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Abstract: The use of remote sensing to monitor surface water bodies has gradually matured.
Long-term serial water change analysis and floods monitoring are currently research hotspots of
remote sensing hydrology. However, these studies are also faced with some problems, such as
coarse temporal or spatial resolution of some remote sensing data. In general, flood monitoring
requires high temporal resolution, and small-scale surface water extraction requires high spatial
resolution. The machine learning method has been proven to be effective against long-term serial
surface water extraction, such as random forests (RFs). MODIS data are well suited for large-scale
surface water dynamic analysis and flood monitoring because of its short return cycle and medium
spatial resolution. In this paper, the Yangtze River Basin (YRB) in China was selected as the study
area, and two MODIS products (MOD09A1 and MOD13Q1) and RF method were used to extract the
surface water from 2000 to 2016. Considering the disadvantages of temporal or spatial resolution
of these two MODIS products, this study also presents a data fusion method to combine them and
get higher spatiotemporal resolution water results. Finally, 762 surface water maps from 2000 to
2016 are obtained, whose temporal and spatial resolution is every eight days and 250 m, respectively.
In addition, water extent variation is analyzed and compared to observed precipitation data. The main
conclusions are as follows: (1) this constructed approach for long-term serial surface water extraction
based on the RF classifier is feasible, and a good fusion method is used to obtain the surface water
body with higher spatiotemporal resolution; (2) the maximum area of the surface water extent is
48.53 × 103 km2, and seasonal and permanent water areas are 20.51 × 103 km2 and 28.01 × 103 km2,
respectively; (3) surface water area is increasing in the YRB, such that seasonal water area decreased
by 3450 km2, and the permanent water area increased by 3565 km2 in 2001–2015; (4) precipitation
is the main factor causing variation in the surface water bodies, and they both show an increasing
trend in 2000–2016. As such, the approach is worth referring to other remote sensing applications,
and these products are very both valuable for water resource management and flood monitoring in
the study area.

Keywords: remote sensing; surface water; MODIS; Yangtze River Basin; precipitation

1. Introduction

Apart from the ocean water, the interior of the Earth’s continental surface water accounts for
only a small part of the continent [1,2]. The continental surface water plays a key role in Earth’s
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hydrological and biochemical cycles [3], which mainly include the water of rivers, lakes, and reservoirs.
Too much or too little water can cause floods or droughts which pose great challenges all over the
world [4,5]. Reliable assessment and driver analysis of surface water reserves is the key to water
resource management [6–8], especially the dynamic extent of surface water bodies [9,10].

A continuous set of remote sensing images can be used to understand the dynamic changes
of surface water bodies, and surface water extent with high temporal resolution can be used for
hydrological process analysis. A review of the relevant literature indicates that application of long-term
serial surface water bodies produced by optical remote sensing data appeared approximately 10 years
ago. However, long-term serial and large-scale surface water research has been mainly applied for the
past 5 years [11–13].

Remote sensing data such as MODIS are becoming the most common data employed for surface
water extent mapping because of their temporal and spatial resolution [11]. Landsat data with high
spatial resolution (mainly 30 m) currently is well applied to long-term water observation [9,14,15], but
it is not suitable for hydrological process analysis because of 16-day intervals and above. Compared to
Landsat, MODIS data’s spatial resolution is lower which the maximum value is 250 m, but shorter
time interval and more regular which is better suited for dynamic hydrological analysis and flood
monitoring than Landsat data. Some studies have used MODIS data to explore hydrological dynamics
of lakes or rivers. Feng et al. used MODIS Level-0 data and FAI index to extract the continuously
inundated extents of Poyang Lake which is the largest freshwater lake in China from 2000 to 2010,
and the result showed seasonal and inter-annual changed significantly in Poyang Lake’s inundation
area [16]. Ogilvie et al. utilized 526 MOD09A1 images with 8-day 500-m resolution over the period
2000–2011 and selected some water indexes to identify major floods since 2000 across the Niger Inner
Delta [11]. However, the two deficiencies still exist: (1) many results produced by MODIS data with
daily or every eight days are affected by clouds which can cause great errors; (2) for 16 days and above
MODIS products, it is difficult to observe the dynamic change process of surface water, and it cannot
be used to monitor the flood. Therefore, several approaches are necessary to resolve these issues.

