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Abstract: Daily time series from the Climate Prediction Center (CPC) Africa Rainfall Climatology
version 2.0 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and
Tropical Applications of Meteorology using SATellite (TAMSAT) African Rainfall Climatology And
Time series version 2 (TARCAT) high-resolution long-term satellite rainfall products are exploited
to study the spatial and temporal variability of East Africa (EA, 5S–20N, 28–52E) rainfall between
1983 and 2015. Time series of selected rainfall indices from the joint CCl/CLIVAR/JCOMM Expert
Team on Climate Change Detection and Indices are computed at yearly and seasonal scales. Rainfall
climatology and spatial patterns of variability are extracted via the analysis of the total rainfall amount
(PRCPTOT), the simple daily intensity (SDII), the number of precipitating days (R1), the number
of consecutive dry and wet days (CDD and CWD), and the number of very heavy precipitating
days (R20). Our results show that the spatial patterns of such trends depend on the selected rainfall
product, as much as on the geographic areas characterized by statistically significant trends for a
specific rainfall index. Nevertheless, indications of rainfall trends were extracted especially at the
seasonal scale. Increasing trends were identified for the October–November–December PRCPTOT,
R1, and SDII indices over eastern EA, with the exception of Kenya. In March–April–May, rainfall is
decreasing over a large part of EA, as demonstrated by negative trends of PRCPTOT, R1, CWD,
and R20, even if a complete convergence of all satellite products is not achieved.
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1. Introduction

The analysis of space–time variations of rainfall is of paramount importance in East Africa
(EA, 5S–20N and 28–52E; Figure 1) where extremes (floods and droughts) deeply affect the population,
especially via relevant effects on agriculture and consequently on food security. Around 203 million
people, 30% of them living in Ethiopia and Kenya, are affected by such floods and droughts [1].

During the last four decades, some major drought events hit the region (Figure S1), very often
affecting more than one rain season consecutively [2]: 1983–1985 for Ethiopia with estimated 1 million
deaths [3]; the extensive 1999 episode affecting Burundi, Eritrea, Ethiopia, Kenya, Rwanda, and Uganda;
the prolonged period of depressed rainfall 2003–2009 (with the exception of 2006) over Kenya, Ethiopia,
and Tanzania; and the “worst in 60 years” 2010–2011 drought in Ethiopia, Somalia, and Kenya [4,5].
On the other hand, extreme rainfall giving rise to flood events is equally possible (Figure S2), as during
the El Niño-related 1997–1998 flood episode over Ethiopia, Somalia, Kenya, and Uganda (2906 deaths,
source: Emergency Events Database—EM-DAT, http://www.emdat.be, last accessed 14 March 2018).
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In this case, rainfall was further enhanced by the Indian Ocean’s sea surface temperature (SST)
configuration, with anomalously high SSTs in the western equatorial Indian Ocean (10S–10N, 50–70E)
accompanied by negative SST anomalies in the eastern sector (10S–0, 90–110E), an SST spatial pattern
usually identified as the positive phase of the Indian Ocean Dipole (IOD) [6]. A similar episode
happened in 2006 (1290 deaths, source: EM-DAT) [7]. In 2015–2016, another drought event associated
with El Niño affected EA, with 24 million people facing critical and emergency food insecurity by
August 2016. Drought indices have recently been used to characterize historical episodes in the
Upper Blue Nile Basin in Ethiopia [8] and intraseasonal descriptors of wet and dry spells were
applied to equatorial EA using rain gauge data [9]. Excessive rainfall was recorded during late 2015
and the March–May 2016 rainy season, leading to flooding in parts of Somalia, Kenya, Ethiopia,
and Uganda (source: United Nation Office for the Coordination of Humanitarian Affairs, UN OCHA,
http://www.unocha.org, last accessed 13 March 2018).
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Climate projections are a source of great concern for EA. A multi-model ensemble experiment
exploited to identify regions where the impact of climate change on hydrological drought shows a
strong signal between the end of the 20th and the beginning of the 21st century [10]. EA is identified as a
region with little average change in the drought severity, measured as the fraction of land area in a given
region that is under drought conditions. However, drought projections in the region are characterized
by very large uncertainties [10]. Future rainfall projections foresee a general increase of the median
precipitation over EA, but the range of changes in precipitation regime is significant: −2 to +20% by
the end of the 21st century [11]. Even larger variations are projected at seasonal scale: for example,
in Ethiopia the projected precipitation change varies from −42 to +78% in January–February–March
and from −10 to +70% in October–November–December (OND). Moreover, a negative impact of
climate change on crop yields characterizes the region [11]. EA’s population is thus very vulnerable
considering that 65% is employed in agriculture, which is highly affected by rainfall availability, due to
the very scarce use of irrigation [11].
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EA’s rainfall is characterized by a marked seasonality, with regional variations of the annual
cycle [12,13]. Rainfall time series need, thus, to be analyzed for evaluating the spatial and temporal
variations and trends in the different areas characterized by a local rainfall annual cycle. Several recent
observational studies were focused on Ethiopia [14–16]. Studies on other EA countries or on the
whole EA territory are also available [4,6,17–20]. These studies consider, separately, the typical
EA rainy seasons: the short rain season (OND) and the long rain season (March–April–May,
MAM) for the equatorial area (Kenya, Uganda, northern Tanzania, and Somalia); and the Kiremt
(June–July–August–September, JJAS) and Belg (MAM) rain seasons for western Ethiopia and
South Sudan.

Significant declines in the Kiremt rainfall totals were found since 1982 in eastern and southwestern
Ethiopia by analyzing rain gauge data time series for 1965–2002 [14], and similarly for 1960–2002 [15].
Decreases in Kiremt rainfall were found for the Baro-Akobo, Omo-Ghibe, Rift Valley, and southern
Blue Nile watersheds located in southwestern and central Ethiopia. A downward trend in rainfall of
−0.4 mm month−1 per year was observed over southwestern Ethiopia in 1948−2006 [16].

A recent decline of long rains was documented alongside an increase of short rains [21,22].
The existence of a significant negative trend in MAM rainfall over the central and southern Horn
of Africa was identified using the Global Precipitation Climatology Centre (GPCC) and Global
Precipitation Climatology Project (GPCP) data during the period 1979−2012 [6]. In the short rain
season (OND), both datasets indicate an increase of precipitation with significant trend particularly on
the Somalia coast. Negative anomalies of EA long rains were studied using GPCC and GPCP datasets,
together with the Climatic Research Unit (CRU) at the University of East Anglia, and the Climate
Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP) datasets, with estimated linear
trends from 1983 onwards of −0.19, −0.33, −0.35, and −0.08 mm day−1 per decade for GPCC, GPCP,
CMAP, and CRU, respectively [20]. Similarly, the analysis of rainfall variability and trends using GPCP,
CRU, and Tropical Applications of Meteorology using SATellite (TAMSAT) datasets, and simulations
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) over Africa for the period 1983–2010
found decreases in MAM EA rainfall ranging from −14 to −65 mm year−1 per decade [17].

Several climate data records (CDRs) of satellite-derived precipitation as an Essential Climate
Variable (ECV) [23] exist and are becoming of sufficient length for their effective use in climatological
applications over the African continent, alone or in conjunction with other ECVs, such as SST and
soil moisture [24]. Daily accumulated rainfall from three of such CDRs (Section 2.1) are exploited,
hereafter, to investigate how the single satellite dataset captures precipitation variability and trends.
The analysis is focused on the time series of the joint CCl/CLIVAR/JCOMM Expert Team on Climate
Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml, last accessed
13 March 2018), computed starting from the daily precipitation datasets at the yearly and seasonal
scales. The purpose is to extract spatial patterns of precipitation variability by trend analysis on
precipitation data from satellite using the Mann–Kendall trend test.

