
remote sensing  

Article

Historical and Operational Monitoring of Surface
Sediments in the Lower Mekong Basin Using Landsat
and Google Earth Engine Cloud Computing

Kel N. Markert 1,2,* ID , Calla M. Schmidt 3, Robert E. Griffin 4, Africa I. Flores 1,2, Ate Poortinga 5,6,
David S. Saah 5,6,7 ID , Rebekke E. Muench 1,2, Nicholas E. Clinton 8, Farrukh Chishtie 6,9 ID ,
Kritsana Kityuttachai 10, Paradis Someth 10, Eric R. Anderson 1,2, Aekkapol Aekakkararungroj 6,9

and David J. Ganz 11

1 Earth System Science Center, The University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville,
AL 35805, USA; africa.flores@nsstc.uah.edu (A.I.F.); rem0016@uah.edu (R.E.M.);
eric.anderson@nsstc.uah.edu (E.R.A.)

2 SERVIR Science Coordination Office, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville,
AL 35805, USA

3 Environmental Science Department, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117,
USA; cischmidt@usfca.edu

4 Department of Atmospheric Science, The University of Alabama in Huntsville, 320 Sparkman Dr.,
Huntsville, AL 35805, USA; robert.griffin@nsstc.uah.edu

5 Spatial Informatics Group, LLC, 2529 Yolanda Ct., Pleasanton, CA 94566, USA;
apoortinga@sig-gis.com (A.P.); dssaah@usfca.edu (D.S.S.)

6 SERVIR-Mekong, SM Tower, 24th Floor, 979/69 Paholyothin Road, Samsen Nai Phayathai, Bangkok 10400,
Thailand; farrukh.chishtie@adpc.net (F.C.); aekkapol.a@adpc.net (A.A.)

7 Geospatial Analysis Lab, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117, USA
8 Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA; nclinton@google.com
9 Asian Disaster Preparedness Center, SM Tower, 24th Floor, 979/69 Paholyothin Road,

Samsen Nai Phayathai, Bangkok 10400, Thailand
10 Technical Support Division, Mekong River Commission Secretariat, P.O. Box 6101, 184 Fa Ngoum Road,

Unit 18, Ban Sithane Neua, Sikhottabong District, Vientiane 01000, Lao PDR;
kritsana@mrcmekong.org (K.K.); someth@mrcmekong.org (P.S.)

11 RECOFTC—The Center for People and Forests, P.O. Box 1111, Kasetsart Post Office Bangkok 10903,
Thailand; david.ganz@recoftc.org

* Correspondence: km0033@uah.edu or kel.markert@nasa.gov; Tel.: +1-256-961-7484

Received: 15 April 2018; Accepted: 7 June 2018; Published: 8 June 2018

Abstract: Reservoir construction and land use change are altering sediment transport within river
systems at a global scale. Changes in sediment transport can impact river morphology, aquatic
ecosystems, and ultimately the growth and retreat of delta environments. The Lower Mekong Basin is
crucial to five neighboring countries for transportation, energy production, sustainable water supply,
and food production. In response, countries have coordinated to develop programs for regional
scale water quality monitoring that including surface sediment concentrations (SSSC); however, these
programs are based on a limited number of point measurements and due to resource limitations,
cannot provide comprehensive insights into sediment transport across all strategic locations within
the Lower Mekong Basin. To augment in situ SSSC data from the current monitoring program,
we developed an empirical model to estimate SSSC across the Lower Mekong Basin from Landsat
observations. Model validation revealed that remotely sensed SSSC estimates captured the spatial and
temporal dynamics in a range of aquatic environments (main stem of Mekong river, tributary systems,
Mekong Floodplain, and reservoirs) while, on average, slightly underestimating SSSC by about
2 mg·L−1 across all settings. The operational SSSC model was developed and implemented using
Google Earth Engine and Google App Engine was used to host an online application that allows users,
without any knowledge of remote sensing, to access SSSC data across the region. Expanded access to
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SSSC data should be particularly helpful for resource managers and other stakeholders seeking to
understand the dynamics between surface sediment concentrations and land use conversions, water
policy, and energy production in a globally strategic region.

Keywords: lower mekong basin; landsat collection; suspended sediment concentration; online application;
google earth engine

1. Introduction

Human activities such as agriculture, forestry, and urbanization are increasing sediment transport
in rivers globally, while reservoir construction is simultaneously decreasing the total sediment flux to
coastal environments [1]. Because sediment transport by rivers impacts channel morphology, aquatic
ecosystems, reservoir storage capacity, and ultimately the growth or retreat of delta environments [2];
monitoring changes in sediment concentration and transport is critical to effective basin management.
Timely information on total suspended matter is critical for land managers to assess the effects of a wide
range of issues caused by poor water quality. Unfortunately, collection of reliable suspended sediment
concentration data at the spatial and temporal resolution necessary for effective basin management
and planning can often be prohibitively time consuming and expensive in large rivers.

