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Abstract: The applicability of optical and synthetic aperture radar (SAR) data for land cover
classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation)
MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test
site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover
classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS
PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2
imagery of one-metre spatial resolution were used for the accuracy assessment. The overall accuracy
for forest and non-forest classification varied between 95% for the RapidEye classification and 74%
for the Envisat ASAR classification. For more detailed land cover classification, the accuracies varied
between 89% and 70%, respectively. A combination of Landsat TM and ALOS PALSAR data sets
provided only 1% improvement in the overall accuracy. The biases were small in most classifications,
varying from practically zero for the Landsat TM based classification to a 7% overestimation of
forest area in the Envisat ASAR classification. Considering the pros and cons of the data types, we
recommend optical data of 10 m spatial resolution as the primary data source for REDD MRV
purposes. The results with L-band SAR data were nearly as accurate as the optical data but
considering the present maturity of the imaging systems and image analysis methods, the L-band
SAR is recommended as a secondary data source. The C-band SAR clearly has poorer potential than
the L-band but it is applicable in stratification for a statistical sampling when other image types
are unavailable.

Keywords: REDD; land cover classification; Landsat; RapidEye; ALOS PALSAR; Envisat ASAR

1. Introduction

The global yearly deforestation rate during 2000–2010 was 13 million hectares [1]. Although
the rate has recently been decreasing in several countries such as Brazil, it is still high in the tropical
zone [2]. The carbon densities of tropical and boreal forests are similar but the differences in the speed
of nutrient recycling result in a situation where over 50% of tropical forest carbon is stored in the living
biomass, whereas the corresponding figure is 20% in boreal forest [3,4]. In the tropical forest, a large
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amount of carbon is lost when trees are removed. Hence, prevention of tropical deforestation has a key
role to play in the fight against climate change.

The United Nations Framework Convention on Climate Change has established the REDD+
(Reducing Emissions from Deforestation and Forest Degradation) program to provide incentives to
developing countries to prevent the loss of their forests [5]. The plus sign refers to the extended role
of REDD to support conservation, sustainable management of forests and enhancement of carbon
stocks. The measurement, reporting and verification (MRV) activity of the REDD+ process requires
application of reliable and robust methods for the assessment of forest resources and their changes.
Information is required on the extent of land cover and land use categories at the beginning of the
reporting period and on the changes between categories during the period [6].

Remote sensing-based services have the potential to fulfil several of the requirements of the
monitoring services as defined by the Intergovernmental Panel on Climate Change (IPCC) [7] and the
Conference of the Parties [5]: adequate, robust, consistent, accurate, complete and transparent. Earth
observation has been stated to be the only feasible means to get information from changes in the forest
for large areas [8].

Medium resolution (10–60 m spatial resolution) satellite images are recommended as the main
source for collecting activity data for MRV on forest area and changes [9]. Such data at 30 m spatial
resolution have been available from the Landsat satellite program since 1982 [10]. Landsat images
are available free of charge for anybody, but availability of applicable data varies in different regions
mainly because of cloud cover and acquisition capability [11,12]. Since 2015, Sentinel-2 satellites have
provided free imagery with 10 m, 20 m and 60 m spatial resolution depending on the band [13]. Several
commercial satellite missions, such as SPOT and RapidEye offer optical images with similar resolutions
to MultiSpectral Instrument (MSI) of Sentinel-2.

Radar data can provide a solution to the problems caused by clouds, since the L-band in particular,
but also the C-band are much less affected by weather conditions than the optical data. SAR (synthetic
aperture radar) data may be the only available information source of forest resources at a desired time
point. Therefore, it is important to investigate its potential for forest monitoring in comparison to
optical data. Currently operational Sentinel-1 and Radarsat-2 missions provide SAR data in the C-band
(centre frequency 5.405 GHz) and the ALOS-2 mission in the L-band (centre frequency 1.27 GHz). SAR
instruments onboard ERS-1, ERS-2 and Envisat acquired C-band data from 1991 to 2012, which provides
a potential data source for historical monitoring of land cover. Historical L-band satellite imagery
has been provided by JERS-1 (Japanese Earth Resource Satellite), operated from 1992 to 1998, and by
ALOS-1 PALSAR, which operated between 2006 and 2011. The first freely available and systematically
acquired SAR data are from Sentinel-1 [14], which has been available since 2014. Challenges in
data availability and processing as well as information content that depends on meteorological
conditions have restricted wider operational application of SAR imagery in forest cover monitoring.
The dependence on meteorological conditions particularly affects shorter wavelength SAR systems in
the C- and X-bands.

Variable land cover classification accuracies based on different approaches in image interpretation
and accuracy assessment have been reported. Overall accuracy in forest and land cover classification
using Landsat-type data has often been close to or above 90% [15–18] and several global forest cover
maps have been produced (e.g., [19,20]). For detailed class division on national and global levels, also
lower overall accuracies have been obtained. For the operational land cover system for Mexico [21] the
highest overall accuracies for ten classes were 76%. In the global land cover map produced by [22]
the highest overall classification accuracy for eight land cover classes was 71.5%. Application of time
series of images and combination of land cover classification with change detection can improve land
cover classification results for a selected date in a time series and provide accuracies close to or even
above 90%, even for detailed class division [23–25].

Results with L-band SAR data have been close to the results of optical data particularly in forest
and non-forest classification [17,26–28] and L-band data have also been shown to be applicable for
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producing forest cover maps at global scales [29]. However, the results in land cover classification
using SAR data are not consistent [17,18,30,31]. In [30] the overall accuracy in forest and non-forest
classification was 92.1% for ALOS PALSAR L-band data and 81.2% for Radarsat-2 C-band data.
In another study [31], the corresponding figures were 72.2% and 54.7% in the classification of six
land cover classes. In forest and non-forest mapping in French Guiana [32], an accuracy of 90% was
achieved with multitemporal ERS-1 and ERS-2 C-band data and an accuracy of 94% with Envisat
ASAR data. The studies of synergistic use of optical and SAR data sets indicate that adding SAR
features to optical data can improve the land cover classification results [18,25,26,33]. Also, L-band
SAR has been more effective as additional data than C-band.

The variability in accuracy assessment methods and used reference data for the assessment
makes it difficult to evaluate the real robustness and performance of the approaches and different
data sources. Accuracy assessment approaches that are based on very high resolution (VHR) optical
images with a spatial resolution less than one metre can be implemented at any global location. This
kind of approach has been applied e.g., in [34–36]. If no VHR imagery exists from the mapping epoch,
one applied solution has been to use the best available optical data with lower resolution [15,32].

