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Abstract: Landslides are one of the most common and dangerous threats in the world that generate
considerable damage and economic losses. An efficient landslide monitoring tool is the Differential
Synthetic Aperture Radar Interferometry (DInSAR) or Persistent Scatter Interferometry (PSI). However,
landslides are usually located in mountainous areas and the area of interest can be partially or even
heavily vegetated. The inherent temporal decorrelation that dramatically reduces the number of
Persistent Scatters (PSs) of the scene limits in practice the application of this technique. Thus, it is
crucial to be able to detect as much PSs as possible that can be usually embedded in decorrelated
areas. High resolution imagery combined with efficient pixel selection methods can make possible
the application of DInSAR techniques in landslide monitoring. In this paper, different strategies to
identify PS Candidates (PSCs) have been employed together with 32 super high-spatial resolution
(SHR) TerraSAR-X (TSX) images, staring-spotlight mode, to monitor the Canillo landslide (Andorra).
The results show that advanced PSI strategies (i.e., the temporal sub-look coherence (TSC) and
temporal phase coherence (TPC) methods) are able to obtain much more valid PSs than the classical
amplitude dispersion (DA) method. In addition, the TPC method presents the best performance
among all three full-resolution strategies employed. The SHR TSX data allows for obtaining much
higher densities of PSs compared with a lower-spatial resolution SAR data set (Sentinel-1A in this
study). Thanks to the huge amount of valid PSs obtained by the TPC method with SHR TSX images,
the complexity of the structure of the Canillo landslide has been highlighted and three different slide
units have been identified. The results of this study indicate that the TPC approach together with
SHR SAR images can be a powerful tool to characterize displacement rates and extension of complex
landslides in challenging areas.

Keywords: DInSAR; landslide monitoring; PSI; super high-spatial resolution TerraSAR-X images;
pixel selection; measurement pixels’ density

1. Introduction

Every year, with the onset of rains and snow melting, landslides represent one of the
major natural threats to human life and infrastructures in natural and urbanized environments.
In this context, different surveying techniques, such as inclinometers, extensometers, piezometers,
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jointmeters, photogrammetry, LiDAR or Global Positioning Satellite System, are typically employed
to address landslide monitoring problems [1–8]. Nonetheless, these conventional techniques present
several limitations. They are labor intensive, expensive and usually require skillful users for data
interpretation. Moreover, they typically provide poor spatial sampling and coverage, which hinder
the characterization of complex landslides. Finally, some of these techniques require the direct
installation of devices over the landslide surface, which could be a complex task, sometimes impossible
to fulfill, in hard-to-reach locations. During the last decade, Synthetic Aperture Radar (SAR)
Differential Interferometry (DInSAR) techniques based on space-borne SAR sensors have matured
to a widely used geodetic tool for the accurate monitoring of complex displacement phenomena
with millimetric accuracy [9–13]. Concretely, the new generation of X-band SAR sensors, like the
German TerraSAR-X and TanDEM-X satellites or the Italian constellation Cosmo-Skymed, have led to
a scientific breakthrough presenting a lower revisiting time (up to few days) and an improved spatial
resolution (even below the meter), compared with their predecessors ERS-1/2, ENVISAT-ASAR and
RADARSAT-1 or the recently Sentinel-1, which worked at the C-band.

Despite all these clear advantages, DInSAR solutions present some limitations, especially for the
X-band, over vegetated scenarios in mountainous environments, where landslides typically occur.
The DInSAR technique takes advantage of a time-series of SAR images but not all pixels of the
image are useful for interferometric processing. Only those pixels with enough phase quality along
the whole observing period, i.e., the Persistent Scatterers (PSs), can be used as measurement points
(MPs) to derive ground displacement. These PSs, which usually correspond to man-made structures
(like buildings, bridges or roads), rocky areas and bare surfaces with no vegetation, are usually scarce
in mountainous areas [14,15]. In addition, severe limitations arise from temporal decorrelation over
vegetated areas, snow episodes typical in mountainous regions, layover and shadowing effects caused
by SAR geometrical distortions, the presence of tropospheric atmospheric artifacts or when rapid
displacements are faced, making the processing in such areas difficult and challenging at the same
time. Finally, it must be taken into account that SAR sensors are only sensitive to the satellite-to-target
component of displacement, i.e., line of sight (LOS) direction, which may notably differ from the real
one. The measured displacement will be in fact a projection of the real one [9,12]. Many DInSAR, also
known as Persistent Scatters Interferometry (PSI), techniques and algorithms, which share similar
principles, have been developed. They have been tested in the last twenty years using many different
sensors, either orbital, airborne or ground-based, and over many different scenarios, making this
technique a powerful and reliable tool for monitoring any kind of ground motion episodes [14–21].

Large landslides constitute a very specific and challenging scenario for DInSAR. As they are
located in mountainous areas and the displacement is usually down-slope, the landslides have to be
mostly oriented east to west in order to be sensitive to the displacement if polar orbital sensors are
going to be used [9,10]. Not all landslides are suitable for being monitored with orbital SAR. On the
one hand, to avoid problems with phase ambiguity, the displacement rate of the landslide must be
small enough, let us say a few decimetres per year (depending on the wavelength and revisiting period
of the radar). In other words, the SAR interferometry is suitable for monitoring landslides “Very
slow” to “Extremely slow” according to the standard landslide classifications [22,23]. In addition,
foreshortening and layover can jeopardize the performance of the DInSAR processing so the selection
of the proper acquisition geometry is also crucial. In order to reduce geometric distortion and, at
the same time, maximize the projection of the landslide displacement to the LOS, it is advisable to
observe, if possible, the landslide from behind, as it has been done in this paper. However, each case
can be different from the other and so it would require a detailed analysis considering the landslide
particularities and the surrounding topography [9,10,12,24]. Atmospheric artifacts, caused by both
tropospheric stratification and turbulent component, can contaminate the interferometric phase and,
as they can be strongly correlated with the topography, they can also be difficult to remove [25–29].
Finally, a landslide can present a quite complex behaviour with different sliding units moving at
different velocity rates. A good density of PS is required in order to be able to delimit and characterize
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the behaviour of the different local displacements, so it would be necessary to use a PSI strategy
able to select as much pixels as possible at full resolution in areas where most of the pixels will be
severely decorrelated [9,10]. It is evident that the chances of detecting small and isolated PSs within
decorrelated areas will arise as the resolution of the images employed increases [11,30,31].