The Mekong River is the largest trans-boundary river basin in Asia that covers an area of
795,000 km2, and has an annual discharge of 475 km3 [3]. Each year the Mekong delivers approximately
160 million tons of sediment to the South China Sea [4]. The Mekong River hydrology is dominated
by the seasonality of snowmelt runoff into the northern headwaters on the Tibetan Plateau, and the
seasonal monsoon in the lower basin. The lowest flows are between February and April, with peak
discharge between August and September. The Mekong River Basin is rapidly developing and due to
increasing demands for hydropower and freshwater, reservoir construction has accelerated in recent
decades [5] with potential to alter sediment transport in the region [6,7]. Changes in the Mekong river
sediment supply, most likely caused by dam retention of sediment and channel-bed sand extraction in
the Mekong delta, are suspected to be the cause of erosion patterns observed in the Mekong delta [2].
However, while changes in sediment transport have been observed on other major Asian rivers such
as the Indus, Yellow, and Yangtze Rivers, limited field data has made it difficult to detect changes
in sediment discharge on the Lower Mekong River, despite the fact that the Lower Mekong Basin is
experiencing similar pressures of population growth, land use change, infrastructure development,
and reservoir construction [8].

The most comprehensive field dataset for suspended sediments in the Lower Mekong has been
collected by The Mekong River Commission (MRC). Suspended sediment is a water quality constituent
of particular concern to MRC because suspended sediments increase turbidity and can influence
the transport of particle bound contaminants such as nutrients, organic compounds, pesticides,
and trace metals. In addition, suspended sediments are critical to the accumulation of wetland
soils in the Mekong Delta [9]. The MRC has an extensive water quality monitoring network, with
132 stations across five countries in the Lower Mekong Basin (Thailand, Vietnam, Laos PDR, Cambodia,
and Myanmar) (Figure 1). At a number of stations samples have been collected monthly since 1985,
however there are significant gaps in the records at numerous stations. While the MRC dataset on
suspended matter provides invaluable information on water quality in the Lower Mekong Basin,
it consists of single point measurements taken from the surface of the river at a single point in the river
cross section, and therefore the dataset provides limited understanding of the spatial distribution of
suspended sediments along the river.
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Figure 1. Study area map of the Lower Mekong Basin highlighting geopolitical boundaries, the
river systems in the region, and the water quality monitoring stations included in the MRC water
quality database.

Remote sensing tools can provide spatial and temporal resolution for surface suspended sediment
concentration (SSSC) in large rivers that are not available from traditional in situ measurements [10–13].
The retrieval of SSSC from remote sensing systems relies on the optical properties (transmittance,
absorption and scattering) of water and the dissolved and suspended constituents in the water.
Suspended solids are responsible for most of the scattering in an aquatic system, whereas chlorophyll-a
(chl-a) and colored dissolved matter are mainly responsible for absorption [14]. A variety of techniques
have been used to estimate SSSC from different remote sensing systems [15–17]. There is a wide
body of research on assessing water quality analytical optical modeling using in situ inherent optical
properties [18–20]. Unfortunately, these approaches are often complex, iterative and location specific,
leading researchers to explore the extent to which empirical models can provide robust estimates of
water quality parameters. Methods used to relate in situ data to the satellite observations through
statistical relationships include simple linear regression, non-linear regressions, principal component
analysis, and neural networks. Previous studies have shown that SSSC is well correlated with the first
four bands of the Landsat sensors [21–23] and the use of a single band from the sensor series, provided
the band is chosen appropriately, can provide a robust estimation of SSSC [24–29]. Moreover, other
studies have also illustrated the utility of band ratios from Landsat sensors to estimate SSSC [11,30,31].
Sensors from the Landsat satellite series (TM, ETM+, OLI) are the most commonly used remote sensing
platforms for estimating SSSC [32].

Because the relationship between SSSC and surface reflectance is a function of sediment
mineralogy, color, and grain size distribution [33], empirical models perform best when calibrated with
local in situ observations. This is particularly important in riverine SSSC studies because there is often
considerable spatial and temporal variability in these parameters. Previous efforts to estimate SSSC
and TSS from remote sensing data sources in the Lower Mekong Basin have focused on the main stem
of the Mekong River or on the Mekong Delta, but not both. For example, Suif et al. [34] developed an
empirical model using the near-infrared band on Landsat TM as well as the blue, green, and red bands
in a multiple linear regression along the Mekong River. In another recent study, Duc et al. [35] found a
strong correlation between the 1st principle component of Landsat TM and ETM+ imagery and SSSC
in the Mekong Delta. While these studies provide models to estimate SSSC accurately from remotely
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sensed data, the models were not validated at regional scale and therefore, need careful consideration
before broad use. Other studies, such as Bui et al. [36] have used soil erosion modeling to estimate
sediment transport dynamics within watersheds in Southeast Asia. Although, modeling approaches
produce suspended sediment load (SSL) information irrespective of remote sensing inputs, the models
require detailed parameterization and quality in situ data to accurately estimate SSL, which can limit
application in data sparse regions.

Cloud based remote sensing platforms such as Google Earth Engine (GEE) offer exciting new
opportunities to provide policy makers with high resolution near real-time SSSC data through a simple
web interface without the need for expensive software, technical expertise or other resource demanding
solutions. The goals of this study were to (1) calibrate a regional remote sensing model of SSSC in
the Lower Mekong which augments the spatial and temporal resolution of existing field records and
(2) develop an online application that allows users, without any expert knowledge of remote sensing,
to monitor and analyze trends in SSSC for decision making within the region. We accomplished these
goals by utilizing the extensive MRC SSSC dataset across the entire Lower Mekong Basin to develop
an empirical model for estimating SSSC from satellite data. The model includes 8 main stem gauging
stations on the Mekong River, and 36 additional gauging stations from tributary systems, the Mekong
Floodplain, and reservoirs. The model is accessible through an operational online application that
allows users to monitor and analyze trends in SSSC from continuously updated remote sensing datasets
in a timely manner. This novel web application can provide actionable SSSC data to decision makers
throughout the region.

