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Abstract: Vehicle behavior recognition is an attractive research field which is useful for many
computer vision and intelligent traffic analysis tasks. This paper presents an all-in-one behavior
recognition framework for moving vehicles based on the latest deep learning techniques.
Unlike traditional traffic analysis methods which rely on low-resolution videos captured by road
cameras, we capture 4K (3840× 2178) traffic videos at a busy road intersection of a modern megacity
by flying a unmanned aerial vehicle (UAV) during the rush hours. We then manually annotate
locations and types of road vehicles. The proposed method consists of the following three steps:
(1) vehicle detection and type recognition based on deep neural networks; (2) vehicle tracking
by data association and vehicle trajectory modeling; (3) vehicle behavior recognition by nearest
neighbor search and by bidirectional long short-term memory network, respectively. This paper
also presents experimental results of the proposed framework in comparison with state-of-the-art
approaches on the 4K testing traffic video, which demonstrated the effectiveness and superiority of
the proposed method.

Keywords: unmanned aerial vehicles (UAVs); deep neural networks; vehicle detection; vehicle
tracking; behavior recognition; long short-term memory

1. Introduction

Behavior recognition of moving objects is a hot research topic in multiple fields, especially for
surveillance and safety management purposes. In this paper, we focus on city road traffic where the
basic road element is the vehicle object.

Studying the behavior of on-road vehicles at road intersections is a vital issue for building
intelligent traffic monitoring systems and self-driving techniques. For example, in order to ensure
safe driving, drivers need to know if the vehicles in front are going straight through the intersection
or are making left or right turns. However, due to the crossing of multiple roads, crashes generally
occur at intersections [1]. In 2015, there were 5295 traffic crashes at four-way intersections with one or
more pedestrian fatalities reported in the U.S. [2]. Hence, intelligent transportation systems need to
actively monitor and understanding the road conditions and give warnings of potential crashes or the
occurrence of the traffic congestion.

Conventional behavior recognition systems rely on thousands of detectors (e.g., cameras,
induction loops, and radar sensors) deployed on fixed locations with small detecting ranges to help
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capture various road conditions throughout the network [3–5]. Such a system has exhibited many
limitations in terms of range and effectiveness. For instance, if the information is required beyond the
scope of these fixed detectors (i.e., blind regions), human labors are then frequently deployed to assess
these particular road conditions [6]. In addition, many monitoring tasks need to temporally detect
detailed traffic conditions such as sources and destinations of the traffic flow, regions of incidents,
and queuing information at crossroads [7,8]. To achieve this, visual information of multiple fixed
detectors needs to be aggregated in order to provide a relatively large view of the area of interest,
which could introduce extra noisy information and overhead costs. Therefore, it is essential to develop
a more effective approach for acquiring visual information for further processing.

To tackle these issues, previous works have attempted to exploit still satellite images for traffic
monitoring [9–11]. Satellites can be used to observe wide areas, but they lack spatial resolution
for specific ground locations. Additionally, data acquisition and processing are complicated and
time-consuming, which hinders its application to real-time urban traffic monitoring tasks.

Thanks to the technological advances in electronics and remote sensing, Unmanned Aerial Vehicles
(UAVs), initially invented for military purposes, are now widely available on the consumer market.
Equipped with high-resolution video cameras, geo-positioning sensors, and a set of communications
hardwares, UAVs are capable of capturing a wide range of road situations by hanging in the air or
by traveling through the road network without restrictions [12–15]. Traffic videos captured by UAVs
contain important information for traffic surveillance and management, and play an important role in
multiple fields such as transportation engineering, density estimation, and disaster forecasting [16–18].
However, UAVs are not widely applied in the vehicle behavior recognition system due to specific
challenges for detecting and tracking vehicles in the UAV’s images and videos.

On one hand, the equipped camera of a UAV may rotate and shift during the recoding process.
On the other hand, compared with conventional monitoring systems, the UAV’s video contains not
only the ordinary data such as the global view of the traffic flow, but also each vehicle’s own data
regarding, for example, its moving trajectory, lane changing information, and its interaction with other
vehicles [19,20]. Therefore, the UAV’s video needs to be recorded using a very high resolution and
frame frequency so as to capture adequate ground details. This inevitably leads to a huge amount of
UAV video data and poses challenges for vehicle detection and tracking algorithms [21].

To deeply understand city road vehicle behavior and overcome the challenges brought by
real-world UAV video data, we developed a robust Deep Vehicle Behavior Recognition (DVBR)
capable of recognizing different vehicle behaviors in high-resolution (3840× 2178) videos. As a case
study, we focus on vehicle behavior recognition at intersections.

The DVBR framework contains two main parts: the first consists in vehicle trajectory extraction.
More concretely, we first trained a Retina object detector [22] to localize and recognize different
vehicles (i.e., cars, buses, and trucks). Then we detected vehicles frame by frame on an input video,
and developed a simple online tracking algorithm to associate detections across the whole video
sequence. Based on the tracking results, we modeled and extracted vehicle trajectories from the
original traffic video. To the best of our knowledge, this is the first framework which integrates deep
neural networks and traditional algorithms for analyzing 4K (3840× 2178) UAV road traffic videos.

The second part is vehicle behavior recognition. We approached this problem based on a nearest
neighbor search and bidirectional long short-term memory, respectively. We conducted a comparative
study in the experiments to demonstrate the effectiveness and superiority of proposed methods.