With super high-resolution (SHR) data, the classical Gaussian scattering model used to model
speckle is not always fulfilled since it is possible to find resolution cells with few scatterers [24,32].
This approach is known as partially developed speckle [33,34]. In the situation of having an isolated
scatterer within the resolution cell, the value is given by the deterministic impulse response of the SAR
system, i.e., by a bidimensional sinc response [24,35]. These types of scatterers typically correspond to
man-made structures, outcrops, exposed rocks, etc. These objects can be exploited as opportunistic
high-quality points for displacement monitoring applications. Of course, in high-resolution SAR
images, it is more probable to have this situation in natural environments [11,30]. Taking into account
the previous considerations, landslide monitoring will be greatly benefited by the usage of SHR data.

In this paper, 32 Staring Spotlight TerraSAR-X images (acquired from July 2014 to November 2016,
with a resolution of 0.23 m in azimuth and 0.59 m in range) and three full-resolution PSI approaches
(i.e., the classical amplitude dispersion [14], the temporal sub-look coherence (TSC) [36,37] and the
temporal phase coherence (TPC) [38] methods) are employed to monitor a complex landslide located in
El Forn de Canillo (Andorran Pyrenees). Although the advantages of the Staring Spotlight TerraSAR-X
SAR data have been demonstrated by different applications such as absolute height estimation [39]
and measuring rates of archaeological looting [40], the examples in terms of PSI landslide monitoring
are still rare. To our knowledge, the work presented in this paper is the first attempt to study the
possible benefits of SHR SAR images for landslide monitoring, especially regarding the aspects of pixel
density and capability to detect PSs within decorrelated areas. At the same time, the above-mentioned
three PS strategies have also been tested to determine the one most suited for this kind of scenario.

The paper is organized as follows. The landslide’s geological setting and employed dataset are
firstly presented in Section 2. Section 3 introduces the procedures of PSI, where the different strategies
are described. Section 4 presents the landslide monitoring results with TerraSAR-X images, which are
analyzed and compared with GPS measurements to evaluate their reliability. After that, in Section 5 the
advantages of SHR SAR images are highlighted by the comparison of the results with those achieved
with lower resolution sensors, Sentinel-1 in this case. Finally, Section 6 presents the conclusions.

2. Study Area and Dataset

2.1. Canillo Landslide

The area selected in this paper corresponds to one of the biggest and ancient landslides of the
Andorran Pyrenees. It is located at El Forn de Canillo (42.5610◦N, 1.6018◦E) in the Principality
of Andorra, which is a mountainous country between Spain and France in the Central Pyrenees,
as Figure 1a shows. It is a complex structure with deposits composed of overlapped colluvial layers
generated by different landslide episodes. It was firstly described by Corominas and Alonso in
1984 [41] and has been the subject of several studies where its morphology, failure mechanisms and
evolution has been deeply analyzed. The hillslope of El Forn de Canillo is composed by a sequence of
slides and earth-flows with a complex structure, which affects an estimated mass at around 3× 108 m3.
In this context, different ancient sliding units were identified in 1994 by Santacana [42] (see Figure 1b).
The first one corresponds to a slide originated in the area of Pla del Géspit-Costa de les Gerqueres,
located in the southeast of the landslide, which reaches the foot of the hillside. A second event
was originated under El Pic de Maians, reaching the height of 1540 m, and which overlaps with
the previous sliding unit, closing in the Valira river valley. Finally, a third rockslide with a lower
extension originated on the hillside known as La Roca del Forn, in the northeast side of the hillslope,
was identified. Recent local instabilities have been identified in different locations within the landslide
mass [43]. The landslide of El Forn de Canillo was originated as the result of the hillside destabilization,
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due to a decompression phenomenon after the removal of the Valira Glacier during the Pleistocene,
after the Maximum Ice Extent. The Valira River has been progressively eroding the base of the whole
mass without reaching the bedrock, and thus originating the landslide [42].

In front of some evidence of displacement (geomorphological signs of instability and some
cracking in the road pavement and in a hydroelectric channel that crosses the Forn de Canillo),
the authorities promoted several actions in the year 2000 for the management of their geo-hazard
threats leading to the monitoring of El Forn de Canillo. Between the years 2007 and 2009, a network
of geotechnical devices, including inclinometers, rod extensometers and piezometers, were installed
over the landslide surface to characterize and understand the dynamics of the sliding mass. A total
of 10 boreholes, reaching typically a depth between 40 and 60 m, were drilled and equipped with
this instrumentation [43,44]. The readings recorded have provided evidence that, in addition to a
residual movement of some millimeters per year in the main body of the slide, the most active part of
the landslide corresponds to the secondary landslide of Cal Borró-Cal Ponet. This area registered a
velocity up to roughly 2 cm/month between May and June 2009 when intense sudden rain events and
snow melting occurred [44].

(a)

Cal Borró-Cal Ponet

Study area 

limit

(b)

Canillo

El Pic de 

Maians

costa de les 

Gerqueres 

sliding unit

El Pic de 

Maians 

sliding unit

La Roca del 

Forn  

sliding unit

Figure 1. (a) location and topography of the Canillo landslide; (b) aerial view of the study area (Google
Earth, 11 October 2017). The town of Canillo is located on the north border of the landslide. The red
arrows indicate the moving directions of the ancient landslide units (modified from Santacana, 1994 [42]).