The objective of this paper is to compare the accuracy of land cover classifications using optical
and SAR satellite imagery in a tropical to sub-tropical area. The comparison will be done with common
reference data from random sample plots that are selected from VHR satellite imagery. This ensures
an objective and realistic evaluation of the potential of medium resolution optical and SAR data
and significantly reduces the uncertainty that remains after the survey of the diverse results from
the literature.

Image data from RapidEye, Landsat Thematic Mapper (TM), Envisat ASAR and ALOS PALSAR
sensors were used. The applied land cover classes have been defined by the IPCC. Thus, this study aims
at supporting methodology development to implement the MRV component of REDD+. In addition to
the assessment of the potential of different data types, the study demonstrates how a plot sample from
VHR imagery can be collected and applied in a manner that is also applicable in a future operational
context. As a key result of the study, recommendations on the usage of different satellite data types
in future operational land cover mapping are given. Early results of this study were published in a
conference paper [37]. The main improvements since the conference paper include re-computation of
the Envisat ASAR land cover classification results using a more complete satellite data set, computation
of the combined Landsat TM and ALOS PALSAR classification and application of the common data
for all the land cover maps in the accuracy assessment.

2. Materials and Methods

2.1. Study Site and Class Definition

The study was performed on a site of approximately 100 km by 100 km in the eastern part of
the State of Chiapas in Southern Mexico (Figure 1), bordering Guatemala in the south and east and
Montes Azules Biosphere Reserve in the west. The dominant vegetation is lowland tropical humid to
sub-humid forest. The area was colonized during the 1980s and early 90s, due to governmental policies,
and currently the population amounts to about 25,000 inhabitants. The main economic activities are
related to land use, mainly subsistence farming, commercial agriculture and animal husbandry.
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‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’ and ‘other land’ were used in the accuracy 
assessment of the classifications. Additionally, a class ‘shrubland’ was used in the classification but 
in the accuracy assessment it was included in the ‘grassland’ class (class definitions from [34], Table 
1). For forest definition, the FAO (Food and Agriculture Organization of the United Nations) 
thresholds, forest cover larger than 10% and a minimum height of 5 m [38], were used. 

Figure 1. The location of the study site and the Kompsat-2 images.

Six land use classes that are compatible with the good practice guidance [6] of IPCC: ‘forest land’,
‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’ and ‘other land’ were used in the accuracy assessment
of the classifications. Additionally, a class ‘shrubland’ was used in the classification but in the accuracy
assessment it was included in the ‘grassland’ class (class definitions from [34], Table 1). For forest
definition, the FAO (Food and Agriculture Organization of the United Nations) thresholds, forest cover
larger than 10% and a minimum height of 5 m [38], were used.
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Table 1. The class definition that was used in the study.

Class in the Visual
Interpretation Description IPCC Compatible Class Class in Forest and

Non-Forest Classification

Natural undisturbed forest
Forest that is in natural condition and no clear signs of degradation are visible.
Height more than 5 m, crown closure at least 10% (usually in natural forest the height
is much larger).

Forest land Forest

Disturbed forest

Forest or woodland area which has re-grown after a major disturbance such as fire,
insect infestation, timber harvest or wind-throw, also natural forests that show clear
signs of degradation due to selective cuttings, for instance. Height more than 5 m,
crown closure at least 10%.

Forest land Forest

Shrub All forest lands with poor tree growth, mainly of small or stunted trees having
canopy density less than 10%. Grassland Non-forest

Cultivated and Managed
Terrestrial Areas

Areas where natural vegetation has been removed or modified and replaced by other
types of vegetative cover of anthropogenic origin. All vegetation that is planted or
cultivated with intent to harvest. Agricultural fields except paddy rice.

Cropland Non-forest

Cultivated Aquatic or
Regularly Flooded Areas

Areas where an aquatic crop is purposely planted, cultivated and harvested and
which is standing in water over extensive periods during its cultivation period. E.g.,
paddy rice fields.

Class did not exist in the reference data and was not used in
the classification

High grass Grassland with grasses above 1 m. Class did not exist in the reference data and was not used in
the classification

Cleared forest land

Areas that are not (yet) cultivated but in which the forest has been cut or possibly
burned. The crown closure is less than 10%. Can be almost or completely tree-less.
Deviates from the shrub land because cleared forest land would be capable to grow
forest.

Grassland Non-forest

Other natural or semi-natural
vegetation

Any naturally or semi-naturally vegetated terrestrial area not included in the
previous classes.

Class did not exist in the reference data and was not used in
the classification

Natural and Semi-Natural
Aquatic or Regularly Flooded
Vegetation

Areas that are transitional between terrestrial and aquatic systems and where the
water table is usually at or near the surface or the land is covered by shallow water.

Class did not exist in the reference data and was not used in
the classification

Artificial Water bodies E.g., reservoirs, canals, artificial lakes. Wetlands Non-forest

Natural Water bodies Lakes, rivers. Wetlands Non-forest

Artificial Surfaces and
Associated Areas

Areas that have artificial cover as a result of human activities (e.g., cities,
transportation, mines, waste disposal). Settlements Non-forest

Bare Areas Areas that do not have artificial cover or vegetation. E.g., bare rock. Other land Non-forest

Snow and Ice Snow or ice. Class did not exist in the reference data and was not used in
the classification
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2.2. Data Procurement and Pre-Processing

The study compared the potential of RapidEye, Landsat TM, ALOS PALSAR and Envisat ASAR
medium resolution satellite images by applying identical sample plot data for the accuracy assessment.
To enable an objective comparison, a systematic grid in WGS84 datum and UTM projection (zone
15 north) was defined over the whole study site. A 50 m by 50 m cell size was defined for the grid
units. The pixels of all the images and the plots for reference data were aligned with the grid. The size
of a reference data plot in the reference data collection was also 50 m by 50 m corresponding to one
grid unit.

The satellite data sets that were used in the study are summarized in Table 2. The processing chains
for the medium and very high resolution satellite images are presented in Figure 2. Kompsat-2 images
were used for collection of reference data. Land cover maps were computed using RapidEye, Landsat
TM, ALOS PALSAR and Envisat ASAR data. Google Earth, Aster DEM (Digital Elevation Model) and
MODIS reflectance mosaic were used as ancillary data. Satellite images in the Google Earth service
(in the resolution range from 1 to 30 m) were used as an additional information source for land cover
as training data. They were also the best available data for the geographic reference. Aster DEM [39]
was downloaded from http://gdem.ersdac.jspacesystems.or.jp and used in the pre-processing of the
SAR data. MODIS reflectance product was used for the reflectance calibration of the RapidEye tiles.

2.2.1. RapidEye Tiles

Thirteen level 3A RapidEye orthorectified tiles of 25 km by 25 km acquired between May and
September 2009 were collected from the study area and processed according to the workflow in
Figure 2. Pre-processing of RapidEye data included geometric and radiometric corrections, resampling,
cloud masking and mosaic compilation.