The rest of this paper is organized as follows. Section 2 briefly discusses work related to vehicle
behavior recognition. Section 3 elaborates the Deep Vehicle Behavior Recognition Framework. Section 4
presents experiment settings, results, and discussion. Section 5 summarizes our work and discusses
the path forward.



Remote Sens. 2018, 10, 887 3 of 21

2. Related Work

Behavior recognition could be treated as the classification of time series data, for example, matching
an unknown sequence to some types of learned behaviors [23]. In other words, behavior recognition
in traffic monitoring describes the changes in type, location, or speed of a vehicle in the traffic video
sequence (e.g., running, turning, stopping, etc.).

In general, the behavior recognition system contains a dictionary constructed using a set of
pre-defined behaviors, and then finds matches in the dictionary by checking each new observation
of the vehicle behavior, e.g., slow or fast motion, heading north or south [24]. Combined with
the knowledge of traffic rules, these behaviors can be used for multiple applications, for instance,
event recognition, which means generating a semantic interpretation of visual scenes (e.g., traffic flow
analysis and vehicle counting), and abnormal event detection, such as illegally stopped vehicles, traffic
congestion, crashes, red-light violation [25], and illegal lane changing [26].

Based on the vast amount of driving behaviors, there are two main approaches to understanding
vehicle behaviors in road traffic scenes. The first one is vehicle trajectory analysis, and the other approach
focuses on the explicit attributes of the vehicle itself, such as its size, velocity, and moving orientation.

2.1. Behavior Recognition with Trajectory

Many existing traffic monitoring systems are based on motion trajectory analysis. A motion
trajectory is generated by tracking an object frame by frame in the video sequence and then linking its
locations across the consecutive frames. In recent decades, various approaches to handle the analysis
of the trajectory of moving objects based on city road traffic videos have been proposed. In [27],
a self-organizing neural network is proposed to learn behavior patterns from the training trajectories,
and activities of new vehicles are then predicted based on partially observed trajectories. In [28],
the vehicle trajectories are modeled by tracking the feature points through the video sequences with a
set of customized templates. Behavior recognition is then conducted to detect abnormal events: illegal
lane changing or stopping, sudden speeding up or slowing down, etc. In [29], the turning behaviors of
road vehicles is detected by computing the yaw rate using the observed trajectories. Based on the yaw
rate and modified Kalman filtering, the behavior recognition system is capable of effectively identify
the turning behavior. In [26], the lane changing information of target vehicles is modeled using the
dynamic Bayesian network, and the evaluation is performed using the real-world traffic video data.

2.2. Behavior Recognition without Trajectory

Another way of recognizing behavior is to inspect non-trajectory information such as the size,
velocity, location, moving orientation, or the flow of traffic objects [30]. The main objective is to,
according to this information, detect abnormal events of a moving target if the values of these
attributes exceed the pre-defined value ranges. In vision-based road traffic analysis, speed is estimated
by converting the image pixel-based distances to the absolute distances by manual geo-location
calibration. By extracting velocity data, the traffic monitoring system is able to quickly detect
congestion, traffic accidents, or violation behaviors. For example, Huang et al. use the velocity,
the moving direction, and the position of vehicles to detect vehicle activities including sudden breaking,
lane changing, and retrograde driving [31]. Pucher et al. employ video and audio sensors to detect
accidents such as static vehicles, wrong-way driving behaviors, and congestion on highways [32].

To summarize, much work has been done on road vehicle behavior recognition, but most
published results rely on small camera networks, which means their cameras only capture a small
range of the traffic scene, and they focus on specific vehicle tracking and activity analysis. Additionally,
many approaches simply treat road vehicles as “moving pixels”, while the types of road vehicles are
often ignored. For example, they cannot process a query such as “find all illegally stopped cars on
Southwest Road” or “find all trucks queueing at red lights to cross the road”. In our work, we use the
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UAV to capture a large area of the road traffic. Our vehicle detection and tracking algorithms are able
to recognize different types of vehicles and maintain these unique identities for tracking.

3. The Deep Vehicle Behavior Recognition Framework

This section elaborates the DVBR framework. In the vehicle trajectory extraction part, we first
detected road vehicles based on the Retina object detector [22] and then tracked vehicles by associated
detections across whole video sequences. Next, we modeled and extracted the vehicle trajectories
using the tracking results. In the behavior recognition part, we designed both semi-supervised and
supervised approaches to classify vehicle trajectories in order to recognize their behaviors. Figure 1
illustrates an overview of our work and its relations to the intelligent transportation system (ITS).

Figure 1. An illustration of the hierarchical structure of our work and its relationship to the intelligent
transportation system (ITS). In the first stage, we used a UAV to collect high-resolution city traffic
videos and, in Stage 2, extracted the static and dynamic information of road vehicles. In the third stage,
we modeled and analyzed vehicle trajectory data, and observed vehicle behaviors. In our future work,
all these achievements could contribute to the construction of comprehensive ITS services, such as
traffic flow analysis, abnormal event detection, and security monitoring.

