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Abstract: In this paper, a component-based multi-layer parallel network is proposed for airplane
detection in Synthetic Aperture Radar (SAR) imagery. In response to the problems called sparsity and
diversity brought by SAR scattering mechanism, depth characteristics and component structure are
utilized in the presented algorithm. Compared with traditional features, the depth characteristics have
better description ability to deal with diversity. Component information is contributing in detecting
complete targets. The proposed algorithm consists of two parallel networks and a constraint layer.
First, the component information is introduced into the network by labeling. Then, the overall target
and corresponding components are detected by the trained model. In the following discriminative
constraint layer, the maximum probability and prior information are adopted to filter out wrong
detection. Experiments for several comparative methods are conducted on TerraSAR-X SAR imagery;
the results indicate that the proposed network has a higher accuracy for airplane detection.
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1. Introduction

As an important tool for earth observation, Synthetic Aperture Radar (SAR) [1,2] has a wide
range of applications, including airplane detection on the ground. In civilian field, the airplane is
an important means of transportation, and airplane detection can be helpful in managing an airport.
Militarily, airplane recognition is of prominent significance; acquiring information such as types and
amount of airplanes is conducive for air defense and military strikes. Therefore, it is necessary to study
airplane detection in SAR images.

Traditional object detection methods for SAR imagery are mainly based on features and
classifiers. The Cell-Averaging Constant False Alarm Rate (CA-CFAR) [3] is a typical case of statistical
characteristic-based algorithm. It is the most commonly used detector, proposed by Finn and Johnson,
and works well in homogeneous clutter. However, when faced with non-homogeneous background or
multiple objects, the result for object detection is unsatisfactory. To solve CA-CFAR performance
degradation caused by interference, the Smallest of Cell-Averaging Constant False Alarm Rate
(SOCA-CFAR) [4], the Greatest of Cell-Averaging Constant False Alarm Rate (GOCA-CFAR) [5]
and Ordered Statistic Constant False Alarm Rate (OS-CFAR) [6] were proposed in succession. Based
on wavelet transform, in 2005, Tello put forward a ship detection algorithm for SAR image [7].
In 2010, Felzenszwalb proposed a Deformable Part-based Model (DPM) [8] for object detection,
which became one of the most effective detection methods. In 2015, Tan and Dou proposed aircraft
detection methods for SAR image based on gradient texture saliency map [9] and scattering structure
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features [10], respectively. These traditional methods, however, still have unsatisfactory aspects.
With the development of technology, more SAR images are acquired with higher spatial resolution,
making it possible to introduce deep learning [11] into SAR image processing. Based on neural
network, Girshick presented Regions with Convolution Neural Network (R-CNN) [12], and Fast
R-CNN [13] for object detection in 2015. Shaoqing Ren et al. presented an improved algorithm called
Faster R-CNN [14], in which Region Proposal Network (RPN) was adopted for candidate box selection.
In 2016, Joseph Redmon proposed a fast and efficient object detection algorithm called You Only Look
Once (YOLO) [15], which simplified the detection problem into classification regression.

These neural network-based algorithms have achieved good performance on optical images,
but do not work well for SAR imagery. Owing to their special imaging mechanism, the ensuing
challenges for airplane detection are mainly reflected in the following two aspects. First, due to
the scattering mechanism, the airplane is presented as scattering points [10] in high-resolution SAR
imagery; a target is prone to be divided into many small pieces [9]. In this case, detecting a complete
goal is difficult and the problem is called sparsity. Second, with scattering conditions such as incidence
angle and terrain azimuth changes, the targets scatter to different degrees, making the object hard
to be accurately located [16]. Due to the complex structure, different parts of an airplane have
different scattering, including cavity reflection, edge diffraction, etc, resulting in scattering diversity.
When traditional methods are faced with complex situations, the weak ability of feature description
and the unique imaging mechanism make the detection results unsatisfactory.