Traditionally, there are two main types of methods of water extraction. The first approach is the
threshold approach, including band thresholds (e.g., the near-infrared band) and index thresholds,
such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI)
and Modified Normalized Difference Water Index (MNDWI) [17]. These indices can well distinguish
between water and non-water by setting thresholds. However, threshold selection is complicated, and
this single threshold will result in a significant error for a large-scale area or different moments because
of climate and water characteristics [18]. The other method is the supervised classification based
on some prior knowledge such as sample points. Commonly used methods include Support Vector
Machines (SVM) and Maximum Likelihood (ML). At present, some similar heuristic algorithms, used
for this type of classification, is widely increasing, such as Decision Tree, Logical Regression (LR) [12],
Geographic Weighted Regression (GWR) [19] and Random Forest (RF) [20]. These methods do not
need to determine the threshold and can use information of multiple feature variables (including
bands and indices), and the obtained information will be more comprehensive. RF classifier is
an improved decision tree algorithm. Compared with the decision tree, RF classifier introduces a
bootstrap resampling method to construct a cluster of trees for classification. Compared to other
machine learning methods, such as SVM, it basically does not appear to have fitting problems [21].
RF classifier is efficiently for large databases, robust to outliers and noise, and computationally faster,
which is applicable to long-term serial water extraction [20,22].

The Yangtze River Basin (YRB) is a flood and drought-prone area in China. Over the past
two decades, severe floods and droughts have frequently occurred in the YRB. The 1998 big-flood
caused serious economic losses and casualties, mainly occurred in the middle and lower reaches [23].
Many areas of the basin also suffered worst drought during the spring of 2011 [24]. At present, National
Aeronautics and Space (NASA) provides a lot of MODIS products that can be used to extract surface
water, such as MOD09 and MOD13. MOD09A1 has a temporal resolution of every eight days, but the
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spatial resolution of 500 m; MOD13Q1 has a spatial resolution of 250 m, but the temporal resolution of
every 16 days. If combining their own spatial and temporal advantages by some means and ensuring
the simulation results with high accuracy, it will be more useful to explore the hydrological process in
the study area.

The objective of the paper is to extract surface water from 2000 to 2016 by two sets of MODIS data
(MOD09A1 and MOD13Q1) and combine them to get surface water results with higher spatiotemporal
resolution. Furthermore, this paper uses the set of data to explore the spatial distribution and
inundation variation of surface water bodies, and explore the correlation between water area and
precipitation in the study area.

2. Study Area and Data

2.1. Study Area

The Yangtze River is in southern China with a drainage area of 1.8 × 106 km2 (24◦30′–35◦45′ N,
90◦33′–122◦25′ E), who originates in the Tibetan Plateau and eastward flowing into the East China
Sea (Figure 1). YRB covers 14 provinces in southern China. This basin built many water conservation
facilities, such as the Three Gorges Hydropower Station. The degree of development varies widely
from various regions, with upstream poverty and downstream rich, generally. Serious floods and
droughts frequently occur in the middle and lower reaches, resulting in massive human deaths and
economic losses. Remote sensing data can be used to observe temporal and spatial variation of surface
water for YRB.
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Figure 1. Spatial distribution of main rivers and lakes in the YRB and the hydrological stations.

2.2. MODIS Products

MOD09A1 (approximately 500 m spatial resolution) provides surface reflectance bands 1–7 for
every eight days. It also provides State QA Descriptions data which contains MOD35 cloud/snow/ice
flag, land/water flag and cloud shadow. So far, the MOD09A1 product has been used by some
researchers to identify surface water information [11,25].

MOD13Q1 (approximately 250 m spatial resolution) is mainly designed to observe changes in
vegetation by NDVI and Enhanced Vegetation Index (EVI), as well as provides the auxiliary red,
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near-infrared, blue and mid-infrared bands, corresponding to Bands 1, 2, 3 and 7, respectively. Also, it
provides pixel reliability summary QA, VI Quality detailed QA and the composite days of the year.

The 5th versions of MOD44W products are only one image of the global surface water, and the
spatial resolution is 250 m. It has been proven to be reliable and can be used as the basis of sample
collection [26].