2. Data and Methods

In this study we correlated in situ SSSC measurements with coinciding Landsat observations to
create an empirical model to estimate SSSC in the Lower Mekong Basin. Due to large data volume
and processing needs, GEE [37] was used to facilitate data processing. GEE allows users to run
algorithms on georeferenced imagery, vector data, and other precomputed value-added products
stored on Google’s cloud-based infrastructure in an easy-to-use manner. GEE was used in this study to
(1) query all Landsat observations over the Mekong Basin that coincide with in situ measurements;
(2) extract the spectra to develop an empirical SSSC model and (3) provide back-end processing for an
online suspended sediment application. Figure 2 displays the overarching workflow used in this study.

Figure 2. General workflow schematic for building SSSC empirical model from satellite imagery.
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2.1. Field Measurement of Suspended Sediment Concentration

The reference dataset used to create and validate the SSSC model was acquired from the MRC data
portal (http://portal.mrcmekong.org/). The MRC established a water quality monitoring network in
1985 to measure discharge and collect monthly water quality samples for a wide suite of constituents
including cations, anions, nutrients and SSSC [38]. SSSC samples are collected near the surface
(0.3–0.5 m) using a bottle, and therefore likely underestimate SSSC given that suspended sediment
concentration typically increases with depth. Nevertheless, these surface samples provide an excellent
comparison with remotely sensed optical properties which are most representative of shallow depths.
Although this is the best available water quality dataset for the Lower Mekong Basin, it does include
uncertainties in sampling technique consistency and quality from earlier collection years. At many
stations, SSSC records are not complete, with data gaps ranging from months to years. For a thorough
discussion of SSSC data reliability in the Lower Mekong Basin see Walling [8].

2.2. Landsat Collection Data

Data from the Landsat TM (from both Landsat 4 and 5 satellites), ETM+ (Landsat 7) and
OLI (Landsat 8) sensors were used to estimate SSSC for water bodies in the Lower Mekong Basin.
The Landsat 4, 5, 7, and 8 satellites are each in a sun-synchronous orbit each with a 16-day revisit
time. Landsat 4 had an operating lifetime from 1982-1994, Landsat 5’s lifetime was from 1984–2011,
and Landsat 7 has been active since its launch in 1999. Landsat 8, the most recent satellite in the series,
was launched in 2013. While any two Landsat satellites were in operation, there was an 8-day offset
of data acquisition between the two satellites increasing the temporal resolution. The TM, ETM+,
and OLI sensors collect spectral channel data in the visible, near-infrared (NIR), and short-wave
infrared (SWIR) portions of the electromagnetic spectrum at 30 × 30 m resolution. Landsat data
collected from 1985 to 2011 from Landsat 4, 5, and 7 were used in this study to maximize the number
of Landsat observations that coincide with the in situ data from MRC. All Landsat sensors are used
within the online applications.

2.3. Data Preprocessing

The in situ data were provided as a table with geographic latitude and longitude along with
suspended sediment concentration for each collection time. To reduce the influence of the channel
bottom or upwelling that occurs next to the bank and in shallow waters, station locations were filtered
to ensure that only stations at least 60 m (two Landsat pixels) from the bank of the waterbody were
included in further analysis. To account for changes in river morphology during the time from
1985–2011, the shoreline was dynamically calculated from the European Commission’s Joint Research
Center (JRC) Monthly Water History v1.0 image collection (JRC/GSW1_0/MonthlyHistory) [39] for
each in situ collection date. Landsat or in situ data that was collected within 60m of the dynamic
shoreline was not used in the analysis.

Next, the Landsat collections within GEE were queried to identify scene IDs that overlap MRC
stations within one day of a in situ collection date. The precomputed surface reflectance (SR) Landsat
collections were used in this analysis (LANDSAT/LT04/C01/T1_SR; LANDSAT/LT05/C01/T1_SR;
LANDSAT/LE07/C01/T1_SR); these Landsat data collections have been converted from raw digital
numbers to Top of Atmosphere (TOA) reflectance using the methods and band specific irradiance
values from Chander et al. [40].

Atmospheric correction is an important process for the remote sensing of water quality as
water-leaving radiance constitutes a small fraction of the total energy measured by the sensor, with the
main contribution coming from the atmosphere [41]. Studies have found that image-based [42–44],
site-specific [41,45,46], and radiative transfer model [47–49] atmospheric correction methods can
provide adequate retrievals of surface reflectance for water quality mapping. The Landsat data
used in this study have been atmospherically corrected using the Earth Resources Observation
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and Science (EROS) Center Science Processing Architecture (ESPA) surface reflectance processing
system. The ESPA surface reflectance processing system uses the Landsat ecosystem disturbance
adaptive processing system (LEDAPS) algorithm [50] to atmospherically correct data from Landsat
4–7. The LEDAPS processing algorithm is built upon the 6S atmospheric correction model [51,52].
The 6S atmospheric correction model is a single layer radiative transfer model that enables accurate
simulations of satellite observations that account for the elevation of targets, includes the modeling of
a realistic molecular/aerosol/mixed atmosphere, allows for the retrieval values from Lambertian or
anisotropic ground surfaces, and includes the calculation of gaseous absorption [53]. Furthermore,
the 6S model is a widely used and heavily documented radiative transfer code that has been
rigorously validated [54,55] and applied for remote sensing of water quality [56–58] making it a
suitable atmospheric correction procedure.