Depth feature [17] has strong description ability and shows good effect in both detection and
classification. Aimed at scattering mechanism in SAR imagery, in this paper, depth feature is utilized to
cope with scattering diversity, and component information is adopted for dealing with sparsity. Based
on the YOLO network [15], the presented component-based multi-layer parallel network is composed
of a component network, a root network, and a constraint discrimination layer. The component
and target locations are obtained by two parallel networks, respectively. In the constraint layer,
the component structure serves as prior information to optimize the preliminary detection results.

2. Fundamental Network for Object Detection

R-CNN [12] and Fast R-CNN [13] have similar patterns for object detection: (a) candidate
region extraction; (b) depth characteristics acquisition through convolution neural networks; and (c)
classification and regression correction for detected frames. As a single-step detection algorithm, YOLO
is different from the methods above. With the image input into the network, all work is processed by
the convolutional layers and the output is directly the detected bounding boxes.

As an end-to-end structure, YOLO network needs to be pre-trained on large datasets.
The convolution kernel parameters of the first 20 layers are trained using ImageNet [18].
The pre-trained network, four convolution layers, and two fully connected layers together consist
of the overall framework. In YOLO algorithm, the whole imagery is divided into a S × S grid,
where B bounding boxes of different objects are predicted. For each bounding box, the center
coordinates (x and y), object size (width and height) and location confidence score are obtained
at once. Besides, there is a class probability for each grid. Then, the final output is a S× S× (B ∗ 5 + C)
tensor. In YOLO network, it is determined that S = 7, B = 2. There are 20 categories in PASCAL VOC
dataset, therefore, C = 20.

To facilitate the calculation, the objective function of YOLO algorithm optimizes the squared
error of the output. Position error and category error are added with different weights
(λcoord = 5, λnoobj = 0.5 set in the original YOLO network) to distinguish their influence.
Besides, compared with a small airplane target, the same error should have less effect on a big target.
Thus, the square root of the target width and height are predicted in the algorithm. For bounding
box that does not contain any target, there is only confidence level, no error in position and size.
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Besides, each grid outputs two bounding boxes, and the one overlaps more with the labeling box is
adopted for classification error computation. The loss function is as follows:
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where the first item is the center coordinate error of the bounding box. 1obj
ij means that there is an object

in the ith grid, and the jth bounding box is responsible for loss computation. Variables with ˆ are the
corresponding values of the labeled target, while variables without ˆ are that of the predicted target.
The second item denotes the size error of the boundary box, reflected by shift in width and height.
Meanwhile, λcoord and λnoobj are the weights of position error and category error, respectively. If the

predicted jth bounding box in the ith grid does not contain any target, 1noobj
ij = 1 and the third term

represents the confidence level error of the bounding box. For the ith grid, if it contains an object,
1obj

i = 1. The fourth item stands for the classification error.

3. Component-Based Multi-Layer Parallel Network for Airplane Detection

3.1. Framework of the Proposed Algorithm

Inspired by the DPM method [8], objects of the same class always have similar parts. Focusing on
airplane detection, each aircraft has a head, two wings and a tail. Due to different postures, the airplane
components may have slightly different arrangement. However, the component relationship can still
serve as priori information to optimize the detection results. Based on this idea, a component-based
multi-layer parallel network is designed for airplane detection in SAR imagery. The detection structure
consists of three layers: the first layer is to locate the whole object; the second layer is responsible for
components detection; and the third layer utilizes the prior information and maximum probability for
constraint and optimization. The overall algorithm framework is shown in Figure 1.

Figure 1. Framework of the component-based multi-layer parallel network for airplane detection.
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First, the trained root network and component network are adopted to detect the overall airplane
and its components, respectively. Then, in the constraint layer, K-Nearest Neighbor (KNN) method [19]
is used to filter mismatch between the object and the components. Finally, according to the maximum
probability principle, the component information and detection probability are combined to eliminate
the wrongly detected targets.