3.1. Vehicle Trajectory Extraction

3.1.1. Vehicle Detection

Network Architecture. We used RetinaNet [22] to detect vehicles in UAV videos. RetinaNet
introduces the focal loss, which aims to address the one-stage object detection problem in which the
foreground and background classes are imbalanced. It consists of a base network for multi-scale
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feature generation and two subnetworks for object detection (see Figure 2). The base network uses a
Feature Pyramid Network (FPN) [33] on top of a feedforward ResNet [34] initially designed for image
classification. The FPN can be seen as a standard convolutional network with top–bottom and lateral
connections in order to build multi-scale (feature pyramid) feature maps for a single input image. Each
layer of the pyramid is responsible for detecting objects at a specific scale.

Figure 2. The RetinaNet network architecture uses a Feature Pyramid Network (FPN) [33] backbone on
top of a feedforward ResNet architecture [34] (a) to generate a rich, multi-scale convolutional feature
pyramid (b). To this backbone, RetinaNet attaches two subnetworks, one for classifying anchor boxes
(c) and one for regressing from anchor boxes to ground-truth object boxes (d).

The other two subnetworks are used for object detection. The first one is the classification subnet
which predicts the probability of object existence at each spatial position for each bounding box location
and C object categories. The second one is the box regression subnet which regresses the offset from
each predicted bounding box to a nearby ground-truth object bounding box.

Training and Testing. We used the training images extracted from the training video to train the
vehicle detector, and in the testing phase, a testing image was fed into the trained detector. Couples of
predicted boxes with class confidences were generated as the initial output. For each unique vehicle,
using a Non-Maximum Suppression algorithm [35], only a single prediction (bounding box and type)
was reserved via thresholding.

One important issue in testing is that the original 4K (3840× 2178) traffic video frames are too
large for the network input. To solve this, we designed a region-based strategy by employing a sliding
window to divide the original video frame into small patches with a size of 512× 512. We allowed an
overlap of 200 pixel horizontally and vertically between patches in order to capture complete vehicles.
We then performed detections on each image patch and stitched them back together to the initial scale.

Allowing overlaps between these patches sometimes yielded complete detections, but this also
increased the numbers of repeated detections (i.e., a single vehicle was detected multiple times in
different patches). To solve this issue, in our experiment, we found repeated boxes by evaluating
them: either their center distances were smaller than a threshold (Tcd) or their intersection-over-union
(IoU) scores were above a threshold (Tiou). IoU is a popular evaluation criterion in the field of object
detection [36,37], and is used to measure the ratio of overlap between two bounding boxes. In our case,
the IoU score of two predicted boxes Bi and Bj is

IoU(Bi, Bj) =
Bi ∩ Bj

Bi ∪ Bj
. (1)

IoU = 1 represents a complete match between two bounding boxes. After we obtained all
repeated boxes on a single vehicle, we reserved the one with the maximum scale.
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3.1.2. Trajectory Modeling and Extraction

The proposed DVBR framework follows a tracking-by-detection strategy for trajectory modeling.
Since we could obtain detection results in the whole video sequence, we simplified the problem of
multiple object tracking (MOT) as a data association problem aiming to associate detections across
different frames in a video sequence. In our approach, only the location coordinates of bounding boxes
and corresponding vehicle types are considered for motion estimation and data association. Moreover,
long-term occlusion is also ignored as it occurs infrequently in road traffic videos.

Motion Estimation. To estimate motions for each unique vehicle, we represent it using a linear
model and propagate its identity into the next frame. Each modeled vehicle is independent of other
vehicles and the camera motion. The state of each vehicle is represented using a column vector:

V = [xc, yc, s, a, c, x̂c, ŷc, ŝ]T (2)

where xc and yc represents the horizontal and vertical centers of the vehicle bounding box, while s
and a refers to its scale and aspect ratio, respectively. The vehicle category is denoted as c. Note that
the aspect ratio and the vehicle category is treated as constant during the tracking progress. Once a
detection is assigned to a vehicle, its bounding box is used to update its state via the Kalman filter
algorithm [38].

Data Association. To assign detections to vehicles over time, each vehicle’s motion (bounding
box coordinates) is estimated by computing its new location in the current frame. We then create a
cost matrix Mcost by measuring the IoU between each detection and predicted bounding boxes of the
existing vehicles. Our goal is thus to find an optimal assignment to maximize the numbers of matches
in these two sets of bounding boxes. In our experiments, we solve it via the Hungarian algorithm [39].
Again, a threshold Thassign is set to discard assignments with low IoU scores between detections and
bounding boxes of existing vehicles.

Track Management. When vehicles enter or leave the traffic scene, unique trackers need to be
created or deleted accordingly over time. In the first frame, a set of trackers are initialized by measuring
locations (bounding box coordinates) of existing vehicles. Then in the following frames, the state of
assigned trackers are updated using the matched detections, while any unassigned detection may
begin a new track. For creating a new tracker, we treat any detection with an overlap (to existing
trackers) lower than Tassign as an untracked vehicle.

Each track will keep count of a number of consecutive frames, where no new detections are
assigned. If this number exceeds a threshold Tmiss, the target is assumed to have left the field
of traffic view and the track is terminated. This avoids overgrowing the number of trackers and
reducing tracking errors caused by missing detections over a long-term period. In our experiments,
we empirically set Tmiss to 10. We do this because trackers are initialized under the assumption that the
velocity of moving targets is constant in short-term tracking, which means that it is a poor indicator to
model the true dynamic movements in a long period. Additionally, early deletion of missing targets
improves efficiency.