Co-alignment of some image tiles required additional adjustment. The correction was done using
block adjustment [40] and ground control points measured from the data and Google Earth. The data
were received at a pixel size of 5 m, which is slightly finer then the nominal resolution of 6.5 m. They
were averaged to 10 m pixel size for classification. Preliminary tests with the data showed that the
pixel size of 10 m produced more homogeneous classification results than application of 5 m pixel size.
The 10 m resolution also corresponded to the pixel size of three visible and one near-infrared band of
the MSI of Sentinel-2.

Atmospheric correction was performed for all the RapidEye tiles using the Simplified Method for
Atmospheric Correction (SMAC) [41] to convert the image pixel values to bottom of atmosphere
reflectances. An additional offset calibration of the reflectance values was done using MODIS
reflectance (MOD09GA) product of 500 m resolution [42]. An unsupervised k-means clustering
was performed on the MODIS data and a few clusters with low red reflectance, i.e., representing
forested areas, were selected for calibration. An average reflectance within RapidEye tiles from each
date was computed for the selected MODIS clusters. The difference between the reflectance of the
MODIS-based cluster and RapidEye reflectance was used to define an offset correction to the RapidEye
tiles. The resulting mosaic is shown in Figure 3. Clouds and shadows were masked out manually
using a GIS (Geographic Information System) software. Despite the offset calibration, the remaining
differences between tiles from different dates prevented the classification of the RapidEye data set as
one mosaic. The tiles from May and June were processed separately but the nine tiles from July and
the two tiles from September were compiled as two mosaics.

http://gdem.ersdac.jspacesystems.or.jp
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Table 2. The earth observation data sets that were used in the study. N/A means column is not applicable for the data set.

Data Number of
Images Image Size Spatial Resolution Applied Pixel

Size Acquisition Dates Use in the Study

Kompsat-2 8 15 km by 15 km Pan (1 m), MS (4 m) 1 m

11 May 2008
29 July 2008 (2 images)
10 March 2010 (2 images)
23 March 2010
2 June 2010
23 March 2011

Collection of reference
data using visual
interpretation

RapidEye level 3A 13 25 km by 25 km 6.5 m 10 m

25 May 2009
13 June 2009
21 July 2009 (9 images)
13 September 2009 (2 images)

Source data for the land
cover classifications

Landsat 5 TM
level 1T 2 185 km by 172 km 30 m 25 m 9 December 2009 (2 images) Source data for the land

cover classifications

ALOS PALSAR
level 1.1 6 70 km by 70 km 4.5 m by 4.7 m

(1-look) 25 m

1 August 2009
11 August 2009 (2 images)
28 August 2009 (2 images)
9 September 2009

Source data for the land
cover classifications

Envisat ASAR
IMP 12 100 km by 100 km 30 m by 7.7 m (1-look) 50 m

8 March 2004 (2 images)
28 April 2004 (2 images)
17 May 2004 (2 images)
13 April 2005 (2 images)
13 March 2006 (2 images)
7 April 2010 (2 images)

Source data for the land
cover classifications

MODIS
MOD09GA 1 1112 km by 1112 km 500 m 500 m 4 January 2009 Offset calibration of

RapidEye tiles

ASTER DEM N/A N/A 30 m 25 m N/A
Orthorectification and
radiometric calibration of
radar data
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G: temporal variability. Envisat ASAR © ESA, ALOS PALSAR © JAXA/METI, RapidEye © RapidEye.
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2.2.2. Landsat TM Images

Two Landsat 5 TM level 1T images that had been acquired on 9 December 2009 (path: 20, row:
48–49) were downloaded from the USGS archives (http://earthexplorer.usgs.gov/). Based on the
available images in the archives the selected images were the images with the smallest cloud cover for
the selected path and row during the period 2007–2011. The cloud free area was approximately 51% in
Landsat TM images. For the RapidEye tiles the cloud free area was approximately 87%.

For the Landsat TM images, no additional geometric correction was required but the data were
resampled from 30 to 25 m pixel size. SMAC atmospheric correction was performed but additional
calibration was not necessary since the images were from the same date and originally very similar.
A mosaic was compiled from the two images (Figure 3). Also for the Landsat TM images, the cloud
mask was created manually.

2.2.3. ALOS PALSAR Images

ALOS PALSAR images were received through the ESA (European Space Agency) Category-1
project C1P.6213. The image set consisted of six dual-polarized PALSAR images in HH and HV
polarizations with a nominal incidence angle of 39 degrees in August and September 2009. PALSAR
images were received as single-look complex data (level 1.1) [43]. Pre-processing chain of ALOS
PALSAR images consisted of pre-averaging, orthorectification, radiometric correction, resampling and
mosaic compilation (Figure 2).

ALOS PALSAR HH and HV bands were pre-averaged in the power domain over seven pixels
along the track to reduce speckle. The resulting pixel size was 22.2 m by 9.4 m. The images were
orthorectified and radiometrically corrected individually using Aster DEM [39]. To reduce speckle,
the weighted average over four pixels was computed using bilinear interpolation to resample the data
according to the defined 50 m by 50 m grid. As a result, the pixel spacing of the orthorectified PALSAR
images was 25 m by 25 m and a pixel represented a unit of a 28-look image. Bilinear interpolation that
forms an output pixel as a weighted sum of four input pixels, reduces speckle in a SAR image. This
speckle reduction was considered to outweigh its possible negative effects, such as smoothing of the
image detail.

Amplitude mosaics of HH and HV polarizations were compiled from the images (Figure 3).
The mosaics were seamless between image borders but a shift to the north was observed in the
comparison with Google Earth. This was corrected by moving the mosaics 55.6 m southward in the
final orthorectification.

In the preliminary trials, mosaics from 2007 and 2008 were also computed and the standard
deviation, average amplitude, and temporal variability of the three mosaics were computed from
the overlapping pixels [44]. The temporal variability was computed as the standard deviation of the
10-based logarithm of the amplitude of a single pixel over a set of images. The result of the test was
that the original amplitude bands separated the land cover classes better. The likely reason was the
stability of L-band backscatter over time.

2.2.4. Envisat ASAR Images

Twenty-eight Envisat ASAR image mode precision images (IMP) [45] in IS-2 imaging mode
with mid-swath nominal incidence angle 23 degrees were received through the ESA Data Warehouse.
The images were detected three-look images, had pixel spacing of 12.5 m by 12.5 m and they were in
VV polarization. The IS2 imaging mode was selected because only a few images were available with a
shallower view angle, which would have been better for land cover classification [46]. The steps in
the pre-processing chain of Envisat ASAR images were pre-averaging, orthorectification, radiometric
correction, resampling, feature computation and mosaic compilation (Figure 2).