In Section 2, details on the satellite products and the analysis methodologies are introduced,
whereas a description of the characteristics of EA’s precipitation and its seasonality is provided in
Section 3. Section 4 focuses on the results of the trend analysis of the ETCCDIs at the annual and
seasonal scales, and a summary of the main results and conclusions is offered in Section 5.

2. Data and Methodologies

2.1. Satellite Rainfall Products

The spatial and temporal variability of EA precipitation during the last three decades (1983–2015)
is studied using daily estimates from three satellite rainfall products based on infrared (IR)
geostationary brightness temperatures, which are among the most used products over Africa and the
longest high-resolution satellite series to date:

http://etccdi.pacificclimate.org/index.shtml
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• CPC Africa Rainfall Climatology version 2.0 (ARC2) is a daily climatological dataset centered
over Africa (40S–40N and 20W–55E) with a spatial resolution of 0.1◦ starting from 1983 and
updated in near-real time [25]. The dataset guarantees an historical consistency through the use
of a single retrieval algorithm based on the use of calibrated three-hourly IR satellite imagery
with quality-controlled gauge observations from the Global Telecommunication System (GTS),
and is particularly suited for studies of extreme events, wet and dry spells, and rainfall frequency.
The algorithm is based on the use of the Geostationary Operational Environmental Satellite
(GOES) Precipitation Index (GPI), whose rainfall estimates are combined in a two-step merging
methodology with the GTS rain gauge measurements.

• TAMSAT African Rainfall Climatology And Time series (TARCAT), version 2, contains rainfall
estimation over Africa at a spatial resolution of 0.0375◦, and provides daily estimates since
1983 [26–28]. The main input data are the IR brightness temperatures from Meteosat platforms.
The number of hours for which a given satellite pixel is associated with a temperature lower than
a specific threshold value over a 10-day period, i.e., the cold cloud duration (CCD), is the basis of
this algorithm, and is linearly related to precipitation over the same time period. The threshold
temperature and the linear relationship coefficients are estimated for a given region and time
of the year (month) by means of the analysis of historic rain gauge data relative to that region
and time of the year. This calibration methodology based on a historical rain gauge dataset,
rather than on simultaneous rain gauge observations, makes TARCAT useful for climate-related
risk assessment, even in regions with insufficient gauge coverage.

• Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) version 2.0 starts from
1981 to near present with a quasi-global land coverage (50S–50N) and a 0.05◦ spatial resolution;
it was designed for studies on hydrologic impacts and trend analysis [29]. The algorithm
dwells on pentadal CCDs obtained with a fixed IR brightness temperature threshold (235 K)
to identify precipitating cloud systems. The CCD’s calibration method makes use of the Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA 3B42 v7).
These IR rainfall estimates are converted to percent anomalies, and subsequently multiplied
by the high-resolution climatology CHPclim to produce unbiased precipitation fields. Finally,
rain gauge data are combined with the previous precipitation estimates to obtain rain gauge
adjusted estimates. The number of gauges is higher than for ARC2 since additional gauges from
National Meteorological Agencies are included.

All three datasets were projected on a common grid at 0.25◦ resolution, using a local area averaging
approach to interpolate data from a higher resolution rectilinear grid to the 0.25◦ grid (i.e., the National
Center for Atmospheric Research—NCAR Command Language—NCL function “area_hi2lores”).
The satellite time series temporal gaps were filled according to their duration, i.e., by interpolation for
gaps of a maximum of 2 days, whereas for longer gaps long-term averages were used.

2.2. Analysis Methodologies

2.2.1. Time Series Homogenization

Before carrying out the trend analysis, the satellite precipitation time series at each grid cell
were inspected for the possible presence of discontinuities/break points through a homogenization
procedure aimed at the identification of temporal inconsistencies. This is a common practice in case
of rain gauge time series to eliminate, or at least reduce, the non-climatic noise caused by station
relocation, changes in instruments, etc., which can affect the trends introducing spurious signals not
produced by the real climate variability [30–32]. The datasets exploited in the present work come all
from a reprocessing activity granting for the use of an unvaried version of the retrieval algorithms over
the time. Nevertheless, satellite time series could, in principle, be affected by inhomogeneities due to
changes in satellite sensors, rain gauge network density, and data gap fill-up procedure. These aspects
can introduce unwanted perturbations. In particular, the exploitation of simultaneous rain gauge
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measurements within the retrieval algorithms to be merged with the satellite estimates as in ARC2
and CHIRPS can insert inhomogeneities [33]. TARCAT makes use only of an historical rain gauge
dataset for the calibration of IR brightness temperatures, and this mitigates the possible effects of the
variations of rain gauge network density over time.

Time series discontinuities were detected and corrected through the R-based package “climatol” [34]
(available at https://cran.r-project.org/web/packages/climatol/index.html, last accessed 11 June 2018).
The software package climatol works with “normalized” time series obtained by dividing each element
of the series by the mean. This approach is particularly appropriate for variables with a zero lower
limit and a biased frequency distribution, as is precipitation in this work, and especially for daily
precipitation, in which zeros may be the most frequent values in the series. “Estimated” precipitation
time series are then computed by means of synchronous data from nearby grid cells and the orthogonal
regression. The aim is to obtain series of anomalies (observed–estimated data) on which to detect
outliers or shifts in the mean through the standard normal homogeneity test (SNHT) [35]. When the
SNHT statistics of the series are greater than a prescribed threshold, the series is split at the point of
maximum SNHT, giving birth to a new series that is incorporated into the data pool. This procedure is
done iteratively, splitting only the series with the higher SNHT values at every iteration, until no series
is found inhomogeneous.

The main problem in the homogenization of daily data is the high variability of the series,
which lowers the power of detection of shifts in their mean in time. This is why the detection
of the inhomogeneities is preferably done on monthly aggregates of the series, with less inherent
variability. The aggregation of daily into monthly data and a first exploratory application of the
homogen function of the climatol package allowed choosing appropriate thresholds for outlier rejection
and break point detection. This exploratory analysis showed that the spotted outliers were most
probably real isolated intense precipitation peaks, and therefore no extreme daily rainfall was corrected
during the homogenization of the daily series. A new application of this procedure yielded a list of
break points, which was used to split the daily series and to obtain the homogeneous series by filling
in all missing data resulting from the splitting process. The number of breakpoints detected in the
monthly aggregations and corrected in the daily series in each dataset was 136 (ARC2), 204 (CHIRPS),
and 271 (TARCAT), impacting 132 (ARC2), 192 (CHIRPS), and 201 (TARCAT) grid cells out of the 9894
cells that cover the analyzed region.

This inspection demonstrated the robustness of the satellite precipitation time series with respect
to the homogeneity issue and represents a result in favor of the exploitation of the satellite precipitation
datasets for climatological analyses as an alternative and reliable source of data, particularly valuable
in this region with limited availability of rain gauge measurements.

