on average 1.7 dB at the
same bitrate.

Table 4. The overall BD-PSNR (dB) and BD-Rate (%) of LBRL-x264 vs. x264 with satellite video data.

Satellite Video BD-PSNR BD-Rate Satellite Video BD-PSNR BD-Rate

a 2.13 −36.30 c 2.20 −40.47
b 1.42 −29.88 d 1.05 −24.43

Average 1.70 −32.77

The detailed results are plotted in Figure 10, together with the curves of LBRL-HEVC and HEVC.
As shown in the curves of x264 and LBRL-x264, the differences between them were bigger at the lower
part than the higher part. The lower part of the curves covered the range of the selected bitrate for
transmission, where obvious bitrate reduction can be observed. More details are shown in the visual
results in Figure 11. We can also notice that the bitrates from HEVC were much lower than the results
from LBRL-x264 or x264. However, the HEVC-based codecs cannot be implemented on UAV or satellite
platforms, due to the computational complexity presented in Section 5.4.
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The visual comparisons for video clips Builidng-2 and Seaside are shown in Figure 10. In the
visual comparison, we selected target bitrates of around 500 kbps. The video clips in the test were
1080p of 1920 × 1280 resolution, and the original video data of 12,000 × 5000 resolution was 30 times
that of the tested video clips. With the same quality, the encoded original video data stream would
be 15 Mbps, which was within the required range of 10–20 Mbps transmission bandwidth between
satellites and Earth.

As shown in the pictures, if encoded at nearly the same bitrate, the LBRL-based methods can
provide better visual quality than that achieved from the corresponding codec. Comparing different
decoded pictures from the same frame, the visual qualities were consistent with the PSNR values;
namely, lower PSNR corresponded to lower visual quality. LBRL-HEVC can provide almost the same
result visually as the original frame, especially that for Seaside with 39.25 dB. When the quality
degraded to 35–37 dB from HEVC, decoded pictures tended to be blurry. Since the compression ratio
is lower in LBRL-x246 and x264, the qualities of the decoded pictures were obviously lower than those
from HEVC. We can clearly notice the blocking artifacts in the pictures from x264. Taking the cars on
the road in the Seaside video clip as an example to clarify the visual comparison, we can count six cars
from the original picture. After encoding by LBRL-HEVC, five were remained, whilst only four cars
were left in the decoded picture from HEVC. The shape of the cars became blurry in LBRL-x264, but we
can still count five cars. The cars had almost disappeared from in the picture from x264.
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Figure 10. RD curves of LBRL-x264, x264, LBRL-HEVC, and HEVC from four satellite video clips.

5.4. Computational Complexity Analysis

In the proposed method, the additional computational cost comes from the generation of reference
images, including geometric matching, radiometric adjustment, quality adjustment, and the resampling
of the images, as well as the long-term prediction for the I frame. The computational complexity of
other encoding processes is the same as that for HEVC. The LBRL is built offline, thus we do not take
it into consideration in the computational complexity analysis.

The computational complexity was measured by frames per second (fps) and tested separately
on two implementations. LBRL-HEVC and HEVC were tested using a laptop with i5 CPU. The total
additional time for background reference generation was 5.52 s for the I frame and 3.50 s for the
P frame, since the P frame did not need radiometric adjustment and quality adjustment. The tests for
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LBRL-x264 and x264 were carried on Nvidia Jetson TX2. The algorithms for SIFT matching, radiometric
adjustment, and resampling were accelerated by the parallel processing on the GPU. Therefore, th total
processing times for generating background reference images for the I frame and P frame were around
96.1 ms and 45.8 ms, respectively.

The comparison of the computational speed of the two implementations on different platforms
are reported in Table 5. The QP for encoding was uniformly set to 32 for the comparison. Because the
computational complexity was quite high for HEVC, the additional cost for reference generation did
not have obvious effects on the processing speed. Since the processing time was around 1 min for one
frame, far from real-time processing, it cannot be used on UAV or satellite platforms. The computational
speed reached more than 100 fps for x264, which left time for the proposed method to generate the
background reference. The average processing speed was around 16.77 fps for LBRL-x264, a bit higher
than 15 fps set for remote sensing video data. Therefore, our method implemented on x264 could
achieve the real-time processing of 1080p video data on a remote sensing platform.
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Table 5. Computational speed of LBRL-HEVC, HEVC, LBRL-x264, and x264, with satellite video
data (fps).

Intel i5 CPU @ 2.60 GHz Nvidia Jetson TX2

LBRL-HEVC HEVC LBRL-x264 x264

Building-1 0.0157 0.0167 15.91 93
Building-2 0.0157 0.0167 16.25 99
Farmland 0.0175 0.0187 17.88 147

Seaside 0.0172 0.0184 17.04 125

Average 0.0165 0.0176 16.77 116

6. Conclusions

This paper proposes a long-term background referencing-based Earth observatory data encoding
method for real-time collection, analysis, and applications in smart cities. The key idea is to build
an LBRL covering the entire area of a smart city to represent the common appearance of the landscape.
For each new captured video clip, the corresponding image of the shooting location from the
library is cropped and converted according to the image representation of the area in the video
clip. The converted image is used as the additional long-term reference for the encoding of I frames
and P frames. Extensive experiments with UAV video data and satellite video data show that,
the proposed LBRL-based EOV encoding method can save 25% to 54% of the total bitrate and achieve
a significant gain in background coding performance over HEVC and x264 correspondingly. The GPU
implementation of the proposed method based on x264 codec on Nvidia TX2 can achieve a real-time
processing of the 1080p video data with 15 fps. By applying the x264 implementation, the gap between
the bitrate of video data and the bandwidth of the transmission channel can be reduced from 3–6-fold
to 2–4-fold.

Compared with the existing short-term prediction-based coding methods for single video clips,
the proposed method follows the characteristics of a large portion of static landscape in EOV data,
in addition to making use of the existing information of the landscape. Moreover, the information
is reformed and geographically organized in the library, rather than the original data form used in
multisource coding methods. The geographically organized form of the library helps to facilitate the
reference searching. The uniform representation of the landscape and its transformations guarantee
a highly similar reference, which further improves the compression efficiency.

The proposed method does not completely solve the real-time transmission problem between
remote sensing platforms and Earth, but provides an idea to make use of known information on
Earth to reduce the information needed to be sent from remote sensing platforms. To further improve
the compression efficiency of the propose method, we will further investigate the development of
background referencing libraries from multiple sources of historical data, exploiting the extraction and
representation of common knowledge from images taken under different conditions. Then, exploring
more accurate radiometric and quality adjustment models, this method can possibly be implemented
for different land cover types. A complete solution to the transmission problem calls for development
in different fields, including computational platforms, new data transmission solutions, and improved
data processing techniques.
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