3.2. Parallel Detection Network

3.2.1. Training of the Detection Network

In the proposed algorithm, the root network is to locate the overall target and the part network is
responsible for component detection. Targeting at airplane detection, only two categories, airplane
and background, are set up for root network training, avoiding the interference of other categories.
An airplane in SAR imagery is quite small, composed of hundreds of pixels, which brings difficulties
for feature extraction. For component detection, each airplane target is divided into two components:
the head and the tail. The training of the root and the component networks is consistent with YOLO
algorithm. To adapt to the characteristics of SAR imagery, labeled images are employed for transfer
learning of the first 20 convolution layers. Considering that various aspect ratio exist, a new parameter
λaspect is introduced into the original objective function, to distinguish it from the coordinate error.
The optimization objective is still square sum error, but modified as follows:
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where λaspect is the aspect ratio weight. λcoord = 5, λaspect = 3 is set during the root network training
and λaspect = 4 when training the part network. Since aspect ratio of different components vary
largely, to accurately detect the components, the suppression of the aspect ratio error should be
appropriately increased.

3.2.2. Preliminary Detection

In preliminary detection, the bounding boxes of the whole airplane and each component are
detected by the parallel network. The detection flow of the root and the part network are quite similar
with that of YOLO algorithm. First, the image to be detected is scaled and divided into 7× 7 grids, and
each grid is predicted to obtain the category score, confidence level and coordinates of the bounding
boxes. Then, according to the output, the capture probability and coordinate information are computed
and converted to the constraint layer. To facilitate the following optimization, the confidence level
and category probability are utilized for calculating the capture probability, indicating the reliability of
each bounding box. The formula of the capture probability is defined as follows:

P =
√

Pconf · Pclass (7)
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where Pconf represents the confidence level and Pclass denotes the category probability. In this way,
the capture probability reflects the credibility of the bounding box and the class probability.

3.3. Discriminative Constraint Based on Priori Information and Maximum Probability

The second part of the framework is a constraint layer, in which the prior information and the
maximum probability are combined to optimize the preliminary detection results. Elaborately, it can
be divided into two steps: (1) KNN method is utilized to match the detected target box and
the corresponding components;and (2) with the maximum probability as the priority criterion,
the component information is adopted to constrain the detection results.

3.3.1. KNN Match

After the root network and the part network, all the possible bounding boxes of the targets and
the components are obtained, but they do not have a clear correspondence. Therefore, a corresponding
relationship between the root target and the components should be established, for subsequent
discriminant constraint. The nearest two components are searched for each root target by the KNN
method, so that the components and the target are linked accordingly.

In KNN algorithm, for a point set X, the nearest K points from each point are searched, according to
a certain distance formula. The commonly used distance functions are shown in Table 1. When sparse
points to be searched are more than 20, the exhaustive search strategy [20] and Hamming distance [21]
are employed. Oppositely, if non-sparse points do not exceed 20, K-d tree search strategy [22],
Euclidean distance [23], and Manhattan distance [24] should be considered.

Table 1. Distance calculation functions.

Strategies Name Calculation Formula

K-d Tree Search

Euclidean distance d2
st = (xs − yt)(xs − yt)

′
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√
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#[(xsj 6=0)∪(ytj 6=0)]

Actually, the formulas can be divided into distance metric and similarity measurement. Longer
distances mean greater differences between individuals. Oppositely, the smaller is the similarity
measure, the bigger is the difference between the points.

Euclidean distance measures the absolute distance between points, thus all dimensions should be
in the same scale. Minkowski distance is a general expression for multiple distance measurements.
In Table 1, when variable p = 1 or tends to infinity, Manhattan distance and Chebyshev distance
are obtained, respectively. Magnitude of different features has a large influence on Euclidean
distance; therefore, for standardized Euclidean distance and Mahalanobis distance, each component
is standardized.
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Considering that similarity metric is not sensitive to magnitude, correlation distance is adopted to
determine similarity between different variables. Cosine similarity is measured by the cosine value of
the two vectors. Compared with distance metric, it focuses more on difference between vector direction
rather than in length. Hamming distance is defined as the minimum number of substitutions to turn
one into the other. In Jaccard distance, the proportion of different elements in the total is employed to
measure the similarity of the two sets.