ASAR images from three to six different dates were available depending on the location within
the study area. Images that had poor contrast between forest and fields were left out from further

http://earthexplorer.usgs.gov/
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processing. Finally, three images were used per orbit: from March 2004, May 2004, and March 2006
in the western orbit and from April 2004, April 2005, and April 2010 in the eastern orbit. RapidEye,
Landsat TM, and ALOS PALSAR data had been acquired in 2009. Thus, the Envisat ASAR data were
from a very different time period compared to the other data sets, but no other C-band SAR data were
available for the study.

The Envisat ASAR images were first pre-averaged using 2 by 2 pixel window. The resulting
images were orthorectified [47] and radiometrically corrected using Aster DEM, tie points between
scenes, and ground control points between the scenes and Google Earth. The pre-processed ASAR
images were resampled using bilinear interpolation from four pixels according to the defined 50 m by
50 m grid to reduce speckle. As a result, the pixel spacing of the orthorectified Envisat ASAR images
was 50 m by 50 m and a pixel represented a unit of 48 looks. Average and temporal variability of the
backscatter amplitude were computed for each pixel and used as inputs for the classification (Figure 3).

2.2.5. Kompsat-2 Images

Eight Kompsat-2 images from 2008–2011 were received through the ESA Category-1 project
C1P.1519 (Figure 1). The locations of the images were selected randomly from the archived images
from 2008-2011. The sample was not strictly random for the whole study site because candidate images
were not available at all locations. However, the sample was considered representative to enable
comparison of the potential of the medium resolution satellite image types for land cover mapping
because the Kompsat-2 images represented the variability of the landscape of the study area. The pixel
size of the Kompsat-2 images was 1 m on the panchromatic band and 4 m on the multispectral bands.

The alignment of the Kompsat-2 images and the pre-processed RapidEye tiles was analysed
visually, and where necessary, geometric shifts in the easting and northing direction were computed
using ground control points that were measured from RapidEye tiles and Kompsat-2 images. For visual
interpretation, true (red, green and blue bands) and false colour composites (near infrared, red and
green bands) images were produced using pan-sharpening. The pan-chromatic wide-spectrum channel
of 500–900 nm as the fourth band was used for sharpening the multi-spectral bands to 1 m pixel size
(https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-2).

After the pre-processing step, the satellite data sets were ready for further processing. The data
sets for land cover classification were RapidEye and Landsat TM reflectance mosaics and Envisat ASAR
and ALOS PALSAR feature mosaics. The eight Kompsat-2 true and false colour image composites
were used for the collection of reference data.

2.3. Reference Data Collection from VHR Satellite Images

Reference data were collected by visual interpretation of the Kompsat-2 images. The main steps
in the reference data collection from VHR images were:

• Creation of the grid of plots for each VHR satellite image
• Definition of the land cover class proportions for the plots with visual interpretation
• Division of the reference data set to training and test sets.

For each VHR image, a systematic grid of 50 m by 50 m plots at 800 m intervals in northing and
easting directions was created (Figure 4). A statistical analysis that was made in a previous study was
behind the selection of those plot sizes and distances. These results were also considered applicable to
this study. The procedure and the results are reported in detail in [34]. The 50 m by 50 m square was
small enough to make objective visual interpretation of reference data possible. Furthermore, it was
sufficiently large with respect to the poorest spatial resolution of Envisat ASAR. Large enough plot size
was also needed to consider the residual geometric differences between image data sets in reference
data collection for model training and for accuracy assessment. With 800 m distance, the spatial
correlation between the plots was assumed to be low with a sufficient margin [34]. In comparison,

https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-2
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the most common plot distance in the Finnish national forest inventory is 300 m [48]. The total number
of plots in eight images was 1680.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 27 
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Figure 4. Example of reference plots on a false colour composite of Kompsat-2 image for 10 March
2010. In this Kompsat-2 image the northern half of the plots was used for training and the southern
half for testing. Kompsat-2 image © KARI 2010.

The proportion of the land cover classes (Table 1) in each plot was defined visually with the help
of GIS software. It was obvious that application of systematic sampling produced a large proportion
of heterogeneous plots with respect to their land cover classes in the fragmented landscape of state
Chiapas. However, our approach to image interpretation, in which also the categorical land cover
variables are first predicted as continuous variables or pixel class probabilities, also made it possible to
use heterogeneous data as training data.

The plots were divided into two sets of equal size (840 plots), one for training and another for
accuracy assessment. Each VHR image was first divided in two alternative ways: from north to south
and from east to west. At every image, the similarity of land cover distribution of the east and west
halves and north and south halves was tested. The division that showed a more similar land cover
class distribution in the halves was applied. Within a VHR image, one half was selected randomly to
be included in the training set while the other half was included in the test set.

The plot dataset was forest-dominated. The proportion of forest was 73% when ‘cleared forest land’
class was excluded. The proportion of the class ‘cleared forest land’ was 7% and the proportion of the
class ‘cultivated and managed terrestrial areas’ was 16% of the total area of the plots. The proportions
of classes ‘shrub’ and ‘natural water bodies’ were both about 1% of the total area. The proportion of
the classes ‘artificial surfaces and associated areas’, ‘bare areas’ and ‘artificial water bodies’ was in total
less than 1% of the area of the plots. The IPCC compatible classes ‘settlements’ from ‘artificial surfaces
and associated areas’ and ‘other land’ from ‘bare areas’ were, however, included in the classifications
and confusion matrices to make the test concept universally applicable.

2.4. Classification of the Medium Resolution Satellite Data

Land cover classifications with seven classes (‘forest land’, ‘shrubland’, ‘cropland’, ‘grassland’,
‘wetlands’, ‘settlements’ and ‘other land’) were computed for the medium resolution data sets.
For RapidEye and Landsat TM mosaics the bottom of atmosphere reflectance values were used
as input features of the classification. For RapidEye mosaics blue, green, red and near infrared bands
and for Landsat TM mosaic the two shortwave infrared bands were also used. For ALOS PALSAR
mosaic the input features were HH- and HV-polarized amplitudes and for Envisat ASAR, the average
backscatter of VV-polarized amplitude and its temporal variability were used. For the training plots,
the proportions of the classes that had been used in the visual interpretation were summed up to
represent proportions of ‘forest land’, ‘shrubland’, ‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’ and
‘other land’ classes according to the Table 1.
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Classifications were computed separately for each medium resolution data source in order to
compare the potential of each satellite data set. Additionally, we computed a classification where
the bands of Landsat TM and ALOS PALSAR mosaics were combined to examine the potential
improvement in classification accuracy compared to using Landsat TM or ALOS PALSAR data alone.