2.2. SAR Dataset

In this study, the slides’ motion is monitored with 32 Staring Spotlight TerraSAR-X (TSX) Single
Look Complex (SLC) SAR images. This imaging mode is the classical spotlight mode and it is able
to enhance the azimuth resolution, compared with the stripmap mode, by steering the antenna in
azimuth to a rotation center within the imaged scene [45]. The coverage of the SAR images is around
6.5 km in length and 3 km in width, which has been plotted in Figure 2a (yellow rectangle). The SAR
image main parameters are presented in Table 1.

An amplitude image of the SAR dataset is presented in Figure 2b. As it can be seen, the SAR
images’ geometric distortion effects (i.e., foreshortening, shadow and layover) are not serious within
the study area limit. The extended brighter areas of the image are those affected by the foreshortening
and layover, due to the steepest topography. Dark areas are those affected by shadowing. This is
favoured by a certain parallelism between the topography of the slope and the LOS from the satellite,
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thanks to its descending flight direction. The landslide is partially vegetated. Only a few strong
scatterers (man-made structures, like buildings and roads, or bare rocks) are sparsely distributed
within the study area limit, as is also visible in Figure 1b, thus making it challenging to monitor this
landslide with conventional PSI techniques.

Range
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zim
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th

Study area 
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Cal Borró-Cal Ponet

Canillo

(b)

Study area 
limit

El Pic de 

Maians

(a)

Figure 2. (a) coverage of the TerraSAR-X dataset (i.e., the yellow rectangle) displayed on a topographic
map of the area (map from https://elevationmap.net); (b) amplitude of an SAR image in radar
coordinates (azimuth, slant-range) acquired by the TerraSAR-X sensor in Staring Spotlight mode,
and the red line illustrates the boundary of the study area limit.

Table 1. Main parameters of the employed Staring Spotlight TerraSAR-X images. Heading and LOS
angles defined clockwise with respect to the north.

Parameter Value

Acquisition Period 22 July 2014–15 November 2016
Heading Angle 189.8 (degree)

LOS Angle 279.8 (degree)
Incidence Angle 39 (degree)

Azimuth Resolution 0.23 (m)
Slant Range Resolution 0.59 (m)

Wavelength 3.1 (cm)
Revisit Cycle 11 (day)

https://elevationmap.net
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2.3. GPS Validation Data

The Canillo landslide is monitored with the Global Positioning System (GNSS/GPS) since
December 2012. Although several continuous monitoring GPS techniques exist [8], the small rate
of displacements justified a discontinuous approach, with yearly field campaigns [7]. A network
of 78 GPS points were established at Canillo, covering most of the landslide and the surrounding
area as Figure 3 shows. Six points (blue filled triangles in Figure 3) serve as base points to check the
stability of the local datum. Once per year, in October, a two day campaign is carried out covering all
the control points, spread along the landslide. The GPS method has been the Real Time Kinematic
(RTK), with two geodetic-level receivers (Topcon Hiper-Pro, double frequency, double constellation,
(Topcon Positioning Systems Inc., Tokyo, Japan)). The final results are the point coordinates in the
ETRS89 reference system (Longitude, Latitude and elevation for instance). The estimated accuracy of
the resulting coordinate increments is around 1 cm in planimetry and 2 cm in elevation [7].

Three GPS campaigns fit within the study period: October 2014, October 2015 and October 2016.
The six base points (E1, E2, E3, E4, E6 and G44 in Figure 3), which are on the assumed stable substrate
outside the unstable area, and a total of 72 control points spread over the landslide deposits have
been measured. The base points were measured in order to rule out systematic or instrumental errors
and thus validate the measures carried out. The control points have been distributed throughout the
landslide with the aim of providing a comprehensive overview of its behavior.

The results of the displacement observed at the reference points (points E and G44 in Figure 3),
outside the landslide, are within the range of the error and therefore can be considered stable, as
expected. Among the 72 GPS control points within the study area limit, 37 are selected for PSI results’
validation. The correspondence between GPS points and the PSs has been made with proximity
criteria but also discarding any change of geomorphological sub-unit. The difference between GPS and
PSI in terms of precision, spatial resolution and temporal resolution is noticeable, but the measured
displacement of these selected GPS control points can be used to examine the reliability of the PSI
derived ground displacement, as it will be done in Section 4.2.

E3
E1,E2

G44
E4

E6

Study area 

limit

Figure 3. The locations of the GPS measurement points. The filled-in blue triangles and red circles
indicate the GPS base points and control points, respectively.
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3. Methodology

In this section, the different PSI strategies that will be compared in this paper are introduced.
Most of the processing steps are identical for all of them, so the description will be focused on the
different PS identification methods used that characterize each strategy.

3.1. Differential SAR Interferometry (DInSAR) Processing

In the conventional strip-map mode, SAR images’ azimuth resolution is around half of the
azimuth antenna length, which cannot be reduced arbitrarily to improve the resolution without the risk
of causing range ambiguities. To overcome this limitation and achieve a higher resolution, the spotlight
mode extends the illuminating time of each scatterer by sweeping the azimuth beam backward during
imaging [46]. This brings a systematic Doppler centroid drift in the azimuth direction of the focused
SAR images.

Prior to the DInSAR processing of the data, the particularities of Staring Spotlight acquisition
mode have to be considered during the classical interferometric processing. When performing the
image co-registration and common band filtering (if required), all base-banding steps have to consider
the azimuth variation of the Doppler spectrum, which is different to the one of the stripmap mode
and would require a deramping of the images involved. The details of how to deal with this issue
can be found in [37,46]. The other steps of InSAR processing are identical to those of the stripmap
case. The spotlight DInSAR processing module, able to work with sliding and staring data, has been
implemented in the SUBSOFT-GUI, which is the UPC’s DInSAR processing chain based on the Coherent
Pixel Technique (CPT) [17,20].