2.2.2. CCL/CLIVAR/JCOMM ETCCDI Rainfall Indices

Several authors have introduced precipitation indices to characterize the nature of precipitation [36,37].
In this study, the rainfall variability and trends over EA was investigated considering the ETCCDI
Climate Change Index time series [38–41]. The formulation of these indices was promoted by the
CCl/CLIVAR/JCOMM ETCCDI since 1999 to monitor and analyze daily climate records, with the
purpose of identifying trends in extreme climate events during the second half of the 20th century.
They have been widely used in studies of climate variability at global [42] or regional scale [43,44].

Six precipitation indices were used (Table 1): the number of precipitating days (R1); the number
of days with precipitation exceeding 20 mm day−1 (R20); the total precipitation (PRCPTOT), and the
simple daily intensity index (SDII), to summarize the characteristics of the wet part of the year;
the maximum number of consecutive dry days (CDD), which can be interpreted as a drought indicator;
and the corresponding index for the maximum number of consecutive wet days (CWD). These indices
are usually employed to analyze precipitation time series from rain gauge stations, but they are
computed, hereafter, from the homogenized daily rainfall time series of each satellite product at 0.25◦

resolution and at seasonal (January–February, JF, MAM, JJAS, and OND) and annual time scales.

https://cran.r-project.org/web/packages/climatol/index.html
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Table 1. List of the CCl/CLIVAR/JCOMM ETCCDI rainfall indices exploited in the analysis
(http://etccdi.pacificclimate.org/index.shtml).

ID Definition Units

R1 1 Number of precipitating days (rain rate, RR ≥ 1 mm) days

SDII
Simple daily intensity index

Ratio of total precipitation (annual/seasonal) to the
number of precipitating days (RR ≥ 1 mm)

mm day−1

R20 Number of very heavy precipitating days (RR ≥ 20 mm) days
CDD Maximum number of consecutive dry days (RR < 1 mm) days
CWD Maximum number of consecutive precipitating days days

PRCPTOT Total precipitation from days with RR ≥ 1 mm mm
1 R1 is not included in the ETCCDI list.

2.2.3. Trend Analysis

The nonparametric Mann–Kendall significance test [45,46] is used in climate studies to determine
monotonic trends in time series [47–49]. In the present study, it was applied to ETCCDI index time
series to evaluate the presence of significant trends and map their spatial distribution at annual and
seasonal scales. The correlation of the time series was evaluated and the modified Mann–Kendall
trend test [50] used for trend analysis in the presence of correlation in space and time. The modified
Mann–Kendall trend test takes into account a correction factor, which is applied to the original variance
formulation, considering the sample size with temporal autocorrelation. Finally, the non-parametric
Sen slope estimator [51] was applied to estimate the magnitude of the change per unit time in a linear
trend. The Sen slope estimator is the median value of the slopes Qi of all data pairs in a time series
computed as follows:

Qi =
xj − xk

j − k
, i = 1, . . . , N, and j > k (1)

If n is the number of xj elements in the time series, N = n(n − 1)/2 Qi values will be obtained.

3. East Africa Annual and Seasonal Rainfall Climatology

Rainfall in East Africa is characterized by great spatial variability, as illustrated by the annual
means of PRCPTOT, R1, and CDD (obtained by computing the annual mean of the yearly index for
each satellite product, and then the ensemble means of the three products) in Figure 2. The annual
means for SDII, R20, and CWD are shown in Figure S3. Figure 3 shows the standard deviations of
the three-product ensemble as a measure of the spread in the ETCCDI index annual climatologies.
The three products show very similar PRCPTOT spatial patterns (Figure 2a) confirmed by standard
deviation values within 25% of the ensemble mean values over the majority of EA (Figure 3a), with the
exceptions of eastern Ethiopia and the Rift Valley, the arid portion of northern South Sudan, and central
Kenya, where the standard deviations rise to 40–50%. These differences stem from the differing
algorithmic approaches of the three retrieval methods and from inherent difficulties in estimating
rainfall from satellite over complex terrain (e.g., orography, arid areas, etc.), both already discussed in
the literature [12,52].

The highest PRCPTOT values (from 1000 to more than 1400 mm year−1) are confined over the
mountainous areas of western Ethiopia, Lake Victoria, and the Ruwenzori Mountain Range on the
border between Uganda and the Democratic Republic of Congo (DRC). Very low precipitation values
(PRCPTOT within 300 mm year−1) characterize the arid regions of northern Somalia, eastern Ethiopia,
and South Sudan. The R1 annual mean (number of precipitating days per year; Figure 2b) shows
a spatial pattern similar to that of PRCPTOT, i.e., regions with the highest PRCPTOT also exhibit
the highest R1 with at least 90 precipitating days, up to more than 200 precipitating days on the
Ethiopian Highlands, Lake Victoria, and the DRC. In the other EA areas, there is a drastic decrease
in the R1, with values ≤60 days per year, and even <30 days in Sudan and the northern coast of

http://etccdi.pacificclimate.org/index.shtml
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Somalia. Also, in this case, the standard deviation map (Figure 3b) shows a quite uniform spatial
pattern, with values <20% of the R1 ensemble mean, except for the arid regions of South Sudan
(15–20N), and the central part of Ethiopia and Kenya, where the standard deviations exceed 30%.
A vast portion of EA is characterized by precipitating periods lasting no more than 6 consecutive
days (CWD index, Figure S3c), with peak values confined over the mountainous areas and Lake
Victoria (from 12 up to 40 consecutive precipitating days). These areas are also characterized by the
shortest dry periods (CDD index, Figure 2c), no longer than 40 consecutive days. Both indices have
standard deviations ranging from 20 to 40%, with the higher values over central Kenya, Ethiopia,
and South Sudan (only CWD) (Figure 3c and Figure S4c for CDD and CWD, respectively). The spatial
distribution of SDII is quite uniform, with values ranging from 6 to more than 10 mm day−1 (Figure S3a);
the southeastern coastal area of Somalia, eastern Kenya, and Ethiopia exhibit the highest SDII values,
and correspond also to the areas where the agreement of satellite products decreases (Figure S4a,
standard deviation ~30–40%). The number of very heavy precipitating days (R20, Figure S3b) does
not exceed 10 days per year, on average, except for Lake Victoria, the Ethiopian Highlands, and the
DRC. Generally, R20 represents less than 10% of the mean annual number of precipitating days (R1);
only eastern Kenya and limited areas in Ethiopia exhibit a greater R20 contribution to R1 (15–20%).
The standard deviation of R20 (Figure S4b) is higher with respect to the other indices.
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Another feature of the EA rainfall is the marked spatial variability of seasonality, as shown
by [12], who divided the EA territory in subareas with respect to rainfall seasonality. West Ethiopia,
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the Ethiopian Rift Valley and South Sudan are characterized by only one wet season lasting from
March–April to September–October, and reaching its maximum during July and August. Proceeding
to the southeast, two distinct rainfall peaks are increasingly distinguishable up to the point that two
distinct wet seasons (MAM and OND) can be told apart separated by two dry seasons. This seasonal
cycle spatial distribution is observable also in Figure 4a–d, where PRCPTOT is shown at seasonal
scale. The maximum rainfall accumulation occurs during JJAS in the western portion of the territory,
in particular, over the Ethiopian Highlands, where PRCPTOT reaches values up to 1000 mm,
thus accounting for more than 50% of the mean annual total precipitation in the area. Moreover,
the high total amount of rainfall of this zone matches high R1 values (from 50 to more than
100 precipitating days, Figure 4g), longer wet periods (CWD ≥ 14 days, Figure S5k), and shorter
dry periods (CDD values up to 10, Figure 4k), which are scarcely comparable with the values of the
other seasons. From Figure 4, JJAS appears to be the major dry season for eastern Ethiopia, Somalia,
Kenya, Tanzania, and northern South Sudan. MAM and OND contribute to about 50% of the mean
annual PRCPTOT in eastern EA. These two seasons show very similar spatial patterns in terms of
the rainfall indices. The highest PRCPTOT values are concentrated over DRC, Uganda, Lake Victoria,
central Ethiopia (particularly during MAM), and Kenya, but the peak values are generally lower than
those of JJAS. The same is true for the number of precipitating days (R1, Figure 4e–h), which does
not exceed 60–70 days, and the duration of the wet periods, generally, is no longer than 16 days.
Only Tanzania and the surroundings of Lake Victoria have moderate/weak rainfall in JF, a dry season
for almost all EA.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 26 