Trajectory Extraction. We extract the trajectory of a vehicle by linking its center points across
the consecutive frames in the traffic video. More concretely, we represent the location of ith vehicle
in the video sequence as Li = [(xi1, yi1), (xi2, yi2), ..., (xin, yin)], where n refers to the number of frame
where this vehicle is tracked. We can easily draw a vehicle’s trajectory by linking all its center points
stored in L. Compared to other trajectory modeling approaches where vehicle trajectories are only
estimated data, our trajectory data are more accurate and reliable because they are obtained through
frame-by-frame vehicle detection and tracking.
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3.2. Vehicle Behavior Recognition

3.2.1. Behavior Recognition Based on Nearest Neighbor Search

We define three types of typical vehicle behavior, such as go straight, right turn, and left turn. We do
not consider the U-turn because it occurs very rarely in traffic videos. This would lead to very few
samples and cannot be processed by recognition algorithms.

In this section, we approach the vehicle behavior recognition by a semi-supervised nearest
neighbor search. We first propose a double spectral clustering (DSC) method to cluster vehicle
trajectories into three subgroups, and then in each subgroup, we determine its class label by inspecting
the majority type of the trajectories in it. In the testing phase, we measure the distance between the
testing image and each clustering center using the longest common sub-sequence similarity (LCSS),
and assign a class label to it according to the label of the nearest clustering center. This is the basic idea
of a nearest neighbor search.

The LCSS was proposed in [40] and is able to effectively handle trajectories with different lengths:

DLCSS(Fp, Fq) = 1−
LCSS(Fp, Fq)

min(Tp, Tq)
(3)

where LCSS(Fp, Fq) measures the longest overlapping length of the trajectory between Fp, Fq,
and Tp, and Tq refers to the length of these two trajectories. The LCSS is defined as

LCSS(Fp, Fq) =


0, Tp = 0|Tq = 0

1 + LCSS(F
Tp−1
p , F

Tq−1
q ), dE( fp,Tp , fq,Tq) < ε

max(LCSS(F
Tp−1
p , F

Tq
q ), F

Tp
p , F

Tq−1
q ), otherwise

(4)

where ε denotes the threshold of the Euclidean distance, and Ft = f1, ..., ft represents all sample points
of the time stamp t.

The proposed double spectral clustering (DSC) method proceeds as follows. Given a vehicle
trajectory, we first compute its curvature via the least square and polynomial fitting method and take
the average values of the first N curvatures as the final result. We then treat the trajectory as a curve
(i.e., a vehicle taking turns) if its curvature is larger than the threshold Cth, and treat it as a non-curve
(i.e., vehicle going straight) otherwise. For curves, we directly construct the affinity matrix using
the LCSS [40] and perform spectral clustering. For non-curves, we tackle them in two stages. In the
first stage, we compute the similarity of their dip angles and perform spectral clustering to obtain
the initial results. In the second stage, we construct the affinity matrix using the LCSS and perform
spectral clustering again. Finally we merge the clustering results for curves and non-curves. The whole
clustering workflow is illustrated in Figure 3.

The similarity between trajectory dig angles is defined as

Simθ(i,j) = 1−
θi − θj

dθmax
, 0 6 i, j 6 n (5)

where θi is the dig angle of the ith trajectory and is computed as

θi =
arcsin(− k√

1+k2 )× 180◦

π
(6)

dθmax = max(|θi − θj|), k is the slope of the trajectory, and n is the number of trajectories.
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Figure 3. The working flow of the proposed double spectral clustering (DSC) method. For curve
trajectories, we directly measure their pairwise similarities using the longest common sub-sequence
similarity (LCSS) measure. For non-curve trajectories, we first cluster them according to the similarities
of their dip angles, then use LCSS again to obtain the final results. Finally, we combine the clustering
results on the two types of trajectories.

3.2.2. Behavior Recognition by Classification

In this section, we approach the behavior recognition by supervised classification. Different
from traditional approaches which incorporating Hidden Markov Modeling and other classification
methods such as random forest and k nearest neighbor, we design a novel deep learning model
based on Long Short-Term Memory (LSTM) [41]. As a special type of Recurrent Neural Networks
(RNNs) [42], LSTM can effectively model the inherent structure of the sequential data and is proved to
be powerful in many sequential classification problems [43–45].

Network Structure. The basic structure of LSTM is depicted in Figure 4. The LSTM has a
memory named “cell” to store the state vector which summarizes the sequence of the past input data.
The current state is updated according to the current input, output, and the previous state stored in
that “cell”. LSTM has a gate control mechanism that allows the network to “forget” the past state
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stored in cells or to learn the time stamp to update its state according to the new state information.
Denoting Ct as the state of the memory cell at the time step t, then Ct is updated by

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wx f xt + Wh f ht−1 + b f )

ot = σ(Wxoxt + Whoht−1 + bo)

gt = tanh(Wxcxt + Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(7)

where σ is the sigmoid function, and x� y means element-wise product. Wxi, ..., Whc are the weight
matrices for linear transformation. bi,b f ,bo,bc are the bias vectors. it is the input gate vector, ft is the
forget gate vector, ot is the output gate vector, gt is state update vector, and ht is the output hidden
state vector.

Figure 4. The basic Long Short-Term Memory (LSTM) structure.

The input gate it and the forget gate ft can control the information flow from the input to the
output, respectively. Note that the behavior of the gate control is learned from data as well. Due to
their recurrent nature, even a single layer of LSTM nodes can be considered a “deep” neural network.