The classifications were produced in two phases. In the first phase, the probability of each
land cover class was predicted with the probability estimation method [34,49] for each pixel using
its feature vector. The applied parametric approach assumes normal distribution for the features.
One consequence of the normal distribution assumption is a tendency to predict towards the
average of the features. The approach is somewhat robust against non-normally distributed features.
The parametric model is sufficiently transparent in the sense that it is possible to follow whether
the connections between the input features and land cover class predictions are compatible with
physical understanding. The non-parametric machine learning methods create models that may be
hard to understand in a physical sense. Decreases in robustness may also occur with complex models,
for example, artificial neural networks through overfitting [50]. In the second phase, the land cover
classifications were compiled from the continuous predictions of the probabilities of the land cover
classes using a hierarchical rule based category classification (Figure 5).

In the first phase, feature vectors of each medium resolution satellite data set were classified
in feature classes using unsupervised k-means clustering after normalizing them to the same mean
and standard deviation. The class means and covariance matrices from the clustering results were
computed from the non-normalized data.

The thematic contents of the feature classes were defined using the plot data reserved for training.
Each training plot was classified to one feature class. Maximum likelihood classification was applied
to the average of the feature vectors inside the plot. For each feature class, the training plots that were
classified to that feature class were used for computing the average of proportion of each land cover
class for that feature class. If no reference data were available for a feature class, land cover class
proportions were defined with the help of other available information, e.g., visual interpretation of
satellite images of Google Earth, the input images, and the location of the feature class in the feature
space. The thematic content of a feature class was a vector that showed the proportion of each land
cover class for the feature class.

Prediction of the probability of a land cover class for a pixel was computed as a weighted sum of
the feature classes’ ground data values:

f (x) =
N

∑
c=1

P(c|x)f c,

where f ( x ) is the probability of a land cover class for feature vector x, P(c|x) the probability for the
feature vector x to belong to the feature class c, fc the proportion of a land cover class in feature class c
and N the number of feature classes.

The output from the first phase was a multiband raster image, where each band represented one
land cover class and the pixel values represented the probabilities of the pixels to belong in that class.

Water masks were created for the optical image mosaics. For the Landsat TM mosaic the pixels
where the reflectance on near-infrared band was less than 10%, were classified as water. The threshold
was selected using the reflectance value histogram of the near-infrared band and verified visually
with the image mosaic. The water mask from Landsat TM was also used in the combined Landsat TM
and ALOS PALSAR classification. For RapidEye, the same 10% threshold for the near-infrared band
was not sufficient. The sediment content in the rivers appeared to be high and it was necessary to
combine thresholds on visible and near-infrared bands to extract areas where near-infrared reflectance
was low and reflectance values of visible bands were high. The water areas were included in the
‘wetlands’ class.

In the second phase, category classifications were computed from the continuous predictions.
A pixel was classified as forest if the predicted forest probability was higher than the sum of
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the predicted non-forest class probabilities of that pixel. Otherwise, the pixel was classified as
non-forest. After that, the non-forest pixels were classified to the non-forest class that had the highest
predicted probability.

For ALOS PALSAR and Envisat ASAR mosaics alternative processing with 3 by 3 pixels majority
filtering was performed in the category classification. Majority filtering was applied to the forest and
non-forest classification and the resulting non-forest pixels were classified to the dominating non-forest
class using the continuous predictions. The aim of the 3 by 3 majority filtering was to remove noise.
The filter size was chosen as a trade-off between noise-artefact removal and overly generalized land
cover maps. This class-selective use of a post-processing filter had the benefit that it did not smooth
out small details in smaller non-forest classes. Stronger averaging or filtering before classification
could have smoothed out these smaller classes.

The thematic information about the land cover was included iteratively in the classification process.
The aim of the iterative approach was to make it possible to follow how the overall accuracy and the
errors of commission and omission developed when more data were introduced in the classification.
The training plots of each VHR image were divided into two subsets, A and B (Figure 5), which both
had 420 plots. First, set A was used in the classification and a land cover map was compiled. In addition,
other data could be included to complete the classification, but the quality of the classification was
assessed using the training plot data only. The best possible classification, as measured with the
classification accuracy and the difference between the omission and the commission errors with set A,
was selected and set B was introduced. If accuracy assessment with set B indicated bias in the model,
the classification was fine-tuned using set B. Because of the clouds and cloud shadows in the Landsat
TM images and RapidEye tiles, not all training plots could be used for optical data sets.
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The total number of training plots that were used in the classification was 331 for Landsat TM
and 713 for the RapidEye. A slice of missing data in the southern border of the study area (Figure 3)
restricted the training set to 795 plots for the ALOS PALSAR mosaic. Clouds and missing SAR data
allowed use of 286 training plots for the combined Landsat TM and ALOS PALSAR mosaics. For the
Envisat ASAR mosaic, 840 training plots were used in total.
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Seven classifications were produced: Landsat TM classification, RapidEye classification, ALOS
PALSAR classification, ALOS PALSAR classification with filtering, Envisat ASAR classification, Envisat
ASAR classification with filtering and combined LANDSAT TM and ALOS PALSAR classification
(Figure 5).

2.5. Accuracy Assessment

The main steps in the accuracy assessment were:

• Definition of the IPCC compatible target class for each test plot using the land cover class
proportions in the reference data

• Definition of the IPCC compatible target class for each test plot using the land cover class
proportions extracted from the satellite image classifications

• Comparison of the reference class and the classification result at each plot using the IPCC
compatible target classes.

The classification scheme in the visual interpretation of the 840 test plots represented more detailed
classes than the IPCC compatible classes as shown in Table 1. The IPCC classes were generated for
the plots by combining the lower level classes. The proportions of the classes that had been used in
the visual interpretation were summed up to represent proportions of the IPCC compatible classes
according to the Table 1. The proportions of ‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’ and ‘other
land’ classes were then summed up to indicate the total proportion of non-forest class. If the proportion
of forest class was higher than the total proportion of the non-forest classes, the plot was classified as
forest. If the proportion of forest class was lower than the proportion of non-forest class, the non-forest
class that had the largest individual proportion was set as the land cover class for the plot.

For each plot, the proportions of land cover classes inside the plot were extracted from all satellite
image classifications using GIS software and the geographic location of the plot. The class of the
plot was defined similarly as for the data from the visual interpretation. Again, the proportions of
‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’ and ‘other land’ classes were combined as the total
proportion of non-forest class. Based on the forest and non-forest class proportions, either forest class
or the dominating non-forest class was assigned as the final land cover class of the plot.