Included in the ESPA surface reflectance processing is the C Function of the Mask (CFMask)
algorithm [59] used to map cloud, cloud confidence, cloud shadow, and snow/ice pixels in Landsat
scenes. The CFMask is an implementation of the FMask algorithm [60] written in C programming
language. The CFMask code is a multi-pass algorithm that first labels pixels based on a decision trees
classifier; it then uses scene-wide statistics to validate or discard the initial pixel labels.The cloud
shadow mask is created by iteratively projecting clouds to the ground with multiple cloud heights.
Pixels flagged as cloud or cloud shadow were masked in the Landsat data collection using the CFMask
pixel QA band. To ensure that the extracted image spectra were water, the JRC water mask [39] was
used to extract water only pixels for analysis. The JRC Monthly Water History v1.0 image collection
(JRC/GSW1_0/MonthlyHistory) was temporally filtered for the month coinciding with each individual
Landsat scene and used to mask land pixels. The JRC data is only available from 16 March 1984 to
18 October 2015 which affects data processing outside of the JRC date range. Thus, the CFMask QA
band was used to extract pixels flagged as water as a secondary/backup algorithm for Landsat scenes
that fall out of the JRC data availability.

After the MRC station-satellite acquisition coincidence check and data masking, the image spectra
were extracted from the coinciding and masked Landsat scenes. After the preprocessing and spectra
extraction, a natural logarithmic transform was applied to both the atmospherically corrected image
spectra and in situ SSSC measurements to reduce skewness and make the distributions more Gaussian
for linear statistical modeling. The log transformed image spectra and SSSC measurements were then
used to create an empirical model to estimate SSSC from Landsat imagery.

2.4. Statistical Methods

The total sample of image spectra and SSSC measurements was sub-setted into calibration and
validation samples; 70% of the data were used for calibration and 30% were used for validation.
The sub-setting was completed using a Monte Carlo approach where the validation data was randomly
selected. The index of the samples selected for validation were stored for 10,000 iterations. The final
validation sample was selected by finding 30% of the data indices that were selected the most
from all Monte Carlo simulations, data not selected for the validation sample were used within
the calibration sample.

To determine the optimal band or combination of bands for the model [32], the spectral data from
visible and NIR bands and all possible visible and NIR band ratios were correlated to the calibration
sample. Only the bands and band ratios that had an absolute linear correlation greater than 0.50 were
used to test for the best covariate for estimating SSSC. The selected bands were then used to derive an
empirical model of SSSC from the calibration dataset. Five statistical models were optimized between
the image spectra and SSSC measurements using the Scientific Python (SciPy) module [61,62] in a local
Python environment; these models include: (1) linear; (2) exponential; (3) 2nd order polynomial; (4) 3rd
order polynomial and (5) 4th order polynomial functions. Each model was tested on the selected
bands using the following objective functions: coefficient of determination (R2), sum of square error
(SSE), and significance (p). The resulting model fit statistics were used to rank the best performing
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model based on the calibration dataset. The best performing model was then applied on the validation
dataset and statistically analyzed to understand the accuracy and errors associated with estimating
SSSC using the specified approach.

2.5. Online Application

The preprocessing methodology and selected empirical model of SSSC was implemented in an
online application. Google’s App Engine was used to host the application that relies on the GEE
backend to process the imagery. The framework for requesting data, performing spatial calculations,
and serving the information in a browser is provided in Figure 3. The web interface relies on the Google
App Engine technology, using elements of HTML, CSS and JavaScript (or Clojure). Requests from the
front-end are made by a call from JavaScript to the Python script using Asynchronous JavaScript And
XML (AJAX). The GEE Python library handles requests to GEE and receives the result. The information
returned to the JavaScript is displayed in the browser. Spatial information is displayed with the Google
Maps Application Programming Interface (API) and graphical data is displayed with the Google
Visualization API.

Figure 3. The infrastructure for spatial application development provided by Google. GEE consists of
a cloud-based data catalogue and computing platform. The App Engine framework was used to serve
the data to a web browser and communicate with the GEE using the Python API. Figure reused with
permission from Poortiga et al. [63].

3. Results

3.1. Model Calibration and Validation

From the original 132 MRC water quality stations, a total of 44 stations met our quality control
criteria for having collections >60 m from the bank. (Figure 4). For the 44 selected MRC stations there
were relatively few cloud-free, coinciding Landsat observations within one day of in situ sampling.
Out of a total 24,749 in situ samples from the MRC dataset, a total of 118 Landsat observations
met the criteria for inclusion in the empirical model across the 44 stations (see Appendix A for
detailed information on the stations used). Figure 4 displays the spatial, temporal, and SSSC
concentration distributions from the acquired coincidence samples. Overall, in situ samples and
coincident Landsat observations were recovered from a variety of locations throughout the basin,
but coincident observations were most common along the Mekong mainstem and larger tributary
systems (Figure 4a). In total, the calibration dataset includes 8 stations located in the the Mekong
River main stem, 11 stations located in tributary systems, 22 stations from the Mekong Floodplain
(which constitutes all stations downstream from Kratie [35]), and 3 stations located within reservoirs
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(Table A1). The calibration and validation dataset includes 118 Landsat observations coincident with
in situ SSSC measurements, 66 of these instances come from the dry season (December to May) ,
while 52 occurred during the wet season (June to November), providing a good representation of both
the wet and dry seasons for statistical analysis (Figure 4b). The range of in situ SSSC values in the
calibration dataset is 1.0–1155.0 mg·L−1 for the dry season and 8.0–655.0 mg·L−1 for the wet season
(Figure 4c).