Seven different tiles (including h25v05, h26v05, h27v05, h28v05, h26v06, h27v06 and h28v06)
are required to cover the entire YRB (Figure 1). All images of the 7 tiles for MOD09A1 and
MOD13Q1 products, from the 49th day of 2000 to the 257th day of 2016, were downloaded from
https://ladsweb.modaps.eosdis.nasa.gov, with a total of 5334 and 2674 images for MOD09A1 and
MOD13Q1, respectively. Noteworthy, they are both selected from the 6th versions of MODIS products
which is proven to be better than the previous data based on the study results of Zhang et al. [27].

2.3. Ancillary Data

Some ancillary data is needed to collect for classification results correction, accuracy validation
and analysis of water changes.

2.3.1. Result Correction Data

Because of external conditions and own shortcomings (such as topographic shading, clouds, ice,
snow, cloud shadows and instrument failure), observations from remote sensing satellites can lead to
poor observational quality. For MOD09A1 and MOD13Q1, snow, ice, cloud, cloud shadow is available
from their QA data (Section 2.2). In addition, digital elevation model (DEM) data with 30 m resolution
was downloaded from Geospatial Data Cloud (http://www.gscloud.cn/sources) and processed it into
the slope data for this study. It was resampled to 250 m and 500 m for removing terrain shadows.

2.3.2. Accuracy Validation Data

It is necessary to compare the simulation results of the same time in the same area with
higher-resolution images such as Landsat for actual case verification. The water extent of Poyang
Lake and Dongting Lake varies dramatically, which is easily to be misclassified. Therefore, the
simulation results of two lakes can reflect the accuracy of the whole results to a large extent.
Some Landsat images of Poyang Lake and Dongting Lake, including the wet and dry season
(Section 4.1), were used for accuracy validation. These images are downloaded from the USGS archive
(https://earthexplorer.usgs.gov/). This study uses the NDWI to initially extract water bodies and
manually corrects them to obtain 30m resolution water body maps. The results were also resampled to
250 m and 500 m resolution for validation.

2.3.3. Precipitation Data

To explore the relationship between the water extent and precipitation, this study collected daily
precipitation data of 190 meteorological stations for 2000–2016 from the China Meteorological Data
Sharing System (http://data.cma.cn/). These data are interpolated to get monthly precipitation data
with 500 m resolution for study area by inverse distance weight interpolation method.

3. Method

Figure 2 shows the schematic for surface water results acquisition and change analysis.
The acquisition of surface water results includes: (1) supervised classification by RF classifier; (2) Water
result correction; (3) Water result fusion. Water change analysis includes: (1) water spatial distribution;
(2) water area change; (3) driving factors.

https://ladsweb.modaps.eosdis.nasa.gov
http://www.gscloud.cn/sources
https://earthexplorer.usgs.gov/
http://data.cma.cn/


Remote Sens. 2018, 10, 1025 5 of 20
Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 20 

 

 
Figure 2. Overview of the acquisition and analysis of surface water results. 

3.1. Classification by RF Classifier 

This study uses the random forest (RF) method to extract surface water, which mainly involves 
three aspects, including RF classifier, feature variable section and sample collection. This specific 
process can be seen in Figure 3. 

 
Figure 3. Surface water extraction process for MOD09A1 and MOD13Q1. 

3.1.1. Random Forest Classifier 

Breiman suggested a classifier in 2001 that is based on statistical theory called RF classifier [28]. 
This classifier belonging to ensemble learning algorithms is a combination of tree predictors and 
employs the strategy that a random subset of the predictors is selected to grow a binary tree, where 
each tree is grown on a bootstrap sample of the training set. The algorithm provides a parameter 
called out-of-bag (OOB) that is the ratio of samples that have not been used for training, and the out-

Figure 2. Overview of the acquisition and analysis of surface water results.