To use only plots that were free from artefacts, plots where more than 10% of the plot area
was covered by unclassified pixels in any of the satellite image classifications (clouds, no data) were
excluded from the accuracy assessment. Only plots with valid data in every classification were taken
into account. The data set for accuracy assessment contained 320 plots of the original 840 plots. For each
plot, the data set included eight variables: the IPCC compatible class from visual interpretation and the
IPCC compatible class for each of the seven land cover classifications computed using the satellite data.

A confusion matrix was created for each classification. The overall accuracy for the six IPCC
compatible classes, the overall accuracy for the forest and non-forest classification, including confidence
intervals and user’s and producer’s accuracies and errors of commission and omission were computed.
The accuracy statistics were computed according to [51].

The accuracy assessment was also experimentally done using plots that were available for each
satellite image type, which meant that the satellite image types had different number of test plots.
Otherwise the process was the same as described above.

3. Results and Discussion

The resulting land cover maps for different data sources are shown in Figure 6 and details of
the maps and the source data in Figures 7–9. Tables 3 and 4 summarize the results of the accuracy
assessment. The confusion matrices are shown in Appendix A.



Remote Sens. 2018, 10, 942 15 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 27 

 

 
Figure 6. The land cover classifications. The black rectangle in the map produced using the RapidEye 
tiles shows the approximate location of the area in Figures 7–9. 

Figure 6. The land cover classifications. The black rectangle in the map produced using the RapidEye
tiles shows the approximate location of the area in Figures 7–9.



Remote Sens. 2018, 10, 942 16 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 27 

 

 

Figure 7. An area of approximately 8 km by 7.5 km extracted from the classifications. The location of 
this area is marked in Figure 6 with a black rectangle. 
Figure 7. An area of approximately 8 km by 7.5 km extracted from the classifications. The location of
this area is marked in Figure 6 with a black rectangle.



Remote Sens. 2018, 10, 942 17 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 27 

 

 

Figure 8. An area of approximately 8 km by 7.5 km extracted from the combined Landsat TM and 
ALOS PALSAR classification. The location of this area is marked in Figure 6 with a black rectangle. 

 

Figure 9. The colour composites for the data sources of the classification for the area in Figures 7 and 
8. The RapidEye and Landsat TM mosaics are true colour composites, in ALOS PALSAR mosaic the 
bands are: R and B: HH, G: HV and in Envisat ASAR mosaic: R and B: average amplitude, G: temporal 
variability. Envisat ASAR © ESA, ALOS PALSAR © JAXA/METI, RapidEye © RapidEye. 

Figure 8. An area of approximately 8 km by 7.5 km extracted from the combined Landsat TM and
ALOS PALSAR classification. The location of this area is marked in Figure 6 with a black rectangle.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 27 

 

 

Figure 8. An area of approximately 8 km by 7.5 km extracted from the combined Landsat TM and 
ALOS PALSAR classification. The location of this area is marked in Figure 6 with a black rectangle. 

 

Figure 9. The colour composites for the data sources of the classification for the area in Figures 7 and 
8. The RapidEye and Landsat TM mosaics are true colour composites, in ALOS PALSAR mosaic the 
bands are: R and B: HH, G: HV and in Envisat ASAR mosaic: R and B: average amplitude, G: temporal 
variability. Envisat ASAR © ESA, ALOS PALSAR © JAXA/METI, RapidEye © RapidEye. 

Figure 9. The colour composites for the data sources of the classification for the area in Figures 7 and 8.
The RapidEye and Landsat TM mosaics are true colour composites, in ALOS PALSAR mosaic the
bands are: R and B: HH, G: HV and in Envisat ASAR mosaic: R and B: average amplitude, G: temporal
variability. Envisat ASAR © ESA, ALOS PALSAR © JAXA/METI, RapidEye © RapidEye.
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Table 3. The results of the accuracy assessment for forest and non-forest classification with 320 plots, OA = overall accuracy (%), OE = omission error (%),
CE = commission error (%).

Classification
Forest and Non-Forest Classes Forest Land

OA 95% Confidence Limits OE CE

RapidEye 95 93 . . . 97 5 2
Landsat TM 92 89 . . . 95 5 5

ALOS PALSAR 87 83 . . . 91 6 10
ALOS PALSAR w. filtering 90 87 . . . 94 5 7

Envisat ASAR 74 69 . . . 79 19 15
Envisat ASAR w. filtering 84 80 . . . 88 6 13

Landsat TM and ALOS PALSAR 93 90 . . . 96 3 6

Table 4. The results of the accuracy assessment for the classification in IPCC compatible classes with 320 plots, OA = overall accuracy (%), OE = omission error (%),
CE = commission error (%). N/A means error could not be computed because of lack of observations.

Classification
IPCC Compatible Classes Forest Land Cropland Grassland Wetlands Settlements Other Land

OA 95% Confidence Limits OE CE OE CE OE CE OE CE OE CE OE CE

RapidEye 89 85 . . . 92 5 2 24 27 75 81 0 9 N/A N/A 100 N/A
Landsat TM 88 85 . . . 92 5 5 24 33 75 64 10 0 N/A 100 100 N/A

ALOS PALSAR 83 79 . . . 88 6 10 41 23 94 95 40 0 N/A N/A 100 N/A
ALOS PALSAR w. filtering 84 80 . . . 88 5 7 41 23 94 96 30 0 N/A N/A 100 N/A

Envisat ASAR 70 65 . . . 75 19 15 50 72 100 N/A 80 0 N/A N/A 100 N/A
Envisat ASAR w. filtering 81 76 . . . 85 6 13 48 49 100 N/A 80 0 N/A 100 100 N/A

Landsat TM and ALOS PALSAR 89 86 . . . 93 3 6 35 21 56 87 10 18 N/A 100 100 N/A
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3.1. Forest and Non-Forest Classification Accuracy

The overall accuracy for forest and non-forest classification varied between 74% for the unfiltered
Envisat ASAR classification and 95% for the RapidEye classification. The error of omission for the forest
class was 5–6% for all other classifications with single data sets except for the unfiltered Envisat ASAR,
for which it was 19%. For the combined Landsat TM and ALOS PALSAR classification, the omission
error was 3%. The commission error varied from 2% for RapidEye classification to 15% for the unfiltered
Envisat ASAR classification. RapidEye, Landsat TM, majority-filtered ALOS PALSAR and combined
Landsat TM and ALOS PALSAR classification reached similar accuracies, when the 95% confidence
intervals of the classification accuracies are taken into consideration. The confidence interval for
unfiltered ALOS PALSAR overlapped with Landsat TM classification but not with the RapidEye
classification. Both Envisat ASAR classifications were less accurate. The filtering was particularly
effective for the Envisat ASAR classification since their 95% confidence intervals for unfiltered and
filtered classifications did not overlap.