In this study, in order to limit the influence of geometrical and temporal decorrelation on
interferograms, we set the interferograms’ temporal and spatial baseline thresholds as 365 days
and 230 m, respectively. These values have allowed a good interconnection of the images and
they act as upper-limits to avoid having interferograms with too long temporal or spatial baselines.
The interferograms have been selected using a Delauney triangulation over the SLCs’ distribution
considering its acquisition time and spatial baselines with respect a master image, as shown in Figure 4.
With these restrictions and with the help of an external DEM of the area with 5 m resolution provided
by the Government of Andorra, a total of 80 differential interferograms have been generated from the
32 TSX images.
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Figure 4. The spatial and temporal baseline distributions of the TerraSAR-X data generated
interferograms over the study area. The black diamonds and red lines denote the SAR images and
interferograms, respectively.
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One of the characteristics of X-band data is that it decorrelates very fast in vegetated areas, but,
at the same time, the coherent pixels are able to preserve their phase quality very well over time.
In other words, if they are coherent, they keep the coherence well. The main advantage of working
with high resolution data is the capability to detect small coherent features embedded in uncorrelated
areas. In order to illustrate this, Figure 5 shows two coherence maps obtained from two different
interferograms using a multi-look of 5 × 3 (azimuth × range). The resolution of the multi-looked
interferogram is 1.15 × 1.77 m. One with a temporal baseline of 11 days and the other with 10 months.
The coherence maps look very similar for both cases demonstrating the previous statement.

Figure 5. Coherence (a,b) and differential phase (c,d) of two interferograms with temporal baselines of
11 days (a,c) and 10 months (b,d) over the study area. Despite most of the pixels decorrelating very
fast, the coherent ones are able preserve their phase quality very well along time.

3.2. Persistent Scatterers Identification

Together with the classical full-resolution pixel selection method (i.e., the amplitude dispersion
(DA) method), another two techniques (the temporal sublook coherence (TSC) and the temporal phase
coherence (TPC) methods) have been used to identify pixels with high phase quality, known as PS
Candidates (PSCs). As the DA approach [14] is very well known by the PSI community, we will only
introduce briefly the TSC and TPC approaches, which are two pixel selection methods developed by
the authors.

3.2.1. PS Candidates Selection by Temporal Sublook Coherence (TSC)

Different from the DA method, which selects persistent PSs by exploring pixels’ amplitude
stability, the TSC method intends to identify those pixels that behave like point scatterers in the
spectral domain along time [36]. Any target that presents a correlated spectrum in range, azimuth
and elevation along time would be identified as PS. In practice, targets usually present a nonuniform
azimuth scattering pattern, worsened in the Staring Spotlight case due to the length of the synthetic
aperture, and the assumption of correlated spectrum can only be applied in range. This method
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presents some advantages. For instance, with this approach, the radiometric calibration of the images
is not necessary since amplitude plays no role in the detection and, thus, point-like scatterers that
change its amplitude along time can be perfectly selected. An example of the latter case will be highly
directive targets whose reflectivity has a strong dependence on the incidence angle. In addition, it was
demonstrated in [36] that it is more reliable with reduced sets of images than DA.

Before TSC estimation, two range sublooks (SL) of each SAR image have to be generated. Focused
SAR images are usually tapered with a linear window (Hamming, Hanning, Kaiser, etc.) to reduce the
impact of the sidelobes. In order to ensure that the two sublooks in which the spectrum will be divided
present a symmetrical shape, the original spectrum has to be unweighted to flatten it. Once the range
spectrum has been flattened, two sublooks are generated (each one corresponding to one half of the
original spectrum) and base banded to the same central frequency to avoid any undesired linear phase
term during the later spectral correlation. To reduce once again the sidelobes, each sublook is tapered
with a linear window. Finally, the inverse Fourier transform is applied to get both SLs in the spatial
domain. A detailed explanation of the whole process is perfectly detailed in [36]. Once the sublooks of
all SAR images are obtained, the TSC of any arbitrary pixel (i, j) can be calculated with Equation (1)

∣∣γ̂tmp(i, j)
∣∣ =

∣∣∣∣∣Nim
∑

n=1
S1(i, j, n) · S∗2(i, j, n)

∣∣∣∣∣
Nim
∑

n=1
|S1(i, j, n)|2 ·

Nim
∑

n=1
|S2(i, j, n)|2

, (1)

where S1 and S2 are the pixel (i, j) corresponding complex values of the first and second sublook for
the acquisition image n, and Nim refers to the total number of images. The sketch of the TSC estimation
for a generic pixel can be represented by Figure 6.
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. . . . . .
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Figure 6. Sketch of the TSC estimation for a generic pixel. From left to right, the Single Look Complex
(SLC) images of the dataset, the two sublooks generated from each image, coherence calculation and
final TSC [37].

The temporal sublook coherence (TSC) can be regarded as the classical coherence and, similarly,
pixels can be selected based on the application of a threshold. High values of TSC would be associated
with point-like scatterers. Similarly to the case of classical coherence, relations between the true TSC
and the expected one can be established as a function of the number of images employed, as well as
the true TSC and the pixel phase standard deviation [36,37]. These relations help to perform the pixel
selection based on a phase standard deviation threshold, allowing for using a criterion independent on
the number of images. From the phase standard deviation, the corresponding TPC threshold can be
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calculated. The selected pixels can then be treated as PSs and processed by the DInSAR algorithm to
derive the displacement maps and time-series.