Another feature of the EA rainfall is the marked spatial variability of seasonality, as shown by 
[12], who divided the EA territory in subareas with respect to rainfall seasonality. West Ethiopia, the 
Ethiopian Rift Valley and South Sudan are characterized by only one wet season lasting from 
March–April to September–October, and reaching its maximum during July and August. Proceeding 
to the southeast, two distinct rainfall peaks are increasingly distinguishable up to the point that two 
distinct wet seasons (MAM and OND) can be told apart separated by two dry seasons. This seasonal 
cycle spatial distribution is observable also in Figure 4a–d, where PRCPTOT is shown at seasonal 
scale. The maximum rainfall accumulation occurs during JJAS in the western portion of the territory, 
in particular, over the Ethiopian Highlands, where PRCPTOT reaches values up to 1000 mm, thus 
accounting for more than 50% of the mean annual total precipitation in the area. Moreover, the high 
total amount of rainfall of this zone matches high R1 values (from 50 to more than 100 precipitating 
days, Figure 4g), longer wet periods (CWD ≥ 14 days, Figure S5k), and shorter dry periods (CDD 
values up to 10, Figure 4k), which are scarcely comparable with the values of the other seasons. From 
Figure 4, JJAS appears to be the major dry season for eastern Ethiopia, Somalia, Kenya, Tanzania, 
and northern South Sudan. MAM and OND contribute to about 50% of the mean annual PRCPTOT 
in eastern EA. These two seasons show very similar spatial patterns in terms of the rainfall indices. 
The highest PRCPTOT values are concentrated over DRC, Uganda, Lake Victoria, central Ethiopia 
(particularly during MAM), and Kenya, but the peak values are generally lower than those of JJAS. 
The same is true for the number of precipitating days (R1, Figure 4e–h), which does not exceed 60–70 
days, and the duration of the wet periods, generally, is no longer than 16 days. Only Tanzania and 
the surroundings of Lake Victoria have moderate/weak rainfall in JF, a dry season for almost all EA. 

 
Figure 4. Maps of seasonal rainfall index climatology: PRCPTOT (a–d); R1 (e–h); CDD (i–l). Each 
column refers to a season in the following order, January–February (JF), March–April–May (MAM), 
June–July–August–September (JJAS), and October–November–December (OND). Indices were 
computed with the same procedure of the annual indices but taking seasons as reference periods. 

The maps of the ensemble mean standard deviations highlight a more pronounced spread 
among the values of the rainfall indices of the three satellite products at the seasonal scale (Figure 5 
for PRCPTOT, R1, and CDD; Figure S6 for SDII, R20, and CWD). Generally, higher percent standard 
deviations are associated with lower ensemble mean values, reaching values >90%. PRCPTOT can be 

Figure 4. Maps of seasonal rainfall index climatology: PRCPTOT (a–d); R1 (e–h); CDD (i–l).
Each column refers to a season in the following order, January–February (JF), March–April–May
(MAM), June–July–August–September (JJAS), and October–November–December (OND). Indices were
computed with the same procedure of the annual indices but taking seasons as reference periods.

The maps of the ensemble mean standard deviations highlight a more pronounced spread among
the values of the rainfall indices of the three satellite products at the seasonal scale (Figure 5 for
PRCPTOT, R1, and CDD; Figure S6 for SDII, R20, and CWD). Generally, higher percent standard
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deviations are associated with lower ensemble mean values, reaching values >90%. PRCPTOT can
be taken as a clear example of this behavior, where areas characterized by seasonal rainfall amounts
<200 mm exhibit standard deviation values >40%. In addition, the more precipitating regions display
standard deviations values within 25%, in agreement with the standard deviations found at the annual
scale in the areas with the highest rainfall accumulation.
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4. Trend Analysis Results

The results of the trend analysis for the three datasets are summarized by the maps of the Sen
slope estimator, with superimposed statistically significant trend areas at confidence levels ≥95%
(shaded grid cells) according to the Mann–Kendall test, which are displayed for each index and satellite
product at annual and seasonal scale.

Some general issues emerge from the evaluation of trend results: (i) spatial trend patterns can
differ among the rainfall products; (ii) not always do all three satellite products show statistically
significant trends of a specific rainfall index over the same geographic areas; and (iii) in some cases,
only very limited regions have significant trends, and thus, nothing can be concluded on the trend
of that index. It should be noted that the three datasets differ substantially in their use of gauge
data. In particular, station density is different, leading to quite severe failures in identifying rainfall
minima and maxima. The availability of rain gauge data has a fundamental role in the ARC2’s rainfall
estimations, where the exploitation of the rain gauges is limited to GTS rain gauge measurements
merged with GPI estimates for bias-correction [25]. GTS stations can guarantee only a limited coverage
over EA (e.g., only about 20 GTS stations are available over Ethiopia [53] while the number of
non-GTS ground stations within the country is much higher) and a percentage of daily reporting,
which varies considerably from country to country. CHIRPS makes use of rain gauge data at two
stages, in the bias adjustment of the satellite-only precipitation estimates (CHIRP product) through
the monthly precipitation climatology CPHclim, and in the final merging phase of CHIRP estimates
with simultaneous ground-based measurements [29]. In both cases, wider ground-based datasets are
employed with respect to that used in ARC2 algorithm. Finally, a completely different approach was
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followed in the TARCAT algorithm to fix the problem of the lack of consistency of the station density
over time: rain gauges are exploited only for the regional and climatological IR CCD calibration using
an historical (non-simultaneous) dataset [26].

4.1. Trend Analysis of Annual Rainfall Indices

The results of the trend analysis of PRCPTOT, R1, and R20 annual index time series are presented
in Figure 6, while those of SDII, CDD, and CWD are displayed in Figure S7.
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Figure 6. Sen slope estimator maps relative to annual trends of PRCPTOT (a–c), R1 (d–f), and R20 (g–i)
for Africa Rainfall Climatology version 2.0 (ARC2) (left column), Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) (central column), and Tropical Applications of Meteorology using
SATellite (TAMSAT) African Rainfall Climatology And Time series version 2 (TARCAT) (right column)
datasets. Stippled grid cells display statistically significant trend at confidence level ≥95%.

