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Abstract: A methodology for the measurement of height in water reservoirs is developed. It is
based on Sentinel 2 imagery and aerial LiDAR data. The methodology is automatized using Matlab
software and focused on image processing techniques (equalization, binarization, and edge detection)
combined with LiDAR data processing (near neighbour search and height averaging). It is applied
in a region of interest selected by the user characterized by a water–land interface. Results are
validated in the As Conchas water reservoir (Spain) using an in situ sensing system provided by the
Hydrographic Miño-Sil Confederation. The duration of the experiment was one year. The Sentinel 2
bands B2, B3, B4, and B8 were tested during this study. The best results for water height evaluation
were obtained for band B8 (842 nm) with an error of 0.20 m and a standard deviation of 0.17 m.
The time resolution of the technique depends on the Sentinel 2 revisit time. The time resolution and
height accuracy could be improved using complementary satellite systems.

Keywords: remote sensing; earth observation; sentinel satellites; climate change; drought;
water reservoir

1. Introduction

Due to climate change, drought episodes are becoming more frequent in regions that traditionally
did not face this problem. For example, Galicia, a typically rainy Spanish region, experienced drought
phenomena during the summer and autumn of 2017. These facts, together with other environmental
issues, such as water pollution, are of concern to the authorities and aroused interest in using techniques
to monitor water bodies. One example in Galicia is the Hydrographic Miño-Sil Confederation [1], which
is responsible for the management of one of the main hydrological basins of the region. Their data
acquisition is based on in situ sensors that provide parameters as water level, flow, or chemical
components. In this sense, the initiative described by Tauro et al. [2] must be noted, as it describes the
works of the measurements and observation activities carried out by the XXI Century Working Group
of the Association of Hydrological Sciences. This group combines hydrologists with experts in other
fields such as robotics and electronics.

George [3] and Dekker et al. [4] report on the limitations of conventional single point sampling
methods to address heterogeneity and temporal changes in water quality. In these cases, remote
sensing techniques based on different platforms (i.e., manned airborne systems, unmanned airborne
systems (UAS) or satellites) appear as useful tools that provide the measurement of a number of water
parameters [5].
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Bandini et al. [6] used UAS for the measurement of water levels in rivers and lakes using the
Global Navigation Satellite System (GNSS) receiver and payloads for range measurement (RADAR,
SONAR, and laser distance meter). Manfreda et al. [7] conducted a review of the existing research
studies and applications of UAS and concluded that they could be a bridge for the existing gap between
the existing in situ field observations and the manned airborne or satellite observations.

There are many important water masses that cannot be monitored in situ or for which the use
of unmanned aerial vehicles is not recommended due to weather conditions or high operational
cost. In addition, coastal and inland waters require representative spatial and temporal information
that cannot be always provided by in situ sensing or UAS. The satellite market presents a good
opportunity in this sense. For example, ESA [8] (Sentinel satellites) and NASA [9] (Landsat satellites)
provide freely accessible and periodic information services to its users. Other non-free services are based
on high-resolution imagery (i.e., GeoEye, Worldview, Spot, and Deimos). Applications of remote sensing
to water monitoring cover several related aspects with, for example, chlorophyll concentration [10], oil spill
detection [11], flood monitoring [12], the evaluation of the pathways of marine debris [13], and water level
studies. The effort of the current work focus is on the latter and some highlighted works are next described.

Tarpanello et al. [14] coupled MODIS and radar altimetry from ENVISAT data for discharge
estimation in poorly gauged river basins. The discharge estimation accuracy is validated using in situ
measurements along the Po river (Northern Italy).

Birkett et al. [15] applied the radar satellite altimeter from NASA operating on-board the
Topex-Poseidon satellite to the monitoring of large rivers and wetlands level. The methodology
showed a water level monitoring geometric accuracy of 11 cm.

Other examples of radar altimetry measurements are provided by the ENVISAT satellite.
Frappart et al. [16] compared the performance of different algorithms applied to ENVISAT data to
deliver reliable water levels for land hydrology using in situ sensing stations.