3.2.2. PS Candidates Selection by Temporal Phase Coherence (TPC)

After removing the topographic term using an external DEM, the phase of a differential
interferogram can be expressed as Equation (2)

ψ = ψde f + ψatm + ψorb + ψξDEM + ψnoise, (2)

where ψde f , ψatm and ψorb denote the phase terms introduced by displacement along the LOS direction,
atmospheric artifacts (atmospheric phase screen, APS) and SAR satellite orbit indeterminations. ψξDEM

is the residual phase due to the DEM error, and ψnoise is the noise phase term. This latter term can be
assumed to present a random behaviour in the neighbourhood of a given pixel while the other can
be assumed to be deterministic. Thus, the noise phase term can be used as a metric of pixel’s phase
quality. The temporal phase coherence (TPC) can be used to evaluate the quality of a pixel from the
behaviour of this phase noise along the stack of interferograms. TPC can be estimated based on ψnoise
from all generated interferograms, as Equation (3) shows

γTPC =
1
M
· |

M

∑
i=1

ej·ψnoise,i |, (3)

where M is the number of interferograms and ψnoise,i is the noise phase term of the ith interferogram.
To obtain for each interferogram the noise phase term of a pixel, it is necessary to estimate the

deterministic terms. In order to do that, the neighbouring pixels will be used assuming, in theory, a
spatial low-pass behaviour of all deterministic terms in the vicinity of the pixel whose TPC is being
estimated, a.k.a the central pixel. The phase of the neighbouring pixels is estimated by averaging their
complex values, but excluding the central pixel, and then calculating the argument of this complex
number. With this approach, similarly to the classical multi-looking in interferometry, the pixels’
amplitude is used to give more significance to those pixels with higher amplitude in front of those
with lower values that, in principle, can be expected to be noisier and less reliable. The first three terms
of Equation (2) can be assumed to be spatially low-pass. Indeed, APS, orbital residues and the phase
offset of the interferogram perfectly fulfill this condition while, for the deformation, it would be an
acceptable approximation. Then, subtracting the neighbouring phase from the central phase gives
Equation (4)

ψcentral − ψneigh ≡ ψdi f = ψ
di f
ξDEM

+ ψ
di f
noise, (4)

where ψ
di f
ξDEM

= ψcentral
ξDEM

− ψ
neigh
ξDEM

and ψ
di f
noise = ψcentral

noise − ψ
neigh
noise . Thus, the terms have been grouped in

deterministic along the interferometric stack, ψ
di f
ξDEM

, and random, ψ
di f
noise. As (4) shows, the estimation

of the noise phase of the central pixel, i.e., ψcentral
noise , would be affected by the deterministic terms.

The averaging would reduce the noise term of the neighbouring pixels, ψ
neigh
noise . Thus, we can assume

than ψcentral
noise ≈ ψ

di f
noise. Thus, by subtracting the deterministic term ψ

di f
ξDEM

from ψdi f , the noise phase of
the central pixel can be estimated. In the practical implementation, all phase operations are obviously
done in the complex domain.

The phases due to DEM errors (εcentral
DEM and ε

neigh
DEM) of the central and neighboring pixels can be

rewritten as Equations (5) and (6), respectively:

ψcentral
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εcentral

DEM , (5)

ψ
neigh
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εneigh

DEM, (6)



Remote Sens. 2018, 10, 921 11 of 23

where λ, Bn, R0 and ϑ0 are the wavelength, the perpendicular baseline, the absolute range distance in
the LOS direction between the sensor and the target and the incidence angle, respectively. Then, we
can derive ψ

di f
ξDEM

as (7)

ψ
di f
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· 4εDEM, (7)

where4εDEM = εcentral
DEM − ε

neigh
DEM is the difference of DEM errors between the central and the averaged

error of the neighboring pixels. We use Equation (8) to estimate each pixel’s 4εDEM and then the
ψ

di f
ξDEM

is calculated by Equation (7):

arg max
4εDEM

{γTPC =
1
M
· |

M

∑
i=1

ej·ψdi f
i −j·ψdi f

ξDEM ,i |}. (8)

Until now, ψ
di f
ξDEM

has been estimated and then ψcentral
noise can be derived by Equation (4) under

the assumption that ψcentral
noise ≈ ψ

di f
noise. All pixels’ noise phase terms of all the interferograms can be

estimated by this way and then the TPC can be calculated by Equation (3).
TPC provides a temporal coherence of each pixel and fixing a threshold can perform the

identification of PSCs. As in the case of classical coherence or the TSC, a relationship between TPC
and the phase standard can be established in order to select a threshold independent on the number of
images and interferograms. The derivation of these relations has been discussed in detail in [38].

3.3. Linear and Nonlinear (Time-Series) Displacement Estimation

The linear and nonlinear displacement terms and the DEM error can be estimated by using
UPC’s ground motion detection software SUBSOFT-GUI (UPC, Barcelona, Spain). SUBSOFT-GUI is a
user-friendly software package for PSI processing. It allows for performing all required steps, starting
from the image co-registration, differential interferograms generation and filtering, pixel selection
and deformation time-series extraction. The software uses a Graphical User Interface (GUI) and most
of the steps have been automatized, which facilitates the processing of any dataset. The detailed
procedures of the linear and nonlinear blocks in SUBSOFT-GUI can be found by referring to [17,20].
Three independent processes, based on the same set of differential interferograms but with three
different PS selection strategies (DA, TSC and TPC approaches), have been carried out to compare the
performance of each pixel selection technique under similar conditions. For each strategy, the measured
parameter can be related with a phase standard deviation as shown in Figure 7.
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Figure 7. Standard deviation of the interferometric phase as a function of (a) DA, (b) TSC and (c) TPC
for the 32 images set.
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The comparison of the different strategies is always a difficult task as there are many parameters
that can be adjusted. In this case, the key point that makes the difference is the capability of the
different strategies to select PSs. The larger the number, the better performance of the PSI processing,
as it allows a better connection of the different areas and reduces the chances of having isolated clusters
of PSs. It is also true that the three processes could have been optimized with a fine-tuning of the
processing parameters, but, in practice, it is expected that the possible small variations on the final
results would not be enough to modify the conclusions.