The input gate it and the forget gate ft can control the information flow from the input to the
output, respectively. Note that the behavior of the gate control is learned from data as well. Due to their
recurrent nature, even a single layer of LSTM nodes can be considered as a “deep” neural network.

For many sequence classification tasks, it is beneficial to have access to future as well as past
contexts. However, standard LSTM networks process sequences in temporal order and ignore
past contexts. Bidirectional LSTM (BiLSTM) networks extend the standard LSTM networks by
introducing a second layer where the hidden-to-hidden connections flow in opposite temporal order.
The bidirectional model is therefore able to exploit information both from the past and the future.
In our work, we built a trajectory-based bidirectional LSTM model (T-BiLSTM) to classify vehicle
trajectories. We merged the output of the two directions by vector concatenation, which generates
double the number of outputs to the next layer. In order to extract the information relevant to the class
labels, we added an additional output network to the hidden state ft. We used a fully connected(FC)
layer and one softmax layer that contains the linear transformation of ht followed by the softmax
function. We show our network structure in Figure 5.
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Figure 5. The network structure of trajectory classification using bidirectional LSTM (BiLSTM).

Feature representation. The BiLSTM accepts sequential vectors as inputs, so we need to transform
the road plane position information stored in trajectories into the sequential features according to the
temporal order. General features such as the location coordinates and vehicle speed often contain noisy
information since they are sensitive to the motions of vehicles. In our work, we used angular changes
to capture the trajectory variations due to its superior robustness compared to other types of features.

Let (xt, yt) be the trajectory coordinates of a vehicle at time step t and (xt+1, yt+1) be its coordinates
at time step t + 1. The direction angle θ can then be calculated by

θ = arctan
(yt+1 − yt)

(xt+1 − xt)
. (8)

To build the trajectory features, first we resampled the trajectory to a unique length of N trajectory
points. More specifically, we computed the overall length of trajectory M, then divided it into N − 1
segments, each of which has length L. We then rechecked the distance between each adjacent point
in M and linearly inserted a new point if their distance was larger than L. Each vehicle trajectory
consisted of N points.

Second, we encoded and quantized the trajectory based on angular changes on 16 different
directions with an interval of π/8, as depicted in Figure 6a. For example, the sequential angle changes
of a vehicle going straight could be encoded as “3-3-3-3-3-3-3-3-3-3-3-2-2-2-2-3-3-3-3-3” (b), and a
vehicle turning right could be encoded as “3-3-7-7-3-3-7-3-7-7-7-7-7-15-7-15-7-7-15” (c).

Figure 6. (a) The encoding and quantization of direction angles. (b) The changing angles of a vehicle
going straight. (c) The changing angles of a vehicle turning right.

At last, we normalized the features values to [0, 1] and used them as the input of the
T-BiLSTM model.
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Training. We formulated the behavior recognition problem as a multi-class classification problem
where one class label was predicted given the sequential features of a testing vehicle’s trajectory.
To train the T-BiLSTM, we minimized the negative log-likelihood function:

L(w) = −
t=1

∑
J

M

∑
m=1

ct,m ln zt,m + (1− ct,m) ln(1− zt,m) + λΦ(w) (9)

where w refers to the parameter of the neural network, J is the number of training samples, ot,m is the
mth entry of ct, zt,m denotes the mth output of the softmax layer associated by class label ct,m, and Φ(w)

is the regularization term controlled by the parameter λ.

4. Experiment and Discussion

To evaluate the proposed framework, we captured a 14 m long traffic video with 4K resolution at
a busy road intersections of a modern megacity by flying a UAV during the rush hours. The fps was 30
and the total number of frames was 25,200. The traffic scene at this intersection is shown in Figure 7.

To build the training set, we first temporally subsampled the original video frames by a factor of
150. For each frame in the subset, we then divided it into small patches with a uniform size of 512× 512.
We allowed an overlapping area of 200 pixel vertically and horizontally between these patches to
ensure each vehicle appeared as a complete object. We then obtained 3400 training images. Next, we
manually annotate vehicles with the following information: (a) bounding box: a rectangle surrounding
each vehicle; (b) vehicle type: three general types including car, bus, and truck. This yielded 10,904
annotated vehicles. We used this dataset to train the RetinaNet object detector.

For testing, we collected another short video at the same road intersection but at a different time.
The length of the testing video is 2 m and 47 s, with a 3840× 2178 resolution and 30 fps. The total
number of frames was 5010.

Figure 7. The traffic scene of the testing video. (a) The snapshot of the original video. (b) The sketch
map of the intersection. The character “I” means “into the camera view” and the “O” means “out of
the camera view.”

4.1. Vehicle Trajectory Extraction

4.1.1. Vehicle Detection

We conducted the vehicle counting experiment to evaluate the effectiveness of the RetinaNet for
vehicle detection. More concretely, we counted all types of vehicles in a randomly selected frame from
the testing video.
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Settings. In the training phase, we randomly selected 85% of these training images for
training and the remaining 15% for validation. We compared RetineNet with another three recent
deep-learning-based object detection methods: the you-only-look-once version 3 (YOLOv3) [46],
the single shot multi-box detector (SSD) [47], and the faster regional convolutional neural network
(Faster-RCNN) [48]. We trained the four deep models using Caffe [49] toolkit on a GTX 1080Ti GPU
with 11 GB of video memory. The optimizer was set to stochastic gradient descent (SGD) for better
performance. We initialized the learning rate at 0.001, and it began to decrease to one-tenth of the
current value after 20,000 epochs. The total number of epochs was set to 120,000, and the momentum
was set to 0.9 by default according to these models.