At the sampling unit size of 50 m by 50 m, improvement in the resolution from the 25 m pixel
size of Landsat TM to the 10 m pixel size used for RapidEye did not provide any major benefit to the
accuracy. The better spectral resolution of the Landsat TM sensor as compared to RapidEye also may
have partially compensated for its poorer spatial resolution. A combination of Landsat TM and ALOS
PALSAR features improved the forest and non-forest separation as compared to using only Landsat
TM data but the improvement was only one percentage point.

The maps revealed fragmented variability between forest and non-forest, particularly in the
Envisat ASAR classification but also in the ALOS PALSAR result. This variability could have been
caused by the variable incidence angle over the image swath or by the meteorological conditions
during the acquisition of the different images. Residual noise could also be observed in the unfiltered
maps despite spatial averaging of the pixels in image pre-processing. The noise was highest with
Envisat ASAR although the applied pixel size, 50 m by 50 m, was larger than for all other data sources.
The variability was concentrated on regions with minor topographic variation. As this variability
was not present in the available coarse elevation model, its effects on image radiometry could not
be adequately corrected in the radiometric correction. SAR imagery with higher incidence angle [52]
and use of images from ascending and descending orbits could probably alleviate the effects of this
minor topographic variation but no such imagery was available from Envisat ASAR or ALOS PALSAR.
Furthermore, earlier studies have shown that forest vs. non-forest mapping in tropical areas with
C-band radar data requires images acquired during dry conditions [53], which may not have been true
in our study.

The approach to accuracy assessment in which the majority class forest or non-forest within the
test plot was defined first, favoured the ALOS PALSAR and Envisat ASAR classifications that also
had residual non-forest patches inside uniform forest areas. The approach in the accuracy assessment
corresponded to an additional majority filtering to the SAR classification results. On the other hand,
the temporal difference between the acquisition date of the medium resolution satellite images and
the Kompsat-2 images was larger for Envisat ASAR than for the other data sources, which may have
affected the results. Because of the trend of deforestation in the study area [54] the temporal difference
between Envisat ASAR data and the reference data could have contributed to the overestimation of
forest area in the Envisat ASAR classification. Two of 12 Envisat ASAR images were from 2010 and the
other images were from 2004, 2005 and 2006. All images were used to compute the temporal features
for the Envisat ASAR mosaic. The other medium resolution satellite data sets were from 2009 whereas
Kompsat-2 images from 2008, 2010 and 2011.

3.2. Bias in Forest and Non-Forest Classification

The biases were small in most classifications varying from practically zero for Landsat TM
-based classification to a 7% overestimation of forest area in the filtered Envisat ASAR classification.
With RapidEye the forest area was underestimated by 2.5% (numbers rounded to integers in Table 3).
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The differences in the omission and commission errors show that with Envisat ASAR, the filtering
increased the forest area by 11 percentage points and turned the classification from underestimation
to overestimation. With ALOS PALSAR, the filtering somewhat reduced the bias with a slight
overestimation of forest area remaining. When Landsat TM and ALOS PALSAR were used together,
the bias increased 3 percentage points leading to overestimation of forest area compared to using
Landsat TM only. The bias estimation only concerns the common area that was covered by the
Kompsat-2 images because their location was not completely random.

3.3. Accuracy with Six IPCC Compatible Classes

The optical images outperformed the radar data in more detailed land cover classification.
The overall accuracy of classifications with single satellite data source varied between 70% for unfiltered
Envisat ASAR classification and 89% for the RapidEye classification (Tables A1–A5 in Appendix A).
The result from the combined Landsat TM and ALOS PALSAR data was similar to the forest and
non-forest classification, improving the overall accuracy by one percentage point.

‘Grassland’ class was mixed with ‘forest land’ and ‘cropland’ in all classifications. The border
between ‘forest land’ and ‘grassland’ classes was defined by canopy height and crown cover percentage,
which are continuous variables (Table 1). Wooded vegetation that did not fulfil the definition of forest
was counted as ‘grassland’ in the reference data. Thus, mixing of ‘grassland’ and ‘forest land’ classes
could be expected. Similarly, the border between grassland and cropland is not explicit. In the
Envisat ASAR classification, the amount of ‘grassland’ was severely underestimated leading to a 100%
omission error.

Classification errors for the ‘wetlands’ class were low in the optical classifications. For RapidEye,
only the commission error and for Landsat, the omission error deviated from zero. One ‘cropland’
plot and one ‘bare soil’ plot was classified to the ‘wetlands’ class in the RapidEye classification and
one ‘wetlands’ plot to the ‘forest land class’ in the Landsat classification. For SAR classifications,
the proportion of the ‘wetlands’ class was underestimated. There were no commission errors but
the omission errors were 30–40% and 80% for ALOS PALSAR and for Envisat ASAR, respectively.
The combination of Landsat TM and ALOS PALSAR did not improve separation of the ‘wetlands’ class
from other land cover classes.

The most serious error from the viewpoint of REDD MRV would be systematic classification
of other land cover classes to ‘forest land’ class or vice versa since it could cause a large over or
underestimation of carbon emissions [6]. This was not observed because the biases in forest area
estimation were small particularly with optical data. The number of observations in the individual
non-forest classes was low, which does not justify firm conclusions at class level. However, the number
of non-forest observations in these classes in total was large enough to assess the performance of forest
and non-forest classification.

The cloudiness in the optical data reduced the size of the common data set where there was
adequate data in all classifications, from the assessed 840 plots to 320. The accuracy assessments using
all the available plots for each classification gave similar accuracies to the test with the common plot
set. The ranking of the performance of the image types also remained the same.

3.4. Suitability of the Approach for MRV

The small biases that were achieved in this study indicated that the applied estimation procedure
is applicable for MRV type inventories. The bias should be minimized in the operational MRV by
applying a statistical sampling framework throughout the whole process. Provision of accurate maps
of the non-forest classes may be difficult in conditions similar to the study area but combining the
classification with statistically representative reference data can produce reliable information on the
areas of the classes [55].

The image analysis methods for the optical data are relatively mature and established and give
similar results despite the applied algorithm. No complex image pre-processing is required, which
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means a robust and transparent estimation procedure of land cover classes. SAR analysis is still
more experimental as compared to analysis of optical satellite data and it requires special expertise
which decreases the transparency and robustness. The robustness is further decreased by the effect
of terrain topography, surface roughness and moisture. Better elevation models will be available
(https://www.intelligence-airbusds.com/worlddem/) to correct radiometry of SAR images and
image pre-processing and analysis methods become simpler for regular users. This improves the
potential of SAR-based land cover classification.