3.1. Classification by RF Classifier

This study uses the random forest (RF) method to extract surface water, which mainly involves
three aspects, including RF classifier, feature variable section and sample collection. This specific
process can be seen in Figure 3.
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3.1.1. Random Forest Classifier

Breiman suggested a classifier in 2001 that is based on statistical theory called RF classifier [28].
This classifier belonging to ensemble learning algorithms is a combination of tree predictors and
employs the strategy that a random subset of the predictors is selected to grow a binary tree, where
each tree is grown on a bootstrap sample of the training set. The algorithm provides a parameter called
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out-of-bag (OOB) that is the ratio of samples that have not been used for training, and the out-of-bag
error (OOB error) represents the generalization error which can be regarded as the validation result for
the model.

Compared with a single decision tree classifier, RF classifier is more robust and has the good
generalization ability in the classification process because of the characteristics of multiple trees and
repetitive sampling. RFs have been widely used in feature classification [29–31], and water extraction
is also involved in the recent [10]. In general, RF classifier includes the following several advantages:
(a) robust to outliers and noise; (b) efficiently and fast to classify, c) not easily overfitting. In this paper,
RF classifier was chosen as the classification method because of its efficient application for long-term
serial images.

3.1.2. Feature Variable Section

Feature variable selection is one of the key points of classification. It will have a direct
impact on the performance of a classifier since the model of the classifier is expressed by some
feature variables. In general, taking as many relevant feature variables as possible is beneficial to
modeling. For MOD13Q1 products, four bands (Bands 1/2/3/7) and two indices (NDVI/EVI) were
all selected as feature variables. For MOD09A1 products, some indices which are often used to
extract surface water are lacking. Therefore, some relevant indices are calculated by the known bands,
including NDVI, NDWI and MNDWI. Finally, a total of seven bands (Bands 1–7) and three indices
(NDVI/NDWI/MNDWI) are used as feature variables for MOD09A1 products to extract water.

3.1.3. Sample Collection

Determination of samples is required prior to modeling. To make the samples meet representativeness
and reliability along with fast and efficient simulation model, the spatial position of sample points
should be as uniform as possible while the number of sample points is controllable. The sample points
for a tile were collected according to the following: (a) taking the central pixel as a sample point in
the 20 × 20 non-water pixels, that is, selecting a non-water sample point per 5000 m (MOD44W with
250 m spatial resolution); (b) taking the central pixel as a sample point in the 6 × 6 water pixels, that is,
selecting a water sample point per 1500 m. According to the above-noted procedure, a total of about
50,000 non-water sample points and 15,000 water sample points can be selected for an image, and a
total of approximately 500,000 water and non-water sample points are selected.

The surface water extent in different periods is different because of its dynamic characteristics,
so the primary samples selected by MOD44W cannot be used directly. To ensure that the water or
non-water sample points are completely unmistakable, this study selects the near infrared band and
some indices by setting certain thresholds to filter sample points. Taking the h27v06 tile of MOD09A1
data as an example, the thresholds of NDWI and MNDWI are both set to 0.2 and the threshold of
NDVI is set to −0.2, as well as the threshold of near infrared is set to 3500 for water sample points,
which means that the water sample points that meet NDWI > 0.2 and MNDWI > 0.2 and NDVI < −0.2
and b2 > 3500 are the final water sample points. Correspondingly, the non-water points meeting
NDWI < −0.2 and MNDWI < −0.2 and NDVI > 0.2 and b2 < 5000 are the final non-water sample
points. For MOD13Q1, the near infrared band and NDVI are considered. Taking h27v06 as an example,
water sample points meet NDVI < −0.2 and b2 > 3500, and non-water sample points meet NDVI > 0.2
and b2 < 5000.

3.2. Water Result Correction

Figure 4 provides the specific process of correction for water extraction results. Clouds, cloud
shadows and snow/ice can all be obtained from the QA data of MOD09A1 and MOD13Q1.
Terrian shadows can be removed by DEM data.
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3.3. The Fusion Method of Water Results

Using the above methods, two sets of surface water results were obtained, with 8 days 500 m
resolution and 16 days 250 m resolution, respectively. However, the 500-m resolution is rough enough
that some water information does not show up, and a 16-day interval cannot be a good show for
hydrological process, especially the flood process. Therefore, this study intends to use these two sets
of data to obtain more accurate surface water products by a fusion method. The purpose is to combine
the advantages of two sets of products to obtain higher-resolution and more accurate water products.
At last, the surface water results are 8-day 250-m resolution.