In the testing phase, the testing image was first divided into small patches (512× 512) with an
overlap of 200 pixels, and these patches were then fed into the trained network to detect vehicles.
The global result was obtained by aggregating detection results on all patches. We eliminated the
repeated bounding boxes on each vehicle by setting the center distance threshold Tcd as 0.3 and the
IoU threshold Tiou as 0.1, respectively (determined by cross validation).

Evaluation. To make vehicle counting more straightforward, the detection result was visualized
by drawing vehicle locations and corresponding types on the input image. Counting was done
naturally by measuring the number of these bounding boxes. We quantitatively evaluated the counting
result via precision, sensitivity, and quality, which are defined in [50]. True positives (TPs) are correctly
detected vehicles, false positives (FPs) are invalid detections, and false negatives (FNs) are missed
vehicles. Among the three evaluation criteria, quality is most important since it considers both the
precision and the sensitivity of detection algorithms.

Precision =
TP

TP + FP
(10)

Sensitivity =
TP

TP + FN
(11)

Quality =
TP

TP + FP + FN
. (12)

Result and discussion. We report the counting result on the testing image (see Table 1).
It can be seen that the RetinaNet achieves the best performance, followed by YOLOv3 and SSD.
The Faster-RCNN method yields too many false negatives (missing vehicles), which leads to low
sensitivity and quality scores.

Table 1. Quantitative results of vehicle counting in 4K testing image. For each testing image, we show
the TP, FP, FN, precision, sensitivity, and quality. The best values are highlighted by bold typefaces.
The up arrow means that higher is better, and the down arrow means that lower is better. The best
values are highlighted using a bold typeface.

Method TP ↑ FP ↓ FN ↓ Precision ↑ Sensitivity ↑ Quality ↑

Faster-RCNN 49 6 36 0.890 0.576 0.538
SSD 68 2 17 0.971 0.80 0.782

YOLOv3 71 0 14 1.0 0.835 0.835
RetinaNet 81 0 4 1.0 0.953 0.953

We visualize the results on the testing image (see Figure 8). Cars, buses, and trucks (if any) are
automatically marked with light green, orange, and light blue bounding boxes, respectively. The small
images in the middle are patches extracted from the original images, which give clearer ground details
for type-specific detection. We noticed that SSD and Faster-RCNN generate a small number of false
positives. This is to be expected, because in the training set, only regions containing vehicles are
annotated by human annotators, while non-vehicle areas (including pure background and empty road)
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are ignored. A few ignored regions may exhibit very similar appearances with particular vehicles
(especially buses and trucks), which would consequently lead to a few wrong detections.

Figure 8. The qualitative result of vehicle detection on a testing image.

We also provide the training time and the testing speed (frame per second) in Table 2. It can
be observed that training of the Faster-RCNN model takes the longest time, but the testing speed
is the lowest. The YOLOv3 model achieves the lowest training time and the fastest testing speed,
which is due to its shallow network architecture compared with other models. However, its detection
performance is worse than the RetinaNet model.

Table 2. Training time and testing speed of vehicle detection methods. The up arrow means that higher
is better, while the down arrow means that lower is better. The best values are highlighted using a
bold typeface.

Model Faster-RCNN SSD YOLOv3 RetinaNet

Training Time ↓ 37 h 29 m 24 h 58 m 18 h 29 m 20 h 15 m
Testing Speed ↑ 15.3 44.1 fps 72.3 fps 60.2 fps

4.1.2. The Impact of Image Resolution

Although our data was recorded using 4K resolution, we are interested in determining if a
high resolution really benefits the detection results. To do this, we created an auxiliary set where
we down-sample the testing image. By adjusting the resolution of each image, we can determine
performance changes of the detection algorithms. More specifically, we resized the original testing
image to a resolution of 2K (2560), 1080p (1920× 1080), and 720p (1280× 720), respectively. We then
detected vehicles in these low-resolution images using the RetinaNet model.

The results are shown in Figure 9. It can be seen that the detection performance degrades
dramatically when the image resolution goes down, especially for the sensitivity measure and the
quality measure. This makes sense because, in a 4K image, a vehicle generally takes a few pixels.
However, in a 720p image, it only takes one or two pixels. This makes these vehicles (especially small
cars) totally unrecognizable (see Figure 10) for vision-based algorithms. Hence, recording data in a
high resolution is necessary since it provides enough ground details to help the detection algorithms
accurately localize different types of vehicles.
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Figure 9. Detection performance in different resolutions.

Figure 10. Example of an image patch in different resolution: (a) 4K; (b) 2K; (c) 1080p; and (d) 720p.

4.1.3. Vehicle Trajectory Modeling

Settings. We modeled vehicle trajectories according to the tracking results. Given the testing
video, we performed frame-by-frame vehicle detection using the trained network. Once detection was
complete, a set of trackers were created to associate bounding boxes with different vehicles across the
whole video sequence. We empirically set the threshold Tassign as 0.3 to start a new track, and set Tmiss
as 10 to terminate a track.