Distance measurement embodies the absolute difference of numerical characteristics between
individuals, suitable for difference analysis of dimension values. Similarity concentrates more on
direction and is insensitive to absolute values. Considering that there are not many points and absolute
distance is important in our work, Euclidean distance is adopted in the KNN method. The basic search
process is as follows:

a. According to the target set, divide the search points into N regions.
b. For the ith point in region I, search the k points that are closest to the target point in corresponding

region I.
c. For the distance of the kth point obtained in last step, find the region with the same distance.
d. In the region that has been found, find the closer point.

3.3.2. Discriminative Constraint

KNN algorithm finds the corresponding components for each root target; it is necessary to filter
out the wrong detection results through the discriminative constraint. Actually, the airplane and its
components are distributed in a certain rule, not arbitrarily arranged. The component distribution on
the root airplane can be divided into several cases, as shown in Figure 2.

Figure 2. Four possible component locations on the root target.

Assuming that the two components (the airplane head and the tail) are called P1 and P2, they can
be presented as up–down or left–right, four conditions in total. When conducting the discriminative
constraint, it is predefined that the root target is divided into two parts, accounting for 35% and 65% of
the entire plane, respectively. The components P1 and P2 must overlap with either part more than
60%, and P1, P2 cannot be distributed on the same side, conforming to one of the above four cases.
Once the conditions are met, the two components are assigned to the corresponding root target and
can no longer be used by other targets. The overlap rate is calculated as follows:

overlap =
area(part) ∩ area(component)

area(part)
(8)

In this way, the root target can correctly match the components, thus most wrong detections are
filtered out. However, if the components are missed, the correctly detected root target will have no
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matching components, increasing the missing detection rate. In response to this problem, the maximum
probability criterion is introduced. When the capture probability of the root target is high enough, it can
still be regarded as correct detection, even with no matching components. The overall discriminative
constraining process is as follows and shown in Figure 3:

Figure 3. Discriminative constraint layer.

a. If the capture probability of the root target is more than 90%, reserve the root target directly.
b. For root targets with capture probability below 90%, calculate the overlap rate of the component

with the root target. If no matching components are found, filter the root target.
c. If both the overlap rates between component P1 and P2, and the root target are over 60%, estimate

the component distribution.
d. If the distribution of the two components does not belong to the four cases above, filter

the corresponding root target, otherwise retain it as the final result.

With the strategies above adopted, the maximum probability can effectively reduce the error rate
caused by miss-detection of the components.

3.4. Flow Chart of the Proposed Algorithm

The overall framework of the proposed network is shown in Figure 4. Actually, it consists of
two parts: network training and testing. First, for the training set, each airplane is labeled with one
overall bounding box and two components (a head and a tail). Then, the labeled training images are
utilized to train the root network and the part network. In the testing stage, the images to be detected
are input to the network, and the root target and the components are detected, respectively. Finally,
the preliminary detection results are input to the discriminative constraint layer, as shown in Figure 3,
to obtain the optimized results.

Figure 4. Algorithm flow chart.
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4. Experiment

4.1. Experimental Data and Setting

TerraSAR-X data obtained from Mount Davies Air Force Base, Arizona were adopted in this
experiment. The Pauli SAR imagery has a resolution of 2 m and the image size is 11,296 × 6248 pixels.
To accurately label the aircraft targets, optical image from Google Earth (2010) was utilized for
corresponding reference. The SAR imagery and the optical image are shown in Figure 5 for contrast.
There are more than 820 airplanes in the whole image, which is sliced into 120 figures. The training
set has 110 pictures, containing 703 airplanes and the rest are for testing. In this paper, an airplane is
divided into two components: a head and a tail. As a supervised algorithm, each airplane target is
labeled with a global box and two bounding component boxes.

Figure 5. TerraSAR-X data adopted in our work.