The water result fusion process is shown in Figure 5. A1 and A2 are the pixels of 500 m water
extraction results from MOD09A1 for 20xx001th day and 20xx009th day, and B is the pixel of 250 m
water extraction results from MOD13Q1 for 20xx001th day. C is the corresponding production date for
each pixel of B, which is the auxiliary band of MOD13Q1. The value range of C is 1–16 for 20xx001th day,
where 1–8 and 9–16 is corresponding to 20xx001th day and 20xx009th day for MOD09A1, respectively.
The values of A1, A2 and B can only be 0 or 1, where 0 represents non-water and 1 represents water.
A1 and A2 are both resampled directly into 250 m, and one pixel is split into four, so their number of
rows and columns is the same with B.

Three steps to determine the final values of all A1 pixels: first step, if 1 ≤ C < 9, A1 is replaced by
B; second step, if 9 ≤ C < 17 and A1 = B, the value of A1 does not change; last step, if 9 ≤ C < 17 and
A1 is not equal to B, the gradient of A1 and B can be calculated by taking a window of 3 × 3 pixels:

gradienti =

√√√√√ T
∑

i,t=1∼T
(dyit/dxit)

2

T
(1)

where i is the location of A1, A2 and B; t is the location of its neighboring pixels; T is the total number
of surrounding pixels in the total window (here is 8); dx is the distance between two pixels and dy is
the difference between two pixel values (the value of dy is 0 or ±1).

Assuming the distance between adjacent pixels is 1, the value of dx can be only 1 or
√

2.
Therefore, if gradientA1 < gradientB, the value of A1 does not change, else A1 is replaced by B.

These 3 steps correspond to the order in which the pixels are recognized. It can also be expressed
as the following Equation (2).

D1 =


B (1 ≤ C < 9)

A1 (9 ≤ C < 17&A1 = B)

A1 (9 ≤ C < 17&A1 6= B&gradientA1 < gradientB)

B (9 ≤ C < 17&A1 6= B&gradientA1 ≥ gradientB)

(2)

where D1 is the pixel of fusion results for 20xx001th day.
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Based on the above steps, judging the final value for each pixel, the surface water map for the
20xx001th day can be obtained. Likewise, using A2, B and C, the surface water map for the 20xx009th
day can also be produced (Equation (3)).

D2 =


B (9 ≤ C < 17)

A2 (1 ≤ C < 9&A2 = B)

A2 (1 ≤ C < 9&A2 6= B&gradientA2 < gradientB)

B (1 ≤ C < 9&A2 6= B&gradientA2 ≥ gradientB)

(3)

Similarly, using all the pixel date data of MOD13Q1 product from 2000049–2016257 days, we can
get 762 fused result maps.

3.4. Accuracy Validation of Water Results

Accuracy validation is essential for simulation results. For RF classifier, the OOB error is a good
validation value that can replace the test sample. Therefore, test samples were not selected in this
paper. The accuracy of the simulation results can be determined by comparing them with the water
extraction results from some higher-resolution images which can be seen as accurate. Poyang Lake
and Dongting Lake are the two most typical seasonal lakes in the YRB, which are most likely to
be misclassified. Some Landsat images of Poyang Lake and Dongting Lake, including the wet and
dry season (Section 4.1), were used for accuracy validation. These images are downloaded from the
USGS archive (https://earthexplorer.usgs.gov/). This study uses the NDWI to initially extract water
bodies and manually corrects them to obtain 30 m resolution water body maps. The results were also
resampled to 250 m and 500 m resolution for validation.
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3.5. Dynamic Change Analysis of Surface Water

3.5.1. Water Inundation Frequency Mapping

For water classification maps, we can count the water inundation frequency (p) for each pixel in
the total time series by multi-map overlay. Its formula can be expressed as follows:

p =

N
∑

i=1
(εi = 1)

N
× 100% (4)

where N represents the number of long-term serial water maps; i represents the corresponding ith
water map; εi represents the corresponding pixel value of the ith water map, where 1 is water and 0
is non-water.