Figure 4. (a) Map highlighting the locations of water quality stations included in the calibration and
validation dataset. Stations are coded by number of coincident Landsat 4, 5 and 7 observations from
1985 to 2011 for each station. Unused stations left out due to bank proximity or lack of coincidence
Landsat data are shown in white; (b) Temporal distribution of Landsat observations coincident with in
situ SSSC measurements in the calibration dataset (n = 189); (c) Distribution of in situ SSSC values in
the calibration dataset.

The statistical correlation analysis between SSSC and the Landsat spectra yielded five candidate
bands for the empirical model creation and further analysis based on our criteria (Table A2). The bands
and band ratios with a correlation coefficient over 0.5 with the SSSC calibration dataset included:
ρGreen, ρRed, ρNIR, ρBlue

ρRed
, ρBlue

ρNIR
and ρGreen

ρRed
. The ρGreen

ρRed
band ratio yielded the highest absolute correlation of

0.73. Empirical model fitting found that a 4th order polynomial fit with the ρRed
ρGreen

band ratio yielded
the best fit ; however, to avoid overfitting we used an exponential model with similar fit statistics to
estimate SSSC (Table A3). The fitting procedure yielded the following equation to derive SSSC from
Landsat ρRed

ρGreen
band ratio:

y = 1.904 × e1.448·x+0.630 (1)

where y is the estimated ln(SSSC) and x is ln( ρRed
ρGreen

). Equation (1) was applied to the validation sample
subset and to determine the accuracy of the model (Figure 5). Model error statistics were calculated to
quantify the performance of the model (Figure 5, Table 1) by converting model output from log space
to actual SSSC values. The validation dataset was split into wet and dry season observations in order to
assess model performance under high flow and low flow conditions (Figure 5b,c). Model error statistics
such as correlation coefficient (R) and Nash-Sutcliffe model efficiency coefficient (NSE) are well within
acceptable model range for modeling of water quality parameters according to Moriasi et al. [64].
However, the relative error (RE) for the entire validation dataset of the model is approximately 43%,
with a RE of 44% and 41% for dry season and wet season samples respectively. While this RE is above
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the desired value RE of 35% set by NASA’s Ocean Biology and Biogeochemistry Program [65], we are
confident in our model because this relative error corresponds to a root-mean-square error (RMSE)
between observed and modeled SSSC values of 17.50 mg·L−1 for the dry season validation dataset
which ranges from 4–133 mg·L−1 and a RMSE of 22.50 mg·L−1 for the wet season validation dataset
which ranges from 6.0–255.5 mg·L−1. The bias of the model is −1.63 mg·L−1 for the entire validation
dataset, indicating an underestimation of SSSC.
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Figure 5. Model calibration using the ρRed
ρGreen

band ratio with a exponential fit from Equation (1) (a) and
validation (b,c) plots of statistical modeling for the dry (b) and wet (c) seasons.

Table 1. Error statistics for validation of empirical model compared to the validation dataset.

Season R [-] Bias [mg·L−1] RMSE [mg·L−1] RE [%] NSE [-] Validation Data Range [mg·L−1]

Dry 0.82 −3.73 17.50 43.95 0.54 4.0–133.0
Wet 0.82 1.17 22.50 41.65 0.52 6.0–225.5
Total 0.84 −1.63 19.64 42.96 0.58 4.0–225.5

Previous studies of suspended sediment in the Lower Mekong Basin (using both in situ and
remote sensing approaches) have focused largely on the mainstem water quality stations [8,27,34].
In this study we used all available data (mainstem and tributaries) to develop a empirical model of
SSSC that can be applied throughout the entire basin. To assess model performance across a range
of settings in the Lower Mekong Basin, we compared monthly median SSSC from the entire in situ
dataset and all remotely sensed estimates (independent of coincidence) at the 44 stations that met our
quality control criteria. To make the comparison, stations were classified into four groups that represent
different environments: (a) the mainstem of the Mekong river; (b) tributary river systems; (c) Mekong
Floodplain region and (d) reservoirs (Table A1). For all location groups the model accurately captures
temporal dynamics of SSSC (Figure 6). However, in general, median monthly SSSC values measured
in situ are higher than modeled SSSC monthly medians, particularly in August and September in the
main stem and Mekong Floodplain locations. Interestingly, the model does an excellent job estimating
monthly median SSSC in reservoirs throughout the year, while the largest difference in monthly
median SSSC is observed in the Mekong Floodplain stations. This could indicate that optical properties
of shallow water are influenced by additional factors (e.g., channel bottom, aquatic plants, chlorophyll
concentration) not included in our model.
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Figure 6. Monthly median estimates of SSSC from 1985–2011 against observed monthly median SCC
for the 44 water quality stations used in this study. The stations were classified into four groups:
(a) mainstem of Mekong river; (b) tributary river systems; (c) the Mekong floodplain region and
(d) reservoirs. Red bars indicate the standard deviation of each month from all stations in the group.

3.2. Web Application

Landsat derived SSSC values are available through a simplified web-interface (Figure 7, https:
//mekong-ssc.appspot.com) that utilizes GEE and AppSpot technologies. Users define a time period
of interest, season to process (wet season, dry season, or all months), and a region of interest. Then
the application calculates the mean SSSC value for each Landsat pixel in the region of interest from all of
the cloud free Landsat observations of that pixel within the selected time period. Users also have the
option to generate time series charts through the web application. Calculated SSSC time series values
are displayed in the web application and the calculated values are available for download. Users can
download the chart as an image or the raw time series data as a CSV file. The time series option displays
the mean SSSC concentration calculated for all pixels in the defined region for each time step available.