In this paper, the proposed method is the component-based multi-layer parallel network and the
classical detection algorithm (CFAR) method serves as a benchmark approach. Based on DPM [8],
an Adaptive Component Selection-Based Discriminative Model (ACSDM) [25] is another comparative
method. Note that experiments about CFAR and ACSDM methods have been conducted, as shown
in Reference [25]. To properly compare the three approaches above, the same SAR data and
evaluation criterion were adopted in this work. For clear illustration, the same assess indexes are
presented as follows:

P =
Ncd
Nd

, (9)

Pf a =
N f d

Nd
, (10)

R =
Ncd
Nt

. (11)

In Equation (9), Nd is the number of all detected objects, and Ncd and N f d represent the number
of correctly detected aircrafts and objects that are falsely detected as aircraft, respectively. Therefore,
Nd = Ncd + N f d. Nt indicates the number of total aircrafts, including the correctly detected aircrafts
and the missing number; in the following experiments, Nt = 117. These indexes are counted in each
image individually, then, the overall measurement indexes are added up and computed.
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4.2. Experimental Results and Analysis

Tables 1 and 3 in Reference [25], and Table 2 present the airplane detection results of CFAR,
ACSDM and the proposed network, respectively.

Table 2. Detection results of the proposed algorithm.

Region Labeled Image Root Detection Results Final Detection Results

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6



Remote Sens. 2018, 10, 1016 10 of 14

Table 2. Cont.

Region 7

Region 8

Region 9

Region 10

In the CFAR results, owing to sparsity and diversity, airplane targets consisting of scattering
points cannot be completely detected. Besides, some high-brightness adjacent points belonging to one
aircraft are also detected as multiple targets by mistake. Therefore, CFAR method has a relatively high
false alarm rate and the performance is not effective enough. As for the ACSDM model, it achieves
better detection results than CFAR method. As shown in Table 3 in Reference [25], most targets are
accurately located with proper component positions, demonstrating that component information is
contributing for object detection. However, some unknown objects are wrongly detected as airplanes
while some other airplane targets are not correctly detected. In Table 2, the proposed network presents
the best performance among the three detection methods. It is clear that all airplanes in the testing
images are correctly detected. For each airplane target, the blue bounding box means the root location,
yellow box and green box indicate the detected airplane head and tail, respectively. Besides, there is no
presence that multiple airplanes are detected as one target.

On the whole image, Figure 6 shows the overall detection results by the proposed method.
There are conventional airplanes and micro-airplanes in the imagery. Labeling for the latter is difficult,
therefore, micro-airplanes are excluded in the experiments. Since acquisition of SAR imagery is quite
demanding, the dataset for experiments is usually a bit small, compared with optical images. In the
overall detection results, eight airplanes are missed but there were no wrong detections.

To give more convincing evidence, the detection number of different methods are shown in
Tables 2 and 4 in Reference [25], and Table 3. There are totally 117 airplanes in the 10 testing images.
In the detection results of CFAR method, the missing number is 8 and the wrongly detected number is
40, resulting in the highest false alarm rate. The missing number of ACSDM model is similar to that
of CFAR detection results. However, the wrongly detected number is largely reduced to one tenth.
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Besides, there is no case that scattering points belong to one airplane are detected as multiple objects.
It proves that utilizing component information is effective in dealing with sparsity in SAR imagery.
However, the problem caused by diversity still exists in the detection results of the ACSDM model.
In the proposed network, depth feature and component information are adopted to cope with sparsity
and diversity for airplane detection in SAR imagery. As shown in Table 3, all airplanes in the testing
images are correctly detected. Compared with CFAR method and the ACSDM model, the proposed
approach has the highest detection accuracy and the lowest false alarm rate. Even though 10 objects
are falsely detected as airplanes in the root detection, there is one wrong detection left in final detection
(after the constraint layer). It demonstrates that the constraint layer does effectively optimize the
detection performance.

Figure 6. Detection result of the whole imagery.

Table 3. Detection number of the proposed algorithm.