3.5.2. Water Type Classification

There are obvious differences in variation characteristics between seasonal water and permanent
water [9,32]. A threshold was set to distinguish this seasonal and permanent water. Considering the
surface water characteristic of the study area, the threshold is set to 0.5, which means that more than
50% of the total number of occurrences is considered to be permanent water and the other part is
seasonal water.

4. Results

4.1. Accuracy Evaluation of Water Results

The RF classifier needs to determine two parameters including classification trees and the
number of feature variables. In this paper, all selected feature variables are applied to simulation.
Therefore, the determination of the number of trees is necessary. Figure 6 shows some 10 simulation
examples with the relationship between the number of trees and the OOB error for the tile h27v06.
Obviously, the OOB error of all examples is less than 0.05 when the number of trees exceeds 20. In this
study, the number of simulation is set to 100 times, and the simulation result with the smallest OOB
error is used for classification.

The water extraction results in both wet and dry seasons of Dongting Lake and Poyang Lake are
shown in Figure 7. The extraction results are both satisfying in the dry or wet season.

Table 1 summarizes the accuracy of water extraction results, including user’s accuracy (UA),
producer’s accuracy (PA), overall accuracy (OA), Kappa coefficient (KC). The values of OA and UA
are all greater than 0.9. The values of PA are relatively low with generally greater than 0.8 in the wet
season, but the values are between 0.65 and 0.8 in the dry season, which proves the proportion of
omission water pixels is relatively large especially in the dry season. Kappa coefficient is generally
greater than 0.8, and the values of the wet season are larger than that of the dry season. Overall, the
accuracy of extraction results is satisfying for both dry and wet seasons.
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Figure 7. Water extraction results of the wet and dry season in Dongting Lake and Poyang Lake.
(a,b) are Dongting Lake for 17 June 2010 and 18 December 2010; (c,d) are Poyang Lake for 26 June 2011
and 14 September 2010. A false color with bands 5, 4 and 3 is used to represent the characteristics of
the images, and dark red masks are the generated water extraction.

Table 1. The water extraction accuracy of Dongting Lake and Poyang Lake in the wet and dry season.

Cases Date Results OA UA PA KC

Poyang Lake

6/17/2010 (Wet)
Fusion 0.95 0.93 0.86 0.86

500 0.94 0.90 0.88 0.85
250 0.96 0.92 0.90 0.88

12/18/2010 (Dry)
Fusion 0.96 0.94 0.75 0.82

500 0.95 0.91 0.68 0.75
250 0.96 0.93 0.75 0.81

Dongting Lake

6/26/2011 (Wet)
Fusion 0.94 0.96 0.84 0.85

500 0.93 0.96 0.79 0.82
250 0.93 0.95 0.81 0.83

9/14/2010 (Dry)
Fusion 0.95 0.94 0.76 0.82

500 0.93 0.94 0.65 0.73
250 0.96 0.92 0.76 0.80

4.2. Surface Water Spatial Distribution of the YRB

In this paper, the products are eventually obtained and visualized by 762 remote sensing images of
water and non-water. Figure 8 illustrates the superimposed map of all surface water extraction results,
which can be used to express the overall situation of water extraction results and water inundation
frequency for each pixel. The maximum area that surface water inundation at least once from 2000
to 2016 is 48.53 × 103 km2, which accounts for 2.70% of the total area of the basin. The surface water
in different areas of the YRB varies largely. A wide range of surface water bodies, such as lakes and
large reservoirs, are mainly distributed among the middle and lower reaches of the basin. Six typical
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lakes and reservoirs were selected from downstream to upstream of YRB (Figure 8). Poyang Lake and
Dongting Lake have significant seasonal variations, and the remaining four are relatively small.

Figure 8. Surface water spatial distribution and inundation frequency 2000–2016 in YRB. (a) Source
region of the Yangtze River; (b) Dianchi Lake; (c) Danjiangkou Reservoir; (d) Dongting Lake; (e) Poyang
Lake; (f) Tai Lake.