Figure 7. A screenshot of the Mekong Suspended Sediment Monitoring web application (https:
//mekong-ssc.appspot.com). To download a dataset, users set their desired parameters in the right
panel. The region of interest can be a polygon drawn directly on the map. A mean composite for the
time period is processed on the fly and is available for users to download directly.

https://mekong-ssc.appspot.com
https://mekong-ssc.appspot.com
https://mekong-ssc.appspot.com
https://mekong-ssc.appspot.com


Remote Sens. 2018, 10, 909 11 of 19

4. Discussion

4.1. Improved Spatio-Temporal Resolution and Coverage

Our results are generally consistent with previous work which finds that exponential models using
band ratios (as opposed to individual bands) are the most successful at estimating SSSC values over a
broad range in concentration [16]. The 19 mg·L−1 RMSE of our model represents an improvement from
the previously published models for the Mekong. For example, Suif et al. [34] report an RMSE ranging
from 50.2 to 109.7 mg·L−1 for the Mekong main stem, and Wackerman et al. [17] report an RMSE
of 34 mg·L−1 for an empirical model of SSCC in the Mekong Delta. Given that these studies were
calibrated using fewer in situ observations from a smaller region within the Mekong Basin, our results
illustrate that a regionally applicable model can be developed with sufficient in situ observations
(n = 118 samples in this study).

The operational model developed in this study considerably increases the availability of SSSC
data in the Lower Mekong Basin, making it possible to estimate SSSC for large stretches of the Mekong
River and its tributaries. One impact of improved spatial coverage is that cities not located near MRC
stations can now monitor SSSC through the web application (Figure 8). For example, MRC currently
has water quality stations near the cities of Vientiane, Nong Khai, and Nakhon Phanom along the
border of Thailand and Laos, but the city of Bueng Kan, which is located 185 km downstream of
the nearest MRC station does not have a source of local water quality data. Through the online tool
monthly estimates of SSSC can easily be downloaded for this region. The time series function in the
online tool additionally allows users to explore how SSSC may be changing in their region.

Figure 8. Estimated monthly average SSSC from 1985–2011 near Bueng Kan city located 185 km
downstream of the nearest MRC station. Top map displays northeast Thailand bordering Laos with
surrounding MRC water quality monitoring stations and an indication of the monthly SSSC maps.
The SSSC scale in the legend refers to the monthly maps below.
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In addition to expanding spatial coverage, the model also extends temporal coverage for many
parts of the Mekong Basin. For example, SSSC data was collected at the Ban Chai Buri station
located at the Songkhram River in Thailand (17.6422 ◦N, 104.4615 ◦E) from 2004–2011, but now with
remotely sensed SSSC estimates this record is extended to the Landsat series availability (1985-present).
Previous efforts to detect changes in sediment concentrations in the Mekong Basin have been difficult
in part due to the limited time series of SSSC records at many stations [8,66]. The larger SSSC dataset
available through this GEE web application should facilitate future investigations of SSSC trends,
allowing users to compare local SSSC estimates for time periods before and after dam construction,
major land use changes, or other issues of regional interest.

4.2. Model Limitations

While our model produces a spatially and temporally extensive SSSC dataset, there are limitations
to remote sensing models of SSSC that must be carefully considered when analyzing the model results.
First, temporal resolution is limited both by satellite repeat cycle, and by cloud cover. Cloud cover
during the wet season is particularly problematic because this is when discharge and SSSC is the
highest in the Lower Mekong Basin. In our study the calibration dataset includes 52 Landsat overpasses
coincident with in situ observation in the wet season, but only 9 of these samples have concentrations
over 200 mg·L−1 (Figure 4). As a result, the range of estimated SSSC values produced by the model is
smaller than the range of SSSC values in the entire MRC database, and in particular we are missing
the highest values during July and August, when in situ measurements of >200 mg·L−1 SSSC are not
uncommon. Second, remote sensing techniques measure the optical properties of the top 1–2 meters of
the water column, and therefore in shallow water reflectance from the bottom will significantly modify
results [67]. We suspect that this is one of the reasons we see the worst match between the MRC dataset
and our remotely sensed SSSC dataset for stations downstream of Kratie in the Mekong Floodplain.
In this study we attempted to limit interference from the channel bottom by filtering scenes to insure
they were at least 60 m from the channel edge. Development of additional filtering algorithms may be
required to improve model performance in the region.

Remote Sensing of SSSC concentration can aid regional efforts to assess of water clarity, habitat
conditions, nutrient transport and channel morphodynamics, but SSSC estimates cannot be used
directly for sediment transport modeling because surface water contains only a fraction of the
suspended sediment present over the entire water column. Moreover, the discrepancy between
SSSC and depth integrated sediment concentrations will be more significant during the wet season.
Particularly at high discharge, bedload transport and course material in the lower water column may
constitute a significant fraction of the total sediment load. An additional constraint is that from remote
sensing of SSSC alone, it is not possible to differentiate if an increase in SSSC results from mixing of
sediment from the lower water column into the upper water column or an increase of suspended
sediment in the whole water column. In recognition that depth integrated samples are required for
robust sediment transport analysis, the MRC created the Discharge and Sediment Monitoring Program
(DSMP) which collected depth integrated samples at 15 locations between 2009 and 2013 through
a combination of isokinetic samplers and Acoustic Doppler Current Profilers [68]. Unfortunately,
the DSMP dataset is not large enough to calibrate a remote sensing model, but future work could focus
on developing rating curves to integrate this information into the model.