The largest differences are found in PRCPTOT, whereas R1 and CWD are the indices with the best
agreement among the three products in terms of the sign of the trend (Figure 6d–f and Figure S7g–i)
and trend significance. This is expected, due to the better agreement among the products in terms
of R1 and CWD, than PRCPTOT and SDII. Comparisons among the average annual time series of
the various indices for the three products over EA (not shown) show substantial agreement for CWD
and R1, although with an overestimation of R1 by CHIRPS associated with the use of the TMPA 3B42
version 7 product for the CCD calibration [29]. All datasets show positive R1 trends over the Greater
Horn of Africa (GHA, Somalia and eastern Ethiopia), South Sudan, and Uganda, while negative
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trends characterize eastern Kenya. The product with the widest high confidence areas is TARCAT
(high confidence trends over Somalia, eastern Ethiopia, the Ethiopia–Eritrea border, South Sudan,
and Uganda, but only a few cells with significant trends over Kenya), followed by CHIRPS and
ARC2, both exhibiting significant trends over Kenya. In terms of the trend rates, the best agreement is
between CHIRPS and TARCAT, with an R1 decrease over Kenya up to −0.6 precipitating days per
year, although the magnitude of the changes is quite small. Similarly, R1 increases up to 1.2 days
per year over South Sudan and Uganda. ARC2 is characterized by a more pronounced R1 decrease
over Kenya up to −1.5 days per year, a generalized R1 increase over EA within 0.4 days per year,
and limited areas with peak rates up to 0.8 days per year. The R1 anomaly time series (hereafter
anomaly is the departure of an element from its long-period average value for the location concerned)
of the three rainfall products, averaged over Kenya (4S–4N; 36–41E), South Sudan–Uganda (0–20N;
30–35E), and GHA (5–10N; 45–50E) (Figure 7), support the R1 trend analysis results: increasing positive
anomalies characterize the South Sudan–Uganda region since 1994, while the increase of positive
anomalies started only recently (since 2010) over GHA, usually dominated by R1 negative anomalies.
Finally, a predominance of negative anomalies is detected over Kenya starting from 1991, which reach
their lowest values around 2000 and 2005, with a slow recovery in recent years. The exceptions to this
negative anomaly sequence are the years 1997–1998, 2002, and 2006.

Significant trends are found also for CWD over eastern Kenya, where all the products confirm
a moderate negative trend (Figure S7g–i). Considering the rest of EA, only scattered grid cells have
significant trends as at the border between Ethiopia and Eritrea where an increase in CWD is detected,
and over northern Tanzania, with negative trends confirmed by ARC2 and TARCAT. All rainfall
product CWD anomalies averaged over EA reveal a predominance of negative anomalies up to 1 day,
starting from 1991 (Figure S8a), which is still confirmed by isolating the CWD anomaly time series over
Kenya (Figure S8b). A change from negative to positive CWD anomalies characterizes the temporal
evolution over the region at the Ethiopia–Eritrea border (10–15N; 35–40E) since 1998, with a progressive
increase of the anomaly values themselves, thus supporting the indication of the trend analysis in this
area (Figure S8c).

Limited information can be extracted from the CDD time series analysis (Figure S7d–f): only a
few scattered grid cells show significant trends, and little congruence exists among the Sen slope
estimator maps of the various rainfall products. ARC2 and TARCAT have more similar patterns
with a prevalence of negative trends, while CHIRPS trends are slightly positive (<0.7 days per year).
Annual CDD time series averaged over EA (not shown) support the very good agreement between
ARC2 and TARCAT Sen slope estimator maps, whereas CHIRPS substantially underestimates CDD
with a very scarce interannual variability, probably due to the corresponding overestimation of the
number of precipitating days with respect to the other products.

Focusing on the number of days with very heavy precipitation, the R20 index, a wide area
including southern South Sudan and the border between DRC and Uganda, displays decreasing
significant trends for ARC2 and CHIRPS, with a good agreement also in the trend rate values higher in
case of ARC2 (Figure 6g,h). Weak positive trends for both products cover eastern EA and northern
South Sudan, but only ARC2 has two high-confidence areas over southern Somalia and western
Ethiopia at the border with South Sudan. Completely different results stem from the analysis of
TARCAT, whose positive trends are ubiquitous, but without any statistical significance (Figure 6i).

Different spatial patterns result from the trend analysis of PRCPTOT (Figure 6a–c). There is a
consensus on positive trends over Somalia and eastern Ethiopia, but only ARC2 and TARCAT show
significant trends for this region. Global increase in annual TARCAT PRCPTOT is supported by high
confidence levels, but this tendency is not confirmed by the other products. ARC2, in particular,
has negative trends over western EA, and positive trends over the eastern sector. Similar results for
TARCAT annual trends from 1983 to 2010 over EA are reported in [17] (see their Figures 1h and 2).
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Africa (GHA) (c).

Trend analysis results for SDII are similar to those of PRCPTOT (Figure S7a–c). TARCAT shows a
widespread positive trend with rates <0.1 mm day−1 per year. ARC2 and TARCAT have the widest
areas of significant trends. ARC2 SDII trends are positive over Kenya, Somalia, and eastern Ethiopia,
and are confirmed by CHIRPS, although only scattered grid cells show statistically significant trends.
ARC2, and to some extent, CHIRPS, provide indications about a decrease in SDII in the western
part of the region with higher rates for ARC2 (up to −0.18 mm day−1 per year) than for CHIRPS
(−0.05 mm day−1 per year). The analysis of the SDII anomalies shows that ARC2, in particular,
exhibits increasing negative anomalies since 1998 over South Sudan–Uganda (0−15N; 30−35E),
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whereas a sequence of small positive anomalies characterizes TARCAT. All products agree on the
sequence of positive SDII anomalies characterizing Kenya–Somalia (5S–5N; 35–50E) since 2002 (Figure S9).

4.2. Trend Analysis of Seasonal Rainfall Indices

4.2.1. January–February (JF) Season

Rainfall is mainly confined to the Lake Victoria area, northern Tanzania, and DRC during this
season (Figure 4a). Significant trend areas shared among all satellite products are not evident from
Figure 8a–c for PRCPTOT. ARC2 and TARCAT have two distinct regions of significance, Lake Victoria
and DRC, respectively. CHIRPS has only scattered grid cells with high levels of significance over DRC,
Tanzania, central Ethiopia, and Eritrea. Thus, no consensus on significance exists, but all products
display similar spatial trend patterns with a decrease of total precipitation over Lake Victoria and
Tanzania (up to −4.8, −1.6, and −0.8 mm per season for ARC2, CHIRPS, and TARCAT, respectively),
and an increase over DRC (up to 1.6 mm per season).
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The tendency of a decrease in JF PRCPTOT over the whole EA during the last years is perceivable,
considering the PRCPTOT anomaly time series (Figure 9). A first period from 1985 to 1998 is
characterized by a predominance of increasing positive anomalies, culminating with the prominent
1998 anomaly, a year when EA precipitation was enhanced by the simultaneous presence of El Niño
and the positive IOD, starting from late 1997 [24]. A general decrease in the positive anomalies of all
rainfall products then follows in favor of a predominance of negative anomalies. PRCPTOT anomaly
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time series of all rainfall products have negative trends with rates of −0.47, −0.16, and −0.13 mm per
season for ARC2, CHIRPS, and TARCAT, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 26 
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Confirmation of negative trends of precipitation over Lake Victoria and Tanzania and positive
ones over DRC comes also from the R1 trend analysis (Figure 8d–f). Significant negative trends are
found over Lake Victoria and Tanzania up to −0.39 (TARCAT) and −0.42 (ARC2) days per season.
All datasets show a positive trend over DRC, statistically significant only for CHIRPS and with
rates from up to 0.28 (CHIRPS) to 0.14 (TARCAT) days per season. Negative and significant trends
characterize all datasets over central Ethiopia with similar spatial pattern for ARC2 and TARCAT.