During the tracking phase, vehicles which were not within the range of roads (e.g., parking lots)
were ignored in the counting phase since they contribute nothing to estimate the city traffic density.
We manually defined the road ranges, since testing videos contained large-range and complex traffic
scenes. For implementation, we ran the tracking algorithm on the testing videos using an Intel i7-6700K
CPU with 32 GB on-board memory.

Evaluation. To evaluate the performance of the trajectory modeling approach, we tracked the
target vehicle in consecutive frames, and extracted the tracked center point Ĉ = (x̂, ŷ) of its bounding
box in each frame. For the ith, we computed the trajectory modeling error between the tracked center
point and the ground-truth center point (labeled by human annotators) Cg = (x, y) using

Ei =
√
(x̂i − xi)2 + (ŷi − yi)2. (13)

Based on Equation (13), we can compute the overall error by adding the modeling error in
each frame:

E =
n

∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (14)

where n is the number of frame being tracked. This error E is quantified using the number of pixels,
and it could be easily extend to the real value of centimeters by multiplying it by a factor of 10
(i.e., the ground resolution is 10 cm/pixel).
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We tracked all vehicles in the testing video and extracted 238 complete trajectories. The trajectories
with unknown types were ignored. We then randomly selected 50 vehicles and computed their
trajectory modeling errors using Equation (13). We took the average value as the modeling error of
this frame. The modeling error of the whole testing video was then computed using Equation (14).

Since our modeling method is based on vehicle tracking, we used three other recent tracking
approaches to model the vehicle trajectory and evaluate their performance for comparison, namely,
tracking-learning-detection (TLD) [51], tracklet confidence and online discriminative appearance
learning (TC-ODAL) [52], and the Markov decision process (MDP) [53]. In other words, our objective
was to model the vehicle trajectories using the four methods and then evaluate their performance by
computing the modeling error.

Result and discussion. We illustrate the frame-based trajectory modeling error for the first
280 frames of the testing video in Figure 11 and report the overall error in Table 3. It can be seen
that our method outperformed the other three approaches in terms of both frame-based error and
the overall error. The TLD method performed worst in this experiment, probably due to the lack
of tracking information, since this method does not perform frame-by-frame vehicle detection on
the video sequence. Fluctuations of the modeling error could be observed from the results of all
four methods, but the error fluctuation range of our method was the smallest compared to the other
three ones.

Figure 11. The frame-based trajectory modeling errors (lower is better) for four methods. The horizontal
axe denotes the frame number, and the vertical axe represents the error value measured in pixels.

Table 3. The overall trajectory modeling errors (lower is better) for four methods: tracking-learning-
detection (TLD), tracklet confidence and online discriminative appearance learning (TC-ODAL), the
Markov decision process (MDP), and ours. The error value is measured in pixels. The best value is
highlighted using a bold typeface.

TLD TC-ODAL MDP Ours

Overall Error (pixel) ↓ 1743 796 632 316

We also provide the tracking speed (frame per second) of the aforementioned approaches
(see Table 4). Since we already have the frame-by-frame detection results, we can treat the tracking
problem as the data association problem and do not need to train the algorithm. It can be seen that all
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the approaches achieve a relatively high tracking speed (i.e., above 55 fps), and the proposed method
achieves the highest speed (i.e., 82.5 fps) as well as the lowest tracking error.

Table 4. The tracking speed (higher is better) of different methods. The best value is highlighted using
a bold typeface.

Method TC-ODAL MDP TLD Ours

Tracking speed (fps) 78.9 65.1 58.4 82.5

4.2. Vehicle Behavior Recognition

4.2.1. Behavior Recognition by Nearest Neighbor Search

Settings. For training, we built a training set by extracting 973 complete vehicle trajectories from
the training video. Five hundred forty-two of them were with the type “go straight”, 204 of them were
with the type “turn left”, and the remaining 227 were with the type “turn right”. For testing, we used
238 trajectories obtained from the testing video.

We applied the proposed double spectral clustering (DSC) on all the 973 trajectories and identified
their types (i.e., go straight, right turn, and left turn). Given a testing trajectory, we determined its
category based on a nearest neighbor search. We also performed two other clustering methods for
comparison, one was a K-Means clustering based on LCSS similarity and the other one was normal
spectral clustering based on LCSS similarity.

Evaluation. We employed the normalized accuracy metric considering the large variation in the
number of samples in each trajectory type (most of them were of the type “going straight”). We first
computed the accuracy within each class and then averaged them over all classes:

ACCi =
Number of correct predictions of class i

Number of samples from class i
(15)

ACC =
1
N

i=1

∑
N

ACCi. (16)

Result and discussion. The results are listed in Table 5. We noticed that our approach achieved
an overall accuracy of 0.899, which is pretty high considering the complex road structure. In addition,
the recognition accuracy of vehicle going straight is 0.910, followed by the the accuracy of “left turn”
and “right turn”, achieving 0.857 and 0.882, respectively. On each class, our DSC method outperformed
the other two methods, which demonstrates the effectiveness of our approach for unsupervised vehicle
behavior recognition.

Table 5. The results of vehicle trajectory clustering for behavior recognition. For each type of behavior,
we show the accuracy on each type and the average value (higher is better). The best values are
highlighted using a bold typeface.