3.4. Atmospheric Artefacts

InSAR observations are usually plagued by propagation delays, which are also known as
atmosphere phase screen (APS). As the atmosphere properties (temperature, pressure, and relative
humidity that set the refractive index) between radar platform and the ground targets vary spatially
and temporally, the phase delays vary from one day to another. For microwaves, it is well
known that propagation delays have two major sources: tropospheric terms and ionosphere effects.
At X-band, ionosphere is almost invisible and so the only significant source is the troposphere [26,47].
The atmospheric propagation delay in interferograms can be categorized into vertical stratification and
turbulence mixing [26]. While the latter can be compensated, thanks to its random behaviour in time
and correlated behaviour in space, with a set of temporal and spatial filters during data processing
[14,18,20], the former can be much more difficult. Stratification is prone to occurring in areas with
steep topography and the APS appears to be strongly correlated with the elevation. If not properly
compensated, APS can be misinterpreted as topography or displacement. Different strategies can be
used to characterize and compensate the stratified APS, for instance with models following a linear or
quadratic phase-elevation relationship [25,27–29].

The time of the pass of the satellite for the TSX data acquisitions was early in the morning, around
6:03 a.m. UTC (8:03 a.m. in local summer time and 7:03 a.m. in local winter time). At this time of the
day, the atmosphere is very stable, compared with the strong fluctuations that can be observed during
the day, and stratified APS has not been observed in the dataset.

4. Results and Discussion

4.1. Line-of-Sight (LOS) Monitoring Results

The LOS displacement rate maps derived by the three methods (i.e., the DA, TSC and TPC) are shown
in Figure 8a–c, respectively. To make a fair comparison, the pixel selection thresholds for all the three
methods were established based on a phase standard deviation of 15◦. Using the plots shown in Figure 7, the
corresponding thresholds for each strategy can be selected. Similar displacement trends have been detected
by all of them, and the maximum displacement velocity reaches up to−3.5 cm/year (the minus sign means
movement away from the satellite, i.e., downslope motion due to the landslide orientation). Within the
landslide limits, there are mainly three large displacement subareas (indicated by the red rectangles in
Figure 8a–c), located at the El Pic de Maians (subarea A), costa de les Gerqueres (subarea B) and Cal
Borró-Cal Ponet (subarea C), respectively. These three subareas’ locations and displacement patterns
are coincident with the monitoring results obtained with another dataset in 2011 [37]. The dataset
consisted on Sliding-spotlight TerraSAR and GB-SAR images, and data from inclinometers deployed
in the landslide, all acquired from October 2010 until October 2011. Previous results have confirmed
that the location and evolution of the landslide body have not changed significantly during the recent
years. This fact is in good agreement with the geological expectations.

Among the three pixel selection methods, DA and TSC select pixels that behave as point scatterers
while TPC can work on both point and distributed scatterers (DSs). Since there are many DS pixels
(e.g., the road) in the study area, TPC obtains a much higher density of measurement pixels (MP) than
DA and TSC approaches.
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Figure 8. LOS displacement velocity maps derived by (a) DA, (b) TSC, (c) TPC and (d) GPS approaches,
respectively. The filled blue triangle in (d), i.e., E1, indicates the location of the GPS base point. GPS
displacements have been projected to LOS. The red rectangles highlight the areas zoomed in Figure 9.
The red numbers at the right bottom corner of (a–c) represent the amount of valid pixels obtained by
each method.
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Notice in Figure 8 how well the TPC method has identified those pixels along the downhill road,
while the other two have just selected a reduced set of them. At the same time, the TSC method
obtains more PSs than DA. This can be explained by the fact that the DA method is very sensitive
to the amplitude changes that highly directive scatterers produce when the local incidence angle
changes from image to image. Specifically, the number of PSs obtained by TPC method is 757,086,
the counterparts of TSC and DA methods are 139,065 and 294,484, respectively. The improvement of
the TPC and TSC methods on DA is around ×5.4 and ×2.1, respectively. The TPC method thus has the
best performance in terms of PSs’ density.

To better analyse the details of the landslide, the three subareas’ monitoring results have been
enlarged and plotted in Figure 9. From column A (results of the subarea A), we can find that
the displacement velocities obtained by DA (−1.3 cm/yr) are greater then those of TSC and TPC
(−0.6 cm/yr) at the locations highlighted by the red ellipses. Similar differences can be observed
between the TPC derived results and the other two methods within the subarea C (along the downhill
road). These displacement velocities’ differences are mainly caused by the sparsity of selected pixels
that reduces the number of connections of DA (Figure 9a,c) or TSC (Figure 9f) during the linear
displacement estimation. Different areas interconnected by low-quality links can lead to small offsets
in the velocity results. The sparser the local connections, the more easily the estimated displacement
can be affected by nearby lower quality pixels and APS. Therefore, the high estimated displacement
velocities in Figure 9a,c,f are mostly due to the low densities of PSs within these local areas.

As Figure 9g–i shows, thanks to the super high resolution (SHR) of the images and TPC’s good
performance on pixel selection, the displacement details of the different landslide units are well
detected. For instance, more pixels have been selected along the narrow paths (around 1 m in width),
as highlighted by red ellipses in Figure 9i. Benefiting from this high density of PSs, the displacement
boundaries (illustrated by the yellow dashed lines in Figure 9i) can be clearly determined by the TPC
approach in subarea C. These boundaries can hardly be seen from the results of the other two methods,
as shown in Figure 9c,f.

Besides the displacement results, PSI techniques can also obtain the DEM error of the selected
pixels with respect to the reference DEM used. The inclusion of the retrieved DEM error on the
geocoding of the final results largely improves the geolocation quality of the displacement maps.
Figure 10 shows some interesting examples that illustrate the capabilities of SHR TSX data to retrieve
the vertical distribution of scatterers in manmade structures. The examples shown have been obtained
from the TPC processing. Figure 10a shows a communications tower located in Canillo. The vertical
distribution of scatterers perfectly follows the tower’s structure as the picture validates. It is also
interesting, looking at the GoogleEarth image, to compare the distribution of scatterers with the
shadow of the tower projected over ground. Figure 10b and c show a couple of chairlifts from the
Grandvalira ski station. Once again, the vertical distribution of scatterers perfectly follows the metallic
structure, as the pictures and projected shadows demonstrate. Finally, Figure 10d shows a couple
of high voltage towers. The good performance of the vertical location of the scatterers, thanks to
the inclusion of the calculated DEM error on the geocoding process, can also be used as proof of
the reliability of the displacement velocity maps obtained. Both velocity and DEM error have been
calculated simultaneously when adjusting the linear model to the interferometric data [17,20].
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Figure 9. The close-up of the three subareas limited by red rectangles in Figure 8a–c. (a–c) are the
results of the DA method, (d–f) obtained by the TSC method and (g–i) obtained by the TPC method.
Red ellipses highlight areas commented in Section 4.1. Yellow dashed lines highlight the edges of
the slide.
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Figure 10. SHR TerraSAR-X data derived DEM errors at the locations of some manmade structures
in the study area by the TPC method. (a) communications tower, (b,c) chairlifts towers and (d) high
voltage towers. PSs have been geocoded over a GoogleEarth image using the retrieved DEM error.