Region Two stages Correctly Detected Number Ncd Missing Number Wrongly Detected Number N f d

Region 1 Root detection 12 0 0
Final detection 12 0 0

Region 2 Root detection 20 0 3
Final detection 20 0 0

Region 3 Root detection 8 0 0
Final detection 8 0 0

Region 4 Root detection 5 0 1
Final detection 5 0 0

Region 5 Root detection 11 0 1
Total detection 11 0 0

Region 6 Root detection 17 0 1
Final detection 17 0 0

Region 7 Root detection 8 0 0
Final detection 8 0 0

Region 8 Root detection 8 0 1
Final detection 8 0 0

Region 9 Root detection 15 0 1
Final detection 15 0 0

Region 10 Root detection 13 0 2
Final detection 13 0 1

Total Root detection 117 0 10
Final detection 117 0 1
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For better evaluation, the overall measuring indexes and time consumption of different methods
are presented in Table 4. The recall rate R of ACSDM model is lower than that of CFAR method, but the
former has a higher accuracy and a lower false alarm rate. In general, the proposed network exhibits
the best performance with the highest accuracy and recall rate and the lowest false alarm rate. As for
time consumption, the proposed approach is network-based and has the longest training time. As a
supervised method, the ACSDM model also requires 5 h for training. The traditional CFAR-based
method needs no training. However, the detection time shows the opposite pattern. The proposed
algorithm has obvious advantage and only costs 0.9 s for detection, followed by the ACSDM model,
while detection time of CFAR method is the longest.

Table 4. Measuring indexes of different methods.

Methods Accuracy P False Alarm Rate Pf a Recall Rate R Training Time Detection Time

CFAR Algorithm 0.732 0.268 0.932 / 20 s

ACSDM Model 0.964 0.036 0.915 5 h 7 s

The Proposed Appro. 0.992 0.008 1 22 h 0.9 s

4.3. Discussion

To further improve the accuracy and apply the proposed method in practical situations,
the following aspects are considered. Because of the regular array, it is suspected that the network
somehow learns the periodicity.

In our work, the arrangement of the airplanes is quite regular, with almost all airplane heads
towards left. The original network to test images in which the objects have similar orientations
might not be convincing enough. Since we do not have SAR images where the airplanes are parked
in disorder, the testing images are rotated with 90◦, 180◦ and −90◦ to get airplanes with different
orientations. Synchronously, the labeled samples are also rotated to obtain the newly trained network
and the corresponding detection results are shown in Figure 7:

(Region 1) (Region 2) (Region 3) (Region 4)

(Region 5) (Region 6) (Region 7) (Region 8)

Figure 7. Detection results of the newly trained network.

From the detection results above, it is clear that all airplanes are correctly detected. It is
demonstrated that the network learns the characteristics rather than periodicity to detect the objects
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correctly. Besides, from Region 4, we can see that aircrafts in the two columns are actually arranged
face-to-face. However, the original network can still detect all aircrafts, which to some extent, refutes
the proposition that the “network learns periodicity”.

5. Conclusions

Aiming at airplane detection in SAR images, depth characteristics and component structure are
adopted to cope with diversity and sparsity, respectively. Drawing on YOLO algorithm, this paper
proposes a component-based multi-layer parallel network for detecting aircrafts. In the proposed
approach, the overall target and the components are preliminarily located by the parallel network.
In the following constraint layer, KNN method is utilized to match the detected airplane and the
corresponding components. Then, with maximum probability as criterion, prior structure information
is employed to optimize the detection results. In this paper, experiments about the proposed approach
is carried out on TerraSAR data, with CFAR method and ACSDM model for comparison. In the testing
images, each airplane is accurately located by the presented network. There are 10 wrong detections in
preliminary detection but only one left in final results, proving that the constraint layer is effective
in dealing with sparsity in SAR imagery. Compared with CFAR method and the ACSDM model,
depth feature in the proposed network is characterized by continuous iterative training and has a
stronger adaptability than handmade HOG features. Therefore, missing detection of the presented
network is much less. Future work will focus on merging the root network with the component
network, to obtain bounding boxes of the root and the components directly. This method saves much
computation and improves the training speed.
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