Crétaux et al. [17] developed a database to monitor, in near real time, water level and storage
variations using remote sensing data from altimetry missions (Topex-Poseidon, GFO, ERS-2, Jason and
Envisat). It includes information for 150 lakes and reservoirs.

Hall et al. [18] used ICESat laser altimetry observations to geodetically level gauge stations within
the Amazon Basin. The method allows for calculation of slope and the discharge of rivers.

Zang et al. [19,20] and Creataux et al. [21] also used ICESat laser altimetry to examine the water
level of lakes, mass changes, and groundwater storage variations in the Tibetan Plateau to illustrate
critical aspects and issues linked to the observation of climate change impact on surface waters.

As can be observed in the above research, water level monitoring is mainly based on satellite
altimetry missions. Currently, the Sentinel 3 [22] from ESA also includes an active topography package
system that allows for the measurement of the height of sea and inland waters. Its measurements
present a resolution of 300 m. Thus, other remote sensing methodologies are necessary for small- and
medium-size inland water reservoirs. In the present work, the authors present a methodology for
water level measurement in areas where a higher resolution than that provided by Sentinel 3 satellites
is required. It is based on Sentinel 2 data combined with digital elevation models obtained from aerial
LiDAR. The manuscript is structured in three main sections. Section 2 includes the materials and
methods. It describes the area of study (As Conchas water reservoir in Spain), the data sources (aerial
LiDAR and satellite imagery), and the data processing algorithm. Section 3 presents the results and
discussion, where the accuracy of the procedure is verified with in situ water level data. Section 4
shows the conclusions of the manuscript.

2. Materials and Methods

2.1. Area of Study

The area of study is the water reservoir “As Conchas” (Figure 1), located at the south of Ourense
province in Spain. The reservoir is formed by the dam that holds the water of the Limia river at the
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Baixa Limia district. The As Conchas dam was constructed in 1949 and has a height of 48 m and a
length of 170 m. The geodetic height of the water level is approximately 500 m. The river basin reaches
978 km2 between the municipalities of Muiños and Bande. Its main purpose is the production of
electricity, although it is also used for tourism, leisure, and agriculture.

This reservoir is permanently monitored by the Hydrographic Miño-Sil Confederation [1], which
provides daily hydrographic data as height, flow, river temperature, dissolved oxygen, pH, turbidity,
etc. Height water data provided by the Hydrographic Confederation are used in this study as ground
truth to validate the data obtained from the methodology here described.
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Figure 1. Location of As Conchas water reservoir. Image source is Spanish Geographic Institute [23].
Authors highlight with a red square the area of interest of As Conchas water reservoir.

2.2. Aerial LiDAR Data

The Spanish Geographic Institute provides open LiDAR data for all the territory [23], consisting
of digital files of true RGB-coloured LiDAR point clouds (Figure 2). The ground reference system is
ETRS89 and units are divided in cells of 2 × 2 km, with a resolution of 0.5 points per square metre.
Laser has some underwater penetration, and the terrain under shallow water zones can be detected
and 3D modelled by aerial LiDAR.
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no-data appear as black points in the figure. The image is obtained from Cloud Compare software.
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2.3. Satellite Imagery

Imagery (Figure 3) from the Sentinel 2 [24] satellite is used for the methodology. Sentinel 2
is an Earth observation mission developed by the European Space Agency inside the Copernicus
Programme [25] to support services related with forest monitoring, land cover changes detection
and natural disaster management. It consists of two identical satellites, Sentinel 2A and Sentinel
2B. They provide multi-spectral imagery in 13 bands covering the visible, near infrared and short
wave infrared electromagnetic spectrum. Sentinel 2 satellites provide a revisit time of five days.
The spatial resolution changes from 10 m (B2—blue, B3—green, B4—red, and B8—near infrared) to
60 m (B1—coastal aerosol, B9—water vapour, B10—shortwave infrared).