Limited areas of significant trends are associated with CWD and CDD (Figure S10d−f and
Figure 8g−i, respectively). Consistent with previous results, also, the ARC2 and TARCAT CWD exhibit
a negative trend over Lake Victoria, and partially over Tanzania, whereas indications of an increased
CDD characterize the same regions. Precipitation during this season is the lowest of the year; this is the
reason for the almost complete lack of significant trends with respect to R20 (Figure S10g−i). Only up
to 3 days per season have rain intensity >20 mm (Figure S5e).

A non-univocal response comes from the SDII trend analysis with an indication of a decreasing
trend over Lake Victoria, which accompanies the decreasing tendency of PRCPTOT and R1 for ARC2
and CHIRPS, but with limited significance and a positive trend for TARCAT (Figure S10a–c).

4.2.2. March–April–May (MAM) Season

MAM is the main precipitation season of eastern EA (long rain season), while over the western
sector (South Sudan and western Ethiopia) the maximum is reached in JJAS (Figure 4b).

In this season, PRCPTOT trend signatures are not comparable among the datasets (Figure 10a–c).
ARC2 and CHIRPS show a predominance of decreasing trends with substantial areas of significance,
but centered over opposite zones, i.e., South Sudan, DRC, Uganda, and central Ethiopia at the
border with Kenya for ARC2, eastern Ethiopia, southeastern Somalia, and eastern Kenya for CHIRPS.
Conversely, TARCAT has a wide area covering South Sudan, Uganda, DRC, and Lake Victoria,
with significant positive trends, reaching rates up to 5 mm per season. Moreover, TARCAT areas
characterized by decreasing MAM PRCPTOT trends are much less extended than those of the other
datasets. Nevertheless, looking at the MAM PRCPTOT anomaly time series, a reduction of total rainfall
stands out from all rainfall products over the whole EA (Figure 11). A behavior similar to that of the JF
PRCPTOT anomalies (Figure 9), though more pronounced, can be recognized with an abrupt change
in the anomaly sign from positive for the period 1985–1998 (only interrupted by the negative anomaly
of 1992) to a predominance of negative anomalies since 1999. However, only ARC2 anomalies have a
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decreasing trend with the rate of −0.91 mm per season, whereas TARCAT and, more weakly, CHIRPS,
have positive trend rates of 0.43 and 0.02 mm per season, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 26 
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The spatial patterns of the R1 trends resemble those of PRCPTOT, in particular, for CHIRPS
and TARCAT, with a correspondence between zones of negative (positive) PRCPTOT trends and R1
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negative (positive) trends (Figure S11g–i), and very good agreement of the trend rate values between
CHIRPS and TARCAT is found. Nevertheless, in this case, also, ARC2 provides R1 trend spatial
patterns resembling those of the other two products, although with limited zones of significance,
thus confirming the better agreement among the products with respect to R1, rather than the other
indices already expressed in Section 4.1 for the annual trends. The agreement among the three products
in terms of PRCPTOT over eastern EA (the area where MAM is the principal wet season) is highly
variable from zone to zone (analysis not shown). Kenya, northern Tanzania, and the southern coastal
Somalia are characterized by a better correspondence between ARC2 and TARCAT, whereas a wet
bias seems to affect the CHIRPS total precipitation. It is very difficult to attribute this behavior to a
specific characteristic of the three algorithms. The number of rain gauges steadily decreased in the
area (http://chg.geog.ucsb.edu/data/chirps/stations/index.html#_africa, last accessed 11 June 2018);
this affected CHIRPS and ARC2 datasets, which merge satellite estimates with simultaneous rain
gauge measurements, but only marginally TARCAT, which uses an historical gauge archive for CCD
calibration. However, probably this is not the right key to explain the CHIRPS wet bias with respect
to ARC2 and TARCAT, which is stable over time without any apparent evolution. On the contrary,
Somalia and eastern Ethiopia are characterized by a chronic rain gauge scarcity, and this could justify
the better agreement between ARC2 and CHIRPS, similarly lacking of the rain gauge contribution,
with respect to TARCAT, which underestimates PRCPTOT (the dry bias issue [26]).

Differences in the spatial patterns of the SDII trends are evident, even if the significance areas are
the same for all three satellite datasets, i.e., DRC–Uganda–South Sudan, southern coast of Somalia,
and part of Ethiopia (Figure S11a–c). The datasets identify the southern coast of Somalia as a zone of
positive trends (TARCAT has the lowest trend rate values up to 0.05 mm day−1 per season). Only ARC2
and CHIRPS display negative trends over DRC–Uganda–South Sudan, with rate values up to −0.15
for ARC2 and −0.05 mm day−1 per season (very weak) for CHIRPS.

Scarce information can be extracted from the CWD trend analysis. Generalized weak positive
trends come out of all datasets without significance (Figure 10d–f). Significant negative trends
cover only limited areas over Ethiopia (central for TARCAT, and eastern for ARC2 and CHIRPS),
central and coastal Kenya, DRC, Ruanda, and Burundi. Considering the average EA MAM CWD
anomalies of each rainfall product, a behavior similar to that already observed for PRCPTOT stands out
(Figure 12). The anomalies are characterized by a series of negative values interrupted only occasionally,
which come after a period (1985–mid-1990s) of consecutive positive CWD anomalies. This change in
sign is more evident for TARCAT, which is characterized by the highest values before 1995.
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The CDD trend analysis does not offer useful information for this season (Figure S11d–f).
Nevertheless, note that positive anomalies over the whole EA indicate an extension of the dry periods
since late 1990s (Figure S12).
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As for very heavy precipitation events summarized by the R20 index (Figure 10g–i), only the area
of South Sudan, DRC, and partially Uganda is characterized by significant negative trends for ARC2
and CHIRPS, in agreement with the decreasing tendency of PRCPTOT and R1 previously observed
over this area. TARCAT does not support any significant trends.

4.2.3. June–July–August–September (JJAS) Season

JJAS is the main rain season of western EA and is characterized by the heaviest precipitation
concentrated over the western Ethiopian Highlands and DRC (Figure 4c) and the highest number of
precipitating days (Figure 4g).

A general characteristic of the trend analysis of JJAS precipitation indices is the larger extent
of the areas with statistically significant trends with respect to the previous seasons, in particular,
for PRCPTOT, R1, CDD, and SDII. The PRCPTOT spatial trend patterns split the territory in two areas
with opposite trend tendencies along a NE–SW direction, the wider areas of significance being on
the western part (Figure 13a–c). CHIRPS and TARCAT evidence increasing trends in this part of EA,
reaching the maximum rain rate values up to 5 and 6.8 mm per season, respectively.
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On the contrary, over the same zone, a decrease in JJAS PRCPTOT is observed from ARC2 data,
with rate values up to more than 10 mm per season. A patchier situation characterizes eastern EA,
with the simultaneous presence of negative and positive trend areas. The inspection of the PRCPTOT
anomalies of the three products confirms the previous results for western EA and the limited agreement
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among the three products as for precipitation intensity (Figure 14): ARC2 is the rainfall product with
the more pronounced sequence of negative anomalies starting from late 1990s (the linear trend rate for
ARC2’s anomaly is −3.26 mm per season), whereas CHIRPS and TARCAT display similar anomaly
variations with TARCAT, more oriented to an increase of positive anomalies since late 1990s. After all,
western EA is a challenging area for the satellite precipitation estimation, due to the presence of a
complex orography (Ethiopian Highlands) characterized by intense warm-type precipitation very
often underestimated by IR-based algorithms [26,52]. Moreover, it is noteworthy that ARC2 pointed
out a marked underestimation of precipitation over Ethiopia specifically during JJAS, motivated by the
negative impact of the region’s higher elevations and the failure in capturing warm-type precipitation
processes by a methodology based on a fixed brightness temperature (235 K) threshold in the GPI to
identify precipitating clouds [25].
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Figure 14. JJAS PRCPTOT anomaly time series over western EA.