According to the water type classification standard (Section 3.5), the seasonal and permanent water
area of YRB were 20.51 × 103 km2 and 28.01 × 103 km2, respectively. Further, this study counts the
changes in permanent and seasonal water which are calculated through the results of 2011–2015 minus
2001–2005′s (Figure 9). The season and permanent water of Dianchi Lake and source of the Yangtze
River hardly changed. Part of the seasonal water transforms into permanent water in Danjiangkou
Reservoir, which is affected by the South-North Water Transfer Project in 2014. Permanent and seasonal
water in the southeast of Taihu Lake change greatly, mainly including seasonal to permanent (S2P),
permanent to season (P2S) and lost seasonal (LS) water. Spatial changes of the permanent and seasonal
water are significant in Poyang Lake and Dongting Lake. Seasonal to permanent (S2P) and lost seasonal
(LS) water are main change in Dongting Lake and Poyang Lake. Furthermore, ephemeral seasonal
water with the area of 10.61× 103 km2 in the YRB accounts for relatively large, especially in the Poyang
Lake and Dongting Lake.
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Figure 9. Transitions in surface water class 2001–2015 in YRB. Types of water change: unchanged
permanent (UP), unchanged seasonal (US), new permanent (NP), new seasonal (NS), seasonal to
permanent (S2P), permanent to seasonal (P2S), lost seasonal (LS), lost permanent (LP) and Ephemeral
seasonal (ES). ES water is defined that water inundation frequency less than 5% for both 2001–2005
and 2011–2015. (a) Source region of the Yangtze River; (b) Dianchi Lake; (c) Danjiangkou Reservoir;
(d) Dongting Lake; (e) Poyang Lake; (f) Tai Lake.

The area of changed seasonal and permanent (including NP, LP, NS, LS, S2P and P2S) water is
calculated (Figure 10). In general, the seasonal water area decreased by 3450 km2, and the permanent
water area increased by 3565 km2.
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4.3. Surface Water Area Change of the YRB

The surface water area is calculated every 8 days during 2000–2016 in the YRB. According to
Figure 11a, the surface water area of the YRB shows obvious annual cyclical changes, with larger in
summers and smaller in winters. The largest water area occurred in day 2016201 with a corresponding
area of 33.99 × 103 km2, and the smallest water area occurred in day 2007097 with an area of
27.34 × 103 km2. 762 water area values are sorted by size, and their percentage frequencies are
calculated (Figure 11b). The results show that the values of ranked 5%, 25%, 50%, 75% and 95% were
about 31.20 × 103, 29.20 × 103, 28.00 × 103, 27.70 × 103 and 27.50 × 103 km2, respectively.
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Figure 11. Surface water area of the YRB for 2001–2016. (a) Every 8 days series; (b) sorting by size.

The peak, Median, and valley values of the water area for each year are counted (Figure 12).
The most water year is 2016, which the peak, median and valley values of the water area are all the
largest in 17 years, 33.99 × 103, 30.88 × 103 and 27.84 × 103 km2, respectively. Other years with a
large amount of water are 2002, 2003 and 2015. The year of less water includes 2001, 2006, 2007, 2008,
2009 and 2011. The minimum peak, median and valley values occurred in 2009 with water area of
29.91 × 103 km2, 2011 with water area of 28.04 × 103 km2, 2007 with water area of 27.34 × 103 km2,
respectively. In addition, the years (2007 and 2011) show several abnormal values and are relatively
dry, which indicators the surface water area in most of these years is small.
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Figure 12. Change in surface water 2001–2016 in YRB. ‘+’ denotes the anomaly values for this year.

Surface water area varies greatly in different months (Figure 13). The peak, median and valley
values of the water area are obviously larger from May to September, and their largest values all
occurred in July with water area of 33.99 × 103, 30.21 × 103 and 28.72 × 103 km2, respectively.
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April and October are special. Their maximum water area is large basically as same as May–September,
and the minimum water area is small the same as other months.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

 
Figure 13. Change in surface water for 1–12 months in YRB. ‘+’ denotes the anomaly values for this 
month. 

4.4. Surface Water Extent Changes Due to Precipitation 

Precipitation plays a critical role in water area for the basin, especially for these lakes such as 
Poyang Lake and Dongting Lake. This study counts the correlation between water area and 
precipitation from 2000 to 2016 for YBR (Figure 14). The results showed a significant correlation 
between them (p = 0.0001 < 0.05), and the correlation coefficient is 0.9076. In addition, Precipitation 
and water area are both increasing from 2000 to 2016, especially from 2011 to 2016. Due to incomplete 
data in 2000 and 2016, and 2016 is a typical flood year in YRB. If we only consider 2001 to 2015, the 
results show that precipitation increases slowly, and water area has no obvious trend. 