Level 1C (top of atmosphere reflectance) imagery is downloaded from the Copernicus Open
Access Hub [26]. The twelve months of year 2017 were used to obtain a complete hydrologic cycle.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 9 

 

2.3. Satellite Imagery 

Imagery (Figure 3) from the Sentinel 2 [24] satellite is used for the methodology. Sentinel 2 is an 
Earth observation mission developed by the European Space Agency inside the Copernicus 
Programme [25] to support services related with forest monitoring, land cover changes detection 
and natural disaster management. It consists of two identical satellites, Sentinel 2A and Sentinel 2B. 
They provide multi-spectral imagery in 13 bands covering the visible, near infrared and short wave 
infrared electromagnetic spectrum. Sentinel 2 satellites provide a revisit time of five days. The 
spatial resolution changes from 10 m (B2—blue, B3—green, B4—red, and B8—near infrared) to 60 m 
(B1—coastal aerosol, B9—water vapour, B10—shortwave infrared).  

Level 1C (top of atmosphere reflectance) imagery is downloaded from the Copernicus Open 
Access Hub [26]. The twelve months of year 2017 were used to obtain a complete hydrologic cycle. 

 
Figure 3. Sentinel 2 image from As Conchas water reservoir (red highlighted) at 24 December 2017. 
Band B4. In the imagery, water appears as black and sand as white. 

2.4. Data Processing 

The algorithm is described in Figure 4. The data processing is focused on a region of interest 
(ROI) manually selected by the user (Figure 5). The ROI is focused on the land-water interface. The 
use of a ROI prevents the necessity of large computing resources and makes the image processing 
algorithm more robust. Data input to the algorithm consists of the aerial LiDAR point cloud and 
Sentinel 2 imagery in bands B2 (490 nm), B4 (560 nm), B5 (665 nm), and B8 (842 nm). These bands are 
selected for two main reasons. They present the maximum spatial resolution (10 m) and good 
reflectance contrast for the water-land interface. Figure 6 shows a reflectance profile between the 
top-left and bottom-right corners of the ROI. As can be observed, band 8 shows the higher contrast. 
Reflectance data are obtained using SNAP software from ESA [27]. 

QGIS software [28] is used for the conversion of the satellite imagery from JPEG2000 format to 
GEOTIFF. On the other hand, Cloud Compare software [29] is used to convert point clouds from 
LAS format to PLY. Thus, the imagery and point clouds provide outputs in formats available for 
Matlab processing [30], which is the software used to implement the following algorithmic. 

Figure 3. Sentinel 2 image from As Conchas water reservoir (red highlighted) at 24 December 2017.
Band B4. In the imagery, water appears as black and sand as white.

2.4. Data Processing

The algorithm is described in Figure 4. The data processing is focused on a region of interest (ROI)
manually selected by the user (Figure 5). The ROI is focused on the land-water interface. The use of a
ROI prevents the necessity of large computing resources and makes the image processing algorithm
more robust. Data input to the algorithm consists of the aerial LiDAR point cloud and Sentinel 2
imagery in bands B2 (490 nm), B4 (560 nm), B5 (665 nm), and B8 (842 nm). These bands are selected
for two main reasons. They present the maximum spatial resolution (10 m) and good reflectance
contrast for the water-land interface. Figure 6 shows a reflectance profile between the top-left and
bottom-right corners of the ROI. As can be observed, band 8 shows the higher contrast. Reflectance
data are obtained using SNAP software from ESA [27].

QGIS software [28] is used for the conversion of the satellite imagery from JPEG2000 format to
GEOTIFF. On the other hand, Cloud Compare software [29] is used to convert point clouds from LAS
format to PLY. Thus, the imagery and point clouds provide outputs in formats available for Matlab
processing [30], which is the software used to implement the following algorithmic.
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Satellite images are equalized (Figure 4) to increase the global contrast of the image and make
the edge detection robust. This step allows a better distribution of the intensities on the histogram
and the areas of lower local contrast gain a higher contrast. The next step of image processing
after equalization is a binarization process. The binarization process used the Otsu method, which
minimizes the intra-class variance of the thresholded black and white pixels based on the threshold
value. The 8-bit image histogram is used to compute the Otsu threshold [31]. After binarization, edge
detection process is applied using the Sobel filter [32]. Edge detection finds the edges in the image
by approximating the gradient magnitude of the image. It is a discrete differentiation operator that
approximates the gradient of the image intensity function. Figure 7 shows the binarization and edge
detection on the ROI image.
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The ROI image is developed from a satellite image with pixels correlated with coordinates
(Figure 8). Thus, a set of 21 coordinates that delimit the water–land interface is obtained from the
image. The number of coordinates depends on the area of the region of interest and the morphology of
the water-land interface. More than ten coordinates are recommended to enable averaging and obtain
accurate results. These UTM–ETRS89 coordinates are correlated with the point cloud data from aerial
LiDAR to find their corresponding height values. The near neighbour algorithm is used to determine
the abovementioned XY coordinates and the corresponding height value. The final height of the water
reservoir is obtained by averaging the 21 height data values previously calculated.
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3. Results and Discussion