R1 provides a strong signal of increasing trend over western EA confirmed by all datasets, and also,
the agreement on the trend rates is substantial (Figure 13d–f). In particular, three zones have the
strongest trends: the Ethiopian Rift Valley, South Sudan, and Uganda, where the rates reach their
maximum values. As a confirmation of this R1 tendency, the R1 anomalies over the whole EA show a
prevalence of positive anomalies, with a shared increasing trend since middle 1990s (Figure 15).
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Even if the JJAS total number of precipitating days is increasing in western EA, the same is
not applicable to the number of very heavy precipitating days R20 (Figure S13g–i). Only ARC2 and
CHIRPS show extended areas of significant trends centered over South Sudan at the border with
DRC and western Ethiopia, all negative over both areas for ARC2, while being negative over South
Sudan–DRC, and positive over Ethiopia for CHIRPS. TARCAT exhibits a generalized weak positive
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trend, but without areas of significance. Analyzing JJAS R20 anomalies for western EA, it is clear
that ARC2, in particular, entered a negative phase since the beginning of the 2000s (Figure S14),
which is supportive of the negative trends previously described, but the same is not true for the other
rainfall products.

Significant CWD trends take the form of scattered grid cells, with the exception of a limited area
over western Ethiopia at the border with Eritrea, where all the three products exhibit strong positive
trends (Figure S13d–f). Thus, the R1 extended significant positive trends over the western sector do
not imply a clear increase in the duration of the wet periods. On the contrary, the CDD index provides
a clearer indication of the tendency of the duration of the dry periods (Figure 13g–i). Apart from
the almost ubiquitous significant negative trends of TARCAT, which do not show up for ARC2 and
CHIRPS, there are two areas over northern and southern South Sudan characterized by negative
significant trends in all products. This result could be interpreted considering that the increase of R1
over these zones does not affect the length of the wet periods, but it happens at the expense of the
duration of the dry periods. After all, the CDD anomalies are decreasing with a recent predominance
of negative values over western EA (Figure 16).
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As for daily rainfall intensity (the SDII index), only ARC2 is characterized by wide zones of
significant trends with a spatial pattern resembling that of PRCPTOT (Figure S13a–c). The wider area
of trend significance covers southern South Sudan, DRC, Uganda, and western Ethiopia with negative
trend up to −0.3 mm day−1 per season, where the SDII decrease goes along with the decreasing
PRCPTOT and increasing R1. A further confirmation of the decreasing tendency of SDII especially
for ARC2 comes from the anomaly time series for western EA, which are characterized by a series
of negative anomalies since 1998 (Figure S15). The observations about the ARC2 underestimations
reported previously are applicable also in this case.

4.2.4. October–November–December (OND) Season

OND is the second rainfall season (short rain season) in eastern EA (Somalia, Kenya, Uganda and
northern Tanzania, and eastern Ethiopia; Figure 4d).

The best agreement among the satellite products, in terms of spatial trend patterns, stems from
the trend analysis in this season, especially for the PRCPTOT, R1, and SDII indices (Figure 17a–f,
and Figure S16a–c). A general increase in the total rainfall, number of precipitating days, and daily
rainfall intensity characterizes eastern EA in this season. All datasets confirm an increase in PRCPTOT
with extended areas of trend significance, even if ARC2 provides a less pronounced response, in terms
of extension of the trend significance areas and uniformity of the trend sign as well. Note, also,
the existence of an area in central Kenya characterized by PRCPTOT negative trends. All datasets
highlight this area, but only CHIRPS identifies it as statistically significant.
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The R1 spatial trend patterns match those of PRCPTOT with a generalized increasing trend
(Figure 17d–f). The negative trend area over central Kenya is present also for R1 and is identified as
significant by all products.

According to the previous results, SDII increases over the eastern part of EA, including Kenya
(Figure S16a–c). The highest trend rates characterize the coasts of Somalia and Kenya, reaching the
peak values of 0.4 (ARC2), 0.24 (CHIRPS), and 0.18 (TARCAT) mm day−1 per season. SDII anomalies
support the results of the trend analysis through a sequence of positive values, starting from middle
1990s in eastern EA (Figure S17).Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 26 
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A small number of precipitating days have intensities >20 mm day−1 in this period of the year,
generally <3 days: only a limited area in Kenya exhibits R20 values up to 6 days (Figure S5h). The trend
analysis reveals areas of positive trends with significance over Ethiopia and Somalia at the border with
Kenya for CHIRPS reaching values up to 0.12 days per season, whereas a wider area of significance
with positive trend (rates up to 0.14 days) characterizes ARC2 (Figure S16g–i). TARCAT does not
provide any conclusive results due to the almost complete absence of significance.

Even the duration of the wet period, CWD, shows an increasing tendency over eastern EA,
with significance limited to eastern Ethiopia and a portion of Somalia (Figure 17g–i). The area of
significance is much more restricted than that identified for positive trends in PRCPTOT, R1, or SDII,
but it is spotted as a significant area by all the rainfall datasets. Also, in this case, a small portion of
central Kenya stands out for a clear negative trend in TARCAT and CHIRPS datasets.

Only TARCAT and ARC2 provide a significant signal of CDD decrease over eastern EA,
showing comparable results especially over GHA (Figure S16d–f). CHIRPS results provide fewer
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elements for the interpretation of the trend due to the fragmentary nature of the significant trend zones
and the sign of the trends.

5. Discussion and Conclusions

Six ETCCDI indices, PRCPTOT, R1, R20, SDII, CWD, and CDD, were computed from the daily
time series of three satellite precipitation products (ARC2, CHIRPS, and TARCAT) to analyze the
spatial and temporal variability and trends of rainfall over EA at annual and seasonal scales, and to
investigate the consensus among the responses of the different satellite products.

At the annual scale, three regions are more frequently associated with statistically significant
trends, even if they are not always shared among all precipitation products, i.e., central-eastern Kenya,
Somalia with part of eastern Ethiopia, and Uganda with adjacent DRC and South Sudan. PRCPTOT,
R1, R20, and SDII are the indices with the more extended areas of significant trends, and R1 is the index
characterized by the highest consensus among the products in terms of spatial trend patterns followed
by R20, CWD, and SDII. According to Sen slope maps, it is possible to identify a tendency toward total
precipitation (PRCPTOT) reduction over central-eastern Kenya, followed by a decrease in the number
of precipitating days (R1). This is not found for the number of the very heavy precipitation days (R20)
and for the daily rainfall intensity (SDII), both characterized by positive trends, without significance
for TARCAT and CHIRPS in the case of R20, and statistically significant for all three products in the
case of SDII. Similar positive trends of the daily rainfall intensity at the annual scale are reported over
Kenya [19] (see their Figure 3, cells G–I), where ARC2 data were analyzed to assess rainfall trends
along a transect from northwestern DRC to southern Somalia. Moreover, a substantial rainfall decline
in central Kenya is also reported elsewhere [54].