4.3. Implications and Future Work

The presented web-application and delivery of SSSC data derived from satellite imagery to users
on an operational basis is the first of its kind. With the advent of cloud and web-based applications,
such as GEE and Google AppSpot, customizable geospatial data products produced operationally
are more widely available. These publicly available applications ultimately allow users greater
flexibility to provide input data, filter spatially and temporally, and modify algorithm parameters to
provide relevant information for analysis. The web application presented here, along with other such
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applications (e.g., Robinson et al. [69]), are examples of the changing paradigm from serving static
geospatial products to dynamic data products.

There is great potential for this model to be adapted to estimate concentrations of additional
water quality constituents, particularly those that are associated with suspended sediments. Future
work on this system will focus on utilizing additional sensors, such as Sentinel-2, to improve temporal
resolution of satellite observations. Sentinel-2 has been shown to provide high quality estimates
of suspended sediments and other water quality parameters [70] and data from Sentinel-2’ has
already been successfully integrated with Landsat for monitoring water quality [46]. Furthermore,
although remote sensing relies on optically active water constituents, recent studies have explored the
utility of remote sensing technologies for optically inactive water quality parameters. For example,
Wu et al. [71] used Landsat TM data to empirically estimate total phosphorus concentrations in a
riverine environment. The fidelity of such methodologies for estimating other optically inactive water
quality parameters, such as nitrogen or pH, has not yet been explored in the Lower Mekong Basin.
Expansion of the model and web application to include both optically active and inactive water quality
parameters will ultimately provide a more holistic view of water quality and aquatic ecosystem health
within the Mekong Basin.

5. Conclusions

The objective of this study was to increase spatial-temporal density of SSSC data in the Lower
Mekong Basin by integrating remote sensing observations with in situ measurements. The model
developed in this study allows for a consistent and reliable indicator of surface sediment concentrations
in an operational near real-time environment. Expanded access to sediment concentration data
should be particularly helpful to resource managers interested in the dynamics between sediment
concentrations and land use conversions, water policy, and energy production in a globally
strategic region.

Supplementary Materials: The online suspended sediment concentration application is available at: http://
mekong-ssc.appspot.com/; All source code for the website and processing is available at: https://github.com/
KMarkert/mekong-ssc-gae/.
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AJAX Asynchronous JavaScript And XML
API Application Programming Interface
CFMask C Function of Mask
chl-a Chlorophyll-a
CSS Cascading Style Sheets
EROS Earth Resources Observation and Science
ESPA EROS Center Science Processing Architecture
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ETM+ Enhanced Thematic Mapper Plus
GEE Google Earth Engine
HTML Hypertext Markup Language
JRC Joint Research Center
LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System
MRC Mekong River Commission
NSE Nash-Sutcliffe model efficiency coefficient
OLI Operational Land Imager
R Correlation Coefficient
R2 Coefficient of Determination
RE Relative Error
RMSE Root Mean Square Error
SciPy Scientific Python
SR Surface Reflectance
SSSC Surface Suspended Sediment Concentration
SSE Sum of Square Error
SSL Suspended Sediment Load
TM Thematic Mapper
TOA Top of Atmosphere
TSS Total Suspended Solids
QA Quality Assurance

Appendix A. MRC Station Information

Detailed information describing the stations used in this study is presented in Table A1.

Table A1. Table describing the 44 stations used in the study.

Station ID Name Lat. Lon. Waterbody Type Observations

H010501 Chiang Sean 20.2755 100.090986 Mekong River Main stem 5
H013101 Nakhon Phanom 17.399339 104.800227 Mekong River Main stem 6
H013401 Savannakhet 16.559887 104.743416 Mekong River Main stem 3
H013801 Khong Chiam 15.32027 105.5 Mekong River Main stem 2
H013900 Pakse 15.120617 105.78276 Mekong River Main stem 3
H014501 Stung Treng 13.547263 106.015905 Mekong River Main stem 4
H014901 Kratie 12.47827 106.015 Mekong River Main stem 2
H019801 Chroy Chang Var 11.58483 104.9425 Mekong River Main stem 4
H019802 Kampong Cham 12.001609 105.46783 Mekong River Floodplain 8
H019804 My Thuan 10.277645 105.906339 Mekong River Floodplain 4
H019805 My Tho 10.3444 106.35056 Mekong River Floodplain 2
H019806 Neak Luong 11.59511 105.28694 Mekong River Floodplain 1
H019807 Krom Samnor 11.069384 105.208978 Mekong River Floodplain 1
H020101 Phnom Penh Port 11.57316 104.93167 Tonle Sap River Floodplain 3
H020102 Prek Kdam 11.81319 104.8 Tonle Sap River Floodplain 1
H020106 Kampong Luong 12.579697 104.213025 Tonle Sap Lake Floodplain 7
H029812 Dai Ngai 9.733668 106.075538 Bassac River Floodplain 2
H033401 Takhmao 11.564623 104.934383 Bassac River Floodplain 3
H033402 Koh Khel 11.456477 105.039326 Bassac River Floodplain 2
H033403 Khos Thom 11.105372 105.061034 Mekong River Floodplain 3
H039801 Chau Doc 10.710065 105.124479 Bassac River Floodplain 5
H039803 Can Tho 10.053218 105.800404 Bassac River Floodplain 5
H039805 My Tho 10.35145 106.368236 Mekong River Floodplain 1
H100101 Ban Hat Kham 20.084313 102.258378 Nam Ou River Tributary 1
H230102 Tha Ngon 18.133752 102.621123 Nam Ngum River Tributary 1
H230199 Nam Ngum at Damsite 18.53229 102.55333 Nam Ngum Reservoir Reservoir 4
H231801 Nam Souang 18.25215 102.55333 Souang River Tributary 2
H231901 Nam Houm 18.178159 102.55333 Nam Houm Reservoir Reservoir 4
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Table A1. Cont.