Figure 9 shows the height values obtained from Sentinel 2 bands B2, B3, B4, and B8. Although
the authors attempted to cover all the year 2017, there are some data gaps mainly due to cloud cover,
which is quite frequent in the Galicia region. The satellite data were compared with the in situ sensing
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values provided by the Hydrographic Miño-Sil Confederation, which were used for ground truthing.
Table 1 shows the error and standard deviation of the height values in comparison with the in situ
sensing data. The error is calculated as the difference between the height data from the in situ sensing
and the height data obtained using the methodology presented in this study. To obtain a global result,
the error values for each Sentinel 2 band are averaged using the results for all the time series. The error
does not present a clear trend for the month under study. In addition, to provide dispersion results,
the standard deviation is also calculated.

The results obtained from the methodology presented in this work correlate greatly with the
ground truth data. The error and standard deviation ranges from 0.39 ± 0.23 m in the B2 band to
0.20 ± 0.17 m in the B8 band. As can be observed in Figure 6, the B8 band shows the higher difference
between the water–sand reflectance which makes the edge detection during the image processing part
of the methodology robust. The error results are relatively close to other values obtained from satellite
altimetry techniques which range between 10–20 cm [15,18].

Figure 9 shows that the technique gives some underestimation of peaks and overestimation of
minimum values. There is no compelling reason why this may have occurred, although it could be
due to the low resolution of the Sentinel 2 imagery in the horizontal plane (10 m). This means that
the movements of the water mass at the edge lower than its magnitude cannot be detected, with the
consequent impact on the height measurement.
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Figure 9. Height values obtained from B2, B3, B4, and B8 Sentinel imagery.

The methodology shows some limitations derived from the cloud cover, making it impossible to
obtain the water-land interface imagery from the Sentinel 2 satellite. Future works could improve the
methodology using a multi-satellite approach. This approach could combine the current Sentinel 2
imagery with Sentinel 1 data, which provide robust information independent of cloud coverage.
In addition, the spatial resolution and the consequent accuracy of height evaluation can be improved
using satellites with higher spatial resolution (non-free imagery). Thus, higher temporal frequency of
data and lower height value error can be achieved. Future research could also estimate the sensitivity
of the method to the grey level threshold calculation during the image binarization process.

Table 1. Average error and standard deviation of the results.

B2 B3 B4 B8

Average error (m) 0.39 0.36 0.33 0.20
Standard deviation (m) 0.23 0.28 0.25 0.17
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4. Conclusions

A methodology for the evaluation of height value of water reservoirs was developed. It is based
on the combination of free data from Sentinel 2 imagery and digital elevation models from aerial
LiDAR, provided by national cartographic institutes.

The methodology combines image processing and LiDAR data processing. Four Sentinel 2 bands
are used for the study (B2, B3, B4, and B8). The best results appear for the infrared band B8, which
depicts an error of 0.20 m and standard deviation of 0.17 m.

The methodology could be easily automatized to provide continuous monitoring. Its results are
of special interest for remote water reservoirs, where it is difficult to establish and maintain in situ
sensing systems. In addition, a spatial resolution of 10 m is more adequate for medium to small water
reservoirs than other satellite tools, which use an active topography instrument (i.e., the Sentinel 3
satellite with a resolution of 300 m).
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