Bebavior LCSS-KMeans LCSS-Spectral DSC (Ours)

Go straight 0.813 0.802 0.910
Right turn 0.727 0.764 0.857
Left turn 0.667 0.769 0.882
Average 0.756 0.782 0.899

The training time and testing speed of these three approaches are shown in Table 6. It can be seen
that the LCSS-KMeans runs faster than other methods, this is due to the relatively simpler complexity
of the KMeans algorithm (the time complexity of KMeans is O(n, k), while the time complexity of
spectral clustering is O(n3)). However, the performance of LCSS-KMeans is worse than the proposed
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DSC method. In addition, the three methods achieve a very similar testing speed, because they have
roughly the same sizes of searching space.

Table 6. The training time (in seconds, lower is better) and testing speed (trajectory per second, higher is
better) of the three methods. The best values are highlighted using a bold typeface.

Method LCSS-KMeans LCSS-Spectral DSC (Ours)

Training Time (s) ↓ 11.3 25.8 43.2
Testing Speed (tps) ↑ 62.1 57.5 55.6

4.2.2. Behavior Recognition by Bidirectional Long Short-Term Memory

In this test, we performed behavior recognition using the proposed T-BiLSTM model.
Settings. We used the same training and testing data as in the previous section. For feature

representation, we resampled the length of each trajectory to 256 points, and computed the sequences
of angular changes for them. We followed [41] and employed the “back propagation through time”
(BPTT) algorithm with a mini-batch size of 32 to train the network. For implementation, we used the
Keras [54] deep learning toolkit for Python using Tensorflow [55] as backend.

For comparison, we trained five other models using our training data, namely a Hidden Markov
Model (HMM) [56], an Activity Hidden Markov Model (A-HMM) [57], a Hidden Markov Model
with Support Vector Machine (HMM-SVM) [58], a Hidden Markov Model with Random Forest
(HMM-RF) [58], and normal LSTM [59]. The first four algorithms were trained on the CPU (i7-6700K),
while the normal LSTM and our method were trained on the GPU (GTX 1080Ti). For evaluation, we
used the normalized accuracy metric again.

Results and discussion. Table 7 presents the classification accuracy of each method on the testing
data. Our approach outperformed all other methods in terms of both single class performance and
overall performance. To be more specific, our T-BiLSTM achieved an accuracy of 0.965 on the “go
straight” types, probably because the structure of the trajectories under this type are relatively easy
to be temporally modeled and recognized. The accuracies decrease on the other two trajectory types
due to the increased structural complexity. The LSTM method achieves the second highest accuracy,
followed by HMM-RF and A-HMM.

Table 7. The results of vehicle trajectory classification for behavior recognition. We show the accuracy on
each type and the average value (higher is better). The best values are highlighted using a bold typeface.

Behavior HMM A-HMM HMM-RF HMM-SVM LSTM T-BiLSTM (Ours)

Go straight 0.825 0.893 0.931 0.832 0.924 0.965
Right turn 0.703 0.803 0.856 0.752 0.896 0.938
Left turn 0.671 0.733 0.832 0.714 0.875 0.916
Average 0.733 0.810 0.873 0.766 0.898 0.940

We also show the training time and testing speed of these methods in Table 8. It can be seen
that the training time of our method on the GPU is the lowest among the six trajectory classification
approaches. For fair comparison, we also provide the training time of two deep-learning-based
methods (LSTM [59] and ours) on the CPU side, which is much lower than on the GPU side. For testing
speed, the HMM achieves the highest speed, but its classification performance is significantly worse
than our method.
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Table 8. The training time (in seconds, lower is better) and the testing speed (trajectory per second) of
these methods. The best values are highlighted using a bold typeface.

Method HMM A-HMM HMM-RF HMM-SVM LSTM
(CPU/GPU)

T-BiLSTM (Ours)
(CPU/GPU)

Training Time (s) ↓ 296.4 331.1 395.7 388.5 1351.5/136.6 526.6/47.7
Testing Speed (tps) ↑ 65.2 62.1 59.9 58.1 37.1/40.3 38.2/59.2

5. Concluding Remarks

A deep vehicle behavior recognition framework is proposed in this paper for urban vehicle
behavior analysis in UAV videos. The improvements and contributions in this study mainly focus
on four aspects: (1) we expand the vehicle behavior analysis area to the whole traffic network at
road intersections, not individual road sections; (2) to recognize vehicle behaviors, we propose a
nearest-neighbor-search-based model and a deep BiLSTM-based architecture considering both forward
and backward dependencies of network-wide traffic data; (3) multiple influential factors for the
proposed model are carefully analyzed; (4) we combine deep-learning-based methods and traditional
algorithms to effectively balance the speed and accuracy of the proposed framework.

In recent years, the rapid development of autonomous car technologies and driving safety
support systems have attracted considerable attention as solutions for preventing car crashes.
The implementation of technologies in the intelligent transportation system to assist drivers in
recognizing driving behaviors around their own vehicles can be expected to decrease accident rates.
Car crashes often occur when traffic participants attempt to change lanes or make turns. Hence,
vehicle behavior recognition exhibits significant importance in our daily lives. In our work, we mainly
use vehicle trajectory analysis to help recognize three types of vehicle behaviors, but vehicle trajectory
analysis also has more applications which we will consider in future work: for example, illegal lane
changes, violations of traffic lines, overtaking in prohibited places, and illegal retrograde. We will
also implement an artificial-intelligence-based transportation analytical platform and integrate it into
the existing intelligent transportation system in order to improve the driving experience and safety
of drivers.
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