Station ID Name Lat. Lon. Waterbody Type Observations

H290103 Ban Chai Buri 17.641781 104.461561 Nam Songkhram Tributary 1
H320101 Se Bang Fai 17.076623 104.983587 Se Bang Fai Tributary 2
H350101 Ban Keng Done 16.18774 105.316627 Se Bang Hieng Tributary 2
H370104 Yasothon 15.783679 104.138624 Nam Chi Tributary 4
H370299 Nam Pong Dam 16.77213 102.618581 Nam Pong Reservoir 2
H380103 Ubon 15.223357 104.861663 Nam Mun Tributary 4
H380128 Mun (Khong Chiam) 15.32194 105.51 Mekong River Main stem 1
H390104 Souvanna Khili 15.385382 105.823818 Se Done Tributary 1
H430102 Siempang 14.12097 106.3933 Se Kong Tributary 3
H450101 Lumphat 13.552984 106.528211 Sre Pok Tributary 1
H988102 Tan Thanh 10.81751 105.59028 Hong Ngu Canal Floodplain 2
H988114 Tu Thuong 10.825895 105.339373 Tu Thuong Canal Floodplain 2
H988202 My Thanh 9.429292 105.998322 My Thanh Canal Floodplain 2
H988214 Phuoc Sinh 9.38372 105.38333 Quan Lo-Phung Hiep Floodplain 2
H988302 Ba The 10.54331 105.25694 Kinh Ba The Canal Floodplain 2
H988314 Soc Xoai 10.13242 105.02889 Rach Gia-Ha Tien Floodplain 2

Appendix B. Statistical Exploration Results

Resulting statistical data from correlation analysis between remotely sensed wave length bands
(Table A2) and the comparison between statistical models for estimating SSC (Table A3).

Table A2. Correlation matrix for the log spectral values of each band and ln(SSSC).

ρBlue ρGreen ρRed ρN IR
ρBlue
ρGreen

ρBlue
ρRed

ρBlue
ρN IR

ρGreen
ρRed

ρGreen
ρN IR

ρRed
ρN IR

SSSC [mg·L−1]

ρBlue 1
ρGreen 0.911 1
ρRed 0.826 0.961 1
ρNIR 0.750 0.75 0.809 1

ρBlue/ρGreen 0.023 0.432 0.522 0.240 1
ρBlue/ρRed 0.367 0.677 0.827 0.588 0.840 1
ρBlue/ρNIR 0.230 0.345 0.468 0.816 0.334 0.544 1
ρGreen/ρRed 0.537 0.722 0.886 0.720 0.578 0.928 0.590 1
ρGreen/ρNIR 0.234 0.183 0.275 0.762 0.069 0.221 0.917 0.380 1
ρRed/ρNIR 0.101 0.274 0.283 0.335 0.445 0.367 0.581 0.246 0.803 1

SSSC [mg L−1] 0.396 0.557 0.666 0.654 0.486 0.705 0.616 0.727 0.447 0.001 1

Table A3. Statistical modeling results for each combination of bands/ratios selected and
fitting functions.

Band Model R2 SSE p

ρGreen

Linear 0.305 98.84 <0.01
Exponential 0.324 96.16 <0.01

2nd order Polynomial 0.332 94.91 <0.01
3rd order Polynomial 0.364 90.45 <0.01
4th order Polynomial 0.372 89.37 <0.01

ρRed

Linear 0.412 83.71 <0.01
Exponential 0.453 77.93 <0.01

2nd order Polynomial 0.468 75.67 <0.01
3rd order Polynomial 0.472 75.08 <0.01
4th order Polynomial 0.476 74.50 <0.01
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Table A3. Cont.

Band Model R2 SSE p

ρNIR

Linear 0.384 87.52 <0.01
Exponential 0.370 89.74 <0.01

2nd order Polynomial 0.385 87.52 <0.01
3rd order Polynomial 0.386 87.35 <0.01
4th order Polynomial 0.388 87.00 <0.01

ρRed/ρBlue

Linear 0.430 81.15 <0.01
Exponential 0.430 81.15 <0.01

2nd order Polynomial 0.437 80.08 <0.01
3rd order Polynomial 0.474 74.79 <0.01
4th order Polynomial 0.476 74.55 <0.01

ρBlue/ρNIR

Linear 0.306 98.51 <0.01
Exponential 0.289 101.14 <0.01

2nd order Polynomial 0.315 97.51 <0.01
3rd order Polynomial 0.322 96.47 <0.01
4th order Polynomial 0.323 96.29 <0.01

ρRed/ρGreen

Linear 0.463 76.45 <0.01
Exponential 0.494 71.94 <0.01

2nd order Polynomial 0.502 70.90 <0.01
3rd order Polynomial 0.504 70.57 <0.01
4th order Polynomial 0.505 70.46 <0.01
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