4.2. Comparison with GPS Measurements

The displacement velocities of the 37 GPS control points introduced in Section 2.3 have been
projected to the LOS direction [48,49] to compare them with the DInSAR results, as shown in Figure 8d.
In subarea A of Figure 8d, a small displacement with a velocity around −1 cm/yr has been detected.
In the subarea C, significant movement with velocity around −4 cm/yr has been monitored by the
GPS. In the subareas A and C, the GPS and PSI measured displacement velocities are consistent with
each other. Unfortunately, no GPS points were available in the subarea B for comparison. On the
contrary, large displacements have been recorded by the GPS within the subarea D (highlighted by the
red rectangle in Figure 8d), where there are no counterpart PSI pixels in its near vicinity. However, the
further neighboring PSI pixels present LOS velocities about −1.5 cm/yr, providing evidence of the
agreement of the GPS and PSI results also in this subarea.

To summarize the comparison, a scatter plot with the GPS and PSI derived displacements is
shown in Figure 11. In this plot, the PSI displacements are estimated by averaging those of the
neighbouring pixels of the related GPS measurement point (less than 50 m apart). In addition,
they have been determined from the displacement time-series taking the overall two year displacement
from October 2014 to October 2016, as the GPS date campaigns. As Figure 11 reveals, the GPS
and PSI displacements follow the same trends and present a correlation coefficient of R2 = 0.90.
For GPS measurement points with noticeable displacement (highlighted by the red ellipse in Figure 11),
their surrounding PSI pixels show large displacements as well. Meanwhile, for those stable GPS
measurement points (limited by the blue rectangle), with displacements between −2 to 2 cm,
their corresponding PSI displacements are also within this range.
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Figure 11. Comparison of PSI and GPS derived displacements (October 2014 to October 2016).

4.3. Down-Slope (DSL) Direction Displacement Monitoring Result

The ground motion derived by DInSAR is along the LOS direction, but it is usually projected to
the down-slope (DSL) direction to better interpret the landslide displacement. The detailed LOS to DSL
direction projection method can be found by referring to [12,24]. As it is out the scope of this paper, we
do not describe it here. We projected the TPC method’s ground displacement velocities to the DSL
direction, and the result is shown by Figure 12. It has to be noted that, when doing the projection, only
those PSs with projection factors smaller than 3 have been preserved to avoid artificially amplifying
displacement values and noise when the slope is gentle. Thanks to the relative orientation of the
landslide with respect the satellite path, most of the projection factors within this study area are small.
Thus, the majority of PSs have been preserved, and the displacement patterns along the LOS and DSL
directions are similar (e.g., the neighboring area of P1). Except for a small set of pixels nearby point P4
in Figure 12, the displacement velocities of the previous three displacement subareas (in Figure 8c)
have not been heavily amplified via the projection.

P3

P2

P4

P5

0 -1 -2 -3

(cm/yr)

P1

Figure 12. Down-slope displacement velocity map derived by the TPC method. Estimated displacement
velocities within subareas A, B, C and D in Figure 8 have been enlarged for a better visualization with a
white background. The locations of points P1–P5 in the subareas, which are further analyzed in the text,
have also been indicated.
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Besides the subareas A, B and C in Figure 8, in Figure 12, we have highlighted another subarea,
which is located at the foot of the hill. In this subarea, noticeable displacement has been identified at
the location of P5, which may be caused by the extrusion of the landslide main body moving towards
the downhill direction.

4.4. PSI Time-Series

To investigate the temporal evolution of the Canillo landslide, the DSL time-series displacement
results obtained by the TPC method at two different PSs (P2 and P3 in Figure 12) have been plotted in
Figure 13. The displacements observed for both PSs are exhibiting considerable nonlinear components,
presenting some acceleration and deceleration periods within each year. From the two PSs’ 2016
displacement time-series (Figure 13b,d), we can find that the stable periods start at the beginning of
July and end at the middle of August. These periods are coincident with the trend of Canillo averaged
monthly precipitation, where the lowest precipitation is in July with an average of 79 mm, as Figure 13e
shows. This indicates that the movements of the landslide have some seasonal patterns, which are
correlated with the amount of precipitation.
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Figure 13. TPC method derived down-slope time-series displacement of P2 and P3, Figure 12.
(a,c) cover the period 22 July 2014–15 November 2016 whereas (b,d) are a close-up of the dashed
red rectangles inside (a,c), covering the period May 2016–November 2016 approximately. The red
lines indicate the different deformation trends while the vertical blue ones the location of trend
changes; (e) is the averaged monthly temperature (red line) and precipitation (blue bars) of Canillo
(CLIMATE-DATA.ORG, https://en.climate-data.org/location/13728/); July has been highlighted with
a red rectangle.

5. Comparison with Low-Resolution Data

Sentinel-1A data of the study area have been processed with DA and TPC methods to highlight
the advantages of the SHR data in regional-scale landslide monitoring. TSC has not been included as it
provides similar results than TPC. Sentinel-1A images have resolutions of 14 and 2.5 m in azimuth
and range directions, respectively. Fourteen Sentinel-1A SAR images acquired from the 11 May 2016

https://en.climate-data.org/location/13728/


Remote Sens. 2018, 10, 921 19 of 23

to 19 November 2016 have been employed to generate 33 interferograms. In the pixel selection step,
the same phase standard deviation threshold (15◦) as with TSX data has been used. The displacement
velocity maps obtained using the two PSI strategies, DA and TPC, are shown in Figure 14.