A rising tendency of all the previously mentioned indices is found in Somalia, with wide areas
of significant trends more frequent in the southeastern part of the country. A consensus on R1 rising
trends, more marked and with wider extension of significance for TARCAT and CHIRPS, characterizes
the area including Uganda, DRC, and South Sudan. The indications from the other indices have not
the same degree of agreement among the three rainfall products as for R1. SDII and R20 decreasing
trends show a good agreement for this region for ARC2 and CHIRPS. On the contrary, TARCAT has
a weak rising trend, significant only for SDII. A similar non-homogeneity in the satellite product
response is found for PRCPTOT for ARC2, and to a lesser extent, CHIRPS shows negative trends,
whereas TARCAT is associated with positive and significant trends.

At the seasonal scale, OND is the season with the most evident results in terms of both trend sign
(negative or positive) consensus among the three products, and extension of the trend significance
regions. Rising trends stem from the analysis of PRCPTOT, R1, and SDII over eastern EA, the region
where OND represents the second wet season after MAM, in agreement with other results [6].
An exception to this increasing tendency is represented by a portion of eastern Kenya, where all
the products show a negative trend for PRCPTOT and R1 (PRCPTOT trend with significance only for
CHIRPS, R1 trend significant for all datasets), and still confirm the positive trend for SDII. These results
for Kenya seem to confirm the findings at the annual scale.

As first noted by Williams and Funk [22], rainfall is substantially reduced in MAM [6,18,55].
In particular, a decline evident since 1980s is already described by Lyon and De Witte [18],
but associated with an abrupt rainfall decrease after 1999. Wide regions with negative trends of
PRCPTOT, R1, CWD, and R20 indices are found, even if there is not a complete convergence of all
satellite products in terms of spatial trend patterns. Anomaly time series for PRCPTOT, CWD, and CDD
provide clearer signals of the rainfall decline with a prevalence of negative values (PRCPTOT and
CWD) during the 1990s.

JJAS results are difficult to interpret due to the disagreement among the three products.
R1 provides the most unambiguous signal with rising trends over western EA for the three datasets,
whose maximum values are located over Uganda, South Sudan, and western Ethiopia, with rates
from 0.73 to 0.80 days per season. Another significant index is CDD, characterized by decreasing
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trends, in particular, over Uganda and South Sudan, supported by a sequence of negative anomalies
since mid-1990s. This is a season of rainfall reduction [55–57], but it is difficult to extract a conclusive
outcome for PRCPTOT from the examined satellite products: CHIRPS and TARCAT are associated
with rising trends over the western part of the territory, but the same is not true for ARC2.

In JF, all satellite products detect positive trends for PRCPTOT and R1 over DRC and negative over
Uganda and Lake Victoria, but without a consensus on the significance areas. PRCPTOT anomalies
from the satellite products over EA reinforce the insight on rainfall decrease through a series of negative
values since 1999. The literature on precipitation in these months is limited: only Maidment et al. [17]
report weak negative trends without significance over the region.

Large-scale factors were associated with rainfall trends in the literature, especially for the
MAM and OND rain seasons [58]. The fast warming of the Indian Ocean over the past 60 years,
which extended westward the tropical warm pool and the western ascending branch of the Walker
circulation, was identified as a driver for the MAM rainfall decline [22]. Moreover, MAM rainfall
negative trends were linked to an enhanced east–west SST gradient in the western Pacific, resulting
from a warming process in the western Pacific near Indonesia [6]. The consequent enhancement
of Walker circulation would have induced an increased subsidence over EA. The recent positive
trends observed in the OND rainfall were associated with an enhanced SST gradient across the
Indian Ocean [6]. Between 1979 and 2012, an SST increase of 0.48 ◦C over the western Indian Ocean
and a decrease of 0.26 ◦C over the eastern part were observed. Considering the strong correlation
between the OND rainfall and the IOD [6,24], the mentioned SST variations over the Indian Ocean
support the observed increasing trends. The long-term variability of short rains and its connections to
large-scale factors were analyzed also by Nicholson [59] for a time period of 139 years (1874–2012),
considering the relationships among rainfall and zonal wind at the surface and 200 hPa over the central
equatorial Indian Ocean, Niño 3.4, and IOD indices. Results demonstrated that these relationships are
time dependent with changes on a decadal timescale, and zonal winds playing the stronger role in
producing wet conditions. Moreover, it is demonstrated how the development of the zonal circulation
over the Indian Ocean, accompanied with the weakening of the Pacific cell starting from about 1961,
was conducive to a marked increase in the OND rainfall and its interannual variability.

The present analysis demonstrates that satellite rainfall estimates provide long-term datasets,
which can be profitably exploited for the evaluation of rainfall trends. In spite of the algorithmic
differences, which sometimes make the trend responses more subjective or satellite product-dependent,
it is possible to extract suggestions on the areas more exposed to recent rainfall variability, taking into
account that the EA territory poses great challenges to the satellite remote sensing of precipitation,
due to complex topography and presence of arid areas [12,52].

Trying to summarize some lessons learned regarding the general quality of these long-term
rainfall products and their suitability for climatological analysis of the EA rainfall, the present results
show that TARCAT and CHIRPS stand out as the most complete and structured approaches to the
daily rainfall estimate from using IR satellite data at high spatial resolution. They fully exploit
satellite and ground-based data resources. Moreover, CHIRPS includes passive microwave estimates
through the direct use of the monthly precipitation climatology CPHclim and in the CCD calibration
phase [29]. It must also be mentioned that the next studies will benefit from the recently released
version 3 of the TARCAT dataset, whose first results have been described in the literature [27,33].
Whilst maintaining its peculiarity concerning the exclusive use of a historical rain gauge dataset,
several aspects regarding the calibration process were updated in this new version of TARCAT with
the intent to fix known problems, i.e., the dry bias and the unrealistic spatial artefacts that originated
from the use of rectangular calibration zones.
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CCD Cold Cloud Duration
CDD Consecutive Dry Days index
CDR Climate Data Record
CHG Climate Hazards Group of University of California, Santa Barbara
CHIRP CHG InfraRed Precipitation
CHIRPS CHG InfraRed Precipitation with Stations
CHPclim CHG Precipitation Climatology
CMAP CPC Merged Analysis of Precipitation
CMIP5 Coupled Model Intercomparison Project Phase 5
CPC Climate Prediction Center
CRU Climate Research Unit
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DRC Democratic Republic of Congo
EA East Africa
ECV Essential Climate Variable
EM-DAT Emergency Events Database
ETCCDI Expert Team on Climate Change Detection and Indices
GHA Greater Horn of Africa
GOES Geostationary Operational Environmental Satellite
GPCC Global Precipitation Climatology Center
GPCP Global Precipitation Climatology Project
GPI GOES Precipitation Index
GTS Global Telecommunication System
IOD Indian Ocean Dipole
IR Infrared
JF January–February
JJAS June–July–August–September
MAM March–April–May
NCAR National Center for Atmospheric Research
NCL NCAR Command Language
OND October–November–December
PRCPTOT Total precipitation index
R1 Number of precipitating days index
R20 Number of days with precipitation exceeding 20 mm day−1 index
SDII Simple Daily Intensity Index
SNHT Standard Normal Homogeneity Test
SST Sea Surface Temperature
TAMSAT Tropical Applications of Meteorology using SATellite
TARCAT TAMSAT African Rainfall Climatology And Time series
TMPA TRMM Multi-satellite Precipitation Analysis
TRMM Tropical Rainfall Measuring Mission
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