In our study area, the completeness of classification greatly suffered from cloud cover reducing
the size of the reference data and area for which classification could be done using optical data. This
would favour using L-band SAR as the preferred source. However, the availability of cloud-free
medium resolution optical data has dramatically improved after the launch of the Sentinel-2 satellites
that currently provide global revisits every five days (https://sentinels.copernicus.eu/documents/
247904/685154/Sentinel_High_Level_Operations_Plan). The increased frequency of data acquisition
improves the possibility of utilizing temporal information in land cover classification.

4. Conclusions

Our results match the findings of other studies that use optical data [15–19]. In the case of SAR
data, the situation is less clear. In this study, classification with ALOS PALSAR gave nearly as high
accuracy as the classifications with optical data whereas the ASAR based result was poor. In our own
previous studies, good results with C-band ERS SAR were achieved on a flat terrain in forest and
non-forest classification of tropical forest [32] and poorer accuracies than in this study were found
with ALOS PALSAR in another tropical region [34]. Thus, our results reflect the observations of
other SAR based studies in which variable accuracies have been observed [17,18,30,31]. A particular
tendency with SAR, also observed in our study, is systematic underestimation of non-forest classes [26].
Synergistic use of optical and SAR data sources has been reported to increase the accuracy of the
classification by one to two percentage points [18,25]. In our study, both overall accuracy of forest
and non-forest classification and the overall accuracy of the more detailed classification increased by
one percentage point, when Landsat TM and ALOS PALSAR data were combined. The benefit of
such low or negligible marginal utility from inclusion of data from two different sensor types may be
questionable since the classification models become more difficult to understand, image analysis is
more complex and results are potentially less predictable.

Considering the pros and cons of the data types, we recommend optical data of 10 m spatial
resolution as the primary data source for REDD MRV purposes. A poorer resolution, similar to
Landsat TM, is approximately as powerful when the minimum mapping unit and population unit
of the sampling is 50 m by 50 m, as in this study, or larger. The potential of using the optical data is
supported by excellent availability of free and open data, well-known image processing and analysis
methods, and relatively good insensitivity to different terrain conditions.

Extensive use of L-band SAR for forest cover monitoring for operational purposes would require
guaranteed long-term availability of the data, preferably under the same data policy as with the
Sentinels. In addition, improved digital elevation models and image processing methods that require
less expert knowledge should be available. Considering the present maturity of the imaging systems
and image analysis methods, the L-band SAR is recommended as a secondary data source. The C-band
SAR, although it has poorer potential than the L-band, is applicable in stratification for a statistical
sampling when other image types are unavailable. The low-frequency P-band SAR that will be onboard
the ESA Biomass mission is not expected to be a major operational tool in the near future for REDD
MRV. The mission with a scheduled launch in 2022 will be experimental and the spatial resolution of
50 m to 100 m may not be adequate. Furthermore, several technical issues restrict data availability and
usefulness [56]. In all cases, the data source used should be known for every pixel of the classification
outputs for MRV.

https://www.intelligence-airbusds.com/worlddem/
https://sentinels.copernicus.eu/documents/247904/685154/Sentinel_High_Level_Operations_Plan
https://sentinels.copernicus.eu/documents/247904/685154/Sentinel_High_Level_Operations_Plan
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Our research will continue by combining Copernicus Sentinel and L-band SAR data and a VHR
data sample in a statistical framework to support REDD MRV and forest cover monitoring. High level
of method automation, while sustaining reliability is on the research agenda.
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Appendix

Table A1. Confusion matrix for the RapidEye classification with the six IPCC compatible classes
(UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy). N/A means accuracy could
not be computed because of lack of observations.

Reference

Forest
Land Cropland Grassland Wetlands Settlements Other

Land Total UA (%)

Map

Forest land 235 0 4 0 0 0 239 98
Cropland 5 35 8 0 0 0 48 73
Grassland 7 10 4 0 0 0 21 19
Wetlands 0 1 0 10 0 1 12 91

Settlements 0 0 0 0 0 0 0 N/A
Other land 0 0 0 0 0 0 0 N/A

Total 247 46 16 10 0 1 320
PA (%) 95 76 25 100 N/A 0 OA 89%

Table A2. Confusion matrix for the Landsat TM classification with the six IPCC compatible classes
(UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy).

Reference

Forest
Land Cropland Grassland Wetlands Settlements Other

Land Total UA (%)

Map

Forest land 234 6 5 1 0 0 246 95
Cropland 10 35 7 0 0 0 52 67
Grassland 3 4 4 0 0 0 11 36
Wetlands 0 0 0 9 0 0 9 100

Settlements 0 1 0 0 0 1 2 0
Other land 0 0 0 0 0 0 0 N/A

Total 247 46 16 10 0 1 320
PA (%) 95 76 25 90 N/A 0 OA 88%



Remote Sens. 2018, 10, 942 23 of 26

Table A3. Confusion matrix for the ALOS PALSAR classification with filtering for the six IPCC
compatible classes (UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy).

Reference

Forest
Land Cropland Grassland Wetlands Settlements Other

Land Total UA (%)

Map

Forest land 235 7 11 1 0 0 254 93
Cropland 4 27 4 0 0 1 36 77
Grassland 8 12 1 2 0 0 23 4
Wetlands 0 0 0 7 0 0 7 100

Settlements 0 0 0 0 0 0 0 N/A
Other land 0 0 0 0 0 0 0 N/A

Total 247 46 16 10 0 1 320
PA (%) 95 59 6 70 N/A 0 OA 84%

Table A4. Confusion matrix for the Envisat ASAR classification with filtering for the six IPCC
compatible classes (UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy).

Reference

Forest
Land Cropland Grassland Wetlands Settlements Other

Land Total UA (%)

Map

Forest land 232 20 11 4 0 0 267 87
Cropland 15 24 4 4 0 1 48 51
Grassland 0 0 0 0 0 0 0 N/A
Wetlands 0 0 0 2 0 0 2 100

Settlements 0 2 1 0 0 0 3 0
Other land 0 0 0 0 0 0 0 N/A

Total 247 46 16 10 0 1 320
PA (%) 94 52 0 20 N/A 0 OA 81%

Table A5. Confusion matrix for the combined Landsat TM and ALOS PALSAR classification for the six
IPCC compatible classes (UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy).

Reference

Forest
Land Cropland Grassland Wetlands Settlements Other

Land Total UA (%)

Map

Forest land 240 9 5 1 0 0 255 94
Cropland 5 30 3 0 0 1 39 79
Grassland 2 4 7 0 0 0 13 54
Wetlands 0 1 1 9 0 0 11 82

Settlements 0 2 0 0 0 0 2 0
Other land 0 0 0 0 0 0 0 N/A

Total 247 46 16 10 0 1 320
PA (%) 97 65 44 90 N/A 0 OA 89%
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