Similarly to the case of TSX data, TPC is able to obtain much more PSs than DA (×4.0), and the
displacement trends derived are similar to those of TSX but less detailed. For both methods, their
PSs’ densities have decreased dramatically compared with the TSX data case. Specifically, for DA and
TPC methods, the numbers of PSs are ×146 and ×197 less w.r.t. that of the TSX case. This significant
reduction of the PSs’ density is mainly due to two reasons that are closely related. In addition to the
logical reduction due to the coarse resolution of Sentinel-1A data, there is also the fact that many small
PSs surrounded by decorrelated pixels that were detected with SHR data are now mixed all together
due to the worse resolution and, consequently, not detected.

(a) (b)cm/yr
0 -1 -2 -3

949(× 𝟏)

DA

3843(× 𝟒. 𝟎)

TPC

Figure 14. The LOS ground displacement velocity maps derived by (a) DA and (b) TPC methods with
Sentinel-1A SAR images.

The Sentinel-1A data monitoring results of the Cal Borró-Cal Ponet section (subarea C in Figure 8
and where the strongest displacement has been detected) have been highlighted with a red rectangle
in Figure 14. In this subsection, the displacement clearly detected with TSX data does not appear
in the Sentinel-1A results with none of the pixel selection methods. A detailed view of Cal Borró
is shown in Figure 15. Similarly, Figure 14 shows no noticeable displacement in any of the other
two subareas (subareas A and B in Figure 8c). However, the small displacement at the base of the
landslide is detected with both PSI strategies and agrees with the results of SHR data. Moreover, the
sparse distribution of PSs, which can be poorly interconnected, allows the appearance of some outliers,
pixels whose velocities are clearly erroneous, scattered along the image. The presence of outliers is
more noticeable on the DA results in the form of isolated red points, those with the highest velocities.

To conclude, for regional-scale landslide monitoring, the TSX SHR SAR images have the advantage
of obtaining more detailed monitoring results with better reliability compared with those of lower
resolution sensors.
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(a) (b)

Figure 15. The LOS ground displacement velocity maps, Sentinel-1A SAR images. Enlargement of the
red rectangles inside Figure 14. (a) DA method; (b) TPC method. The color scale for the displacements
is the same as that in Figure 14.

6. Conclusions

In this paper, the ability of super high-spatial resolution (SHR) SAR images together with
advanced PS selection strategies for regional-scale landslide monitoring in a challenging area has been
studied. Thirty-two SHR TerraSAR-X (TSX) images (July 2014 to October 2016), with resolutions of
0.23 and 0.59 m in azimuth and range directions, have been employed to monitor the Canillo landslide
(Andorra) by using PSI techniques with three different pixel selection methods.

This study has demonstrated that improving the number of high-quality pixels for its later PSI
processing results of crucial importance in landslide monitoring in natural environments. Under
the application point of view, to the authors’ knowledge, it is one of the first times when such a
high density of PS has been obtained in mountainous areas. SHR SAR data jointly with advanced
full-resolution PSI strategies allow the achievement of a more robust network of PS (improving the
linear estimation without propagation errors and the reliable estimation of APS) and thus favors the
reliable estimation of displacement maps in a major number of points inside a landslide. This is a
general conclusion that does not depend on the landslide. A different issue is if the particularities
of a given landslide (orientation, type of vegetation coverage, local topography, snow episodes, etc.)
made it unsuitable for PSI monitoring. Similarly, well-established interferometric techniques for DEM
generation fail on forested areas. It is clear that the particular characteristics of the scenario may limit
the application of the technique.

The landslide’s overall displacement patterns observed by the three methods in El Forn de Canillo
are similar. Three main subareas with noticeable displacement have been detected, which are similar
to those obtained in previous PSI monitoring results. This indicates that the evolution of the landslide
main body did not change significantly during recent years. The PSI measured displacement rates
have been compared with GPS measurements of the same period, and they are both in good agreement.
It is worth highlighting the higher information/resolution of the PSI techniques in comparison with
the GPS low point density, as it can be appreciated in Figure 8. Although already highlighted in the
literature, in the Canillo Landslide, the PSI capability for detecting incipient movements in zones not
previously surveyed by the geological engineering specialists has been verified (as the subarea costa
de les Gerqueres, red rectangle B in Figure 8).The displacement time-series of two significant pixels are
characterized by considerable nonlinear components, exhibiting some acceleration and stabilization
periods within each year. These periods can be correlated with the averaged monthly precipitation



Remote Sens. 2018, 10, 921 21 of 23

amounts, revealing the important influence of rain/snow melting episodes on the development of
this landslide.

SHR SAR data initially designed for improving monitoring capabilities over man-made structures,
such as buildings, bridges, railways or highways, have also demonstrated an outstanding performance
over natural reflectors, such as outcrops or exposed rocks with the proper PSs selection strategy.
Indeed, this improvement in terms of density allows a better characterization and delineation of
complex landslides. Among the three full-resolution PSC selection strategies, the advanced ones (i.e.,
the TSC and TPC) are able to obtain much more valid PSs than the classical DA method. The TPC
method presents the best performance. Thanks to these huge amount of PSs, the displacement details
of the regional-scale landslides can be characterized with better precision when combining the TPC
method with SHR TSX data. Compared with the lower-spatial resolution SAR data (Sentinel-1A in this
study), SHR data can better characterize the landslide, particularly if the different subareas are small.

The results of this work show that the density of valid PSs can be greatly enhanced by using the
TPC method together with SHR SAR images. Thus, they can together be used as a powerful tool for
detailed landslide monitoring in difficult areas.
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