 
Figure 14. Correlation between annual average water areas and annual precipitation for YRB from 
2000 to 2016. 

Poyang Lake and Dongting Lake are the two most typical lakes affected significantly by seasonal 
precipitation (Figure 9). The study calculated the correlation between precipitation and water area in 
the two lake basins (Figure 15). The correlation between precipitation and water area is significant (p 
= 0.0001 < 0.05) and the correlation coefficient is 0.8798 in Poyang Lake Basin (PLB). Similarly, the 
relationship of them in Dongting Lake Basin (DLB) is also significant (p = 0.0054 < 0.05), with a 
correlation coefficient of 0.7808. In addition, the water area of PLB is increasing while DLB’s is 
decreasing although the precipitation of both is increasing from 2000 to 2016. It indicates that the 
surface water bodies of the DLB have been seriously affected by human activities in 2000–2016 period. 

1 2 3 4 5 6 7 8 9 10 11 12
Month

28

29

30

31

32

33

34
W

at
er

 a
re

a 
(×

10
3 km

2 )

Figure 13. Change in surface water for 1–12 months in YRB. ‘+’ denotes the anomaly values for
this month.

4.4. Surface Water Extent Changes Due to Precipitation

Precipitation plays a critical role in water area for the basin, especially for these lakes such
as Poyang Lake and Dongting Lake. This study counts the correlation between water area and
precipitation from 2000 to 2016 for YBR (Figure 14). The results showed a significant correlation
between them (p = 0.0001 < 0.05), and the correlation coefficient is 0.9076. In addition, Precipitation
and water area are both increasing from 2000 to 2016, especially from 2011 to 2016. Due to incomplete
data in 2000 and 2016, and 2016 is a typical flood year in YRB. If we only consider 2001 to 2015, the
results show that precipitation increases slowly, and water area has no obvious trend.
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Figure 14. Correlation between annual average water areas and annual precipitation for YRB from
2000 to 2016.

Poyang Lake and Dongting Lake are the two most typical lakes affected significantly by seasonal
precipitation (Figure 9). The study calculated the correlation between precipitation and water area in
the two lake basins (Figure 15). The correlation between precipitation and water area is significant
(p = 0.0001 < 0.05) and the correlation coefficient is 0.8798 in Poyang Lake Basin (PLB). Similarly, the
relationship of them in Dongting Lake Basin (DLB) is also significant (p = 0.0054 < 0.05), with a
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correlation coefficient of 0.7808. In addition, the water area of PLB is increasing while DLB’s is
decreasing although the precipitation of both is increasing from 2000 to 2016. It indicates that the
surface water bodies of the DLB have been seriously affected by human activities in 2000–2016 period.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 20 
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5. Discussion

5.1. Water Extraction Method Performance

Some similar studies have been proposed [13,14], but few have involved a research area with
more than 1×105 km2. This is a major difficulty in the work of this study. In general, some past studies
are limited to classification methods and band information applications [11], and some exhibit defects
to the spatiotemporal resolution of the results [10,12].

To make full use of the information of multiple bands and obtain more accurate long-term serial
and large-scale surface water bodies, this paper used the RF classifier, many sample points and
multi-feature variables to construct a long-term serial surface water extraction method. Although the
classification method used in this study is not original, the method has been specifically improved
to obtain reliable surface water bodies. A total of 5334 images for MOD09A1 and 2674 images for
MOD13Q1 is involved in the classification.

In addition, the process of water result correction also made good use of related band information
and other ancillary information and obtained better water results. Compared to the preliminary
classification process, water correction process may be more critical to the results. It is worth
mentioning that a data fusion method based on the date information of the pixel production
is presented for obtaining the water results with higher spatiotemporal resolution in this study.
Eventually, 762 surface water distribution maps with eight-day and 250 m spatiotemporal resolution
are produced.

Moreover, the fusion method for improving the spatiotemporal resolution of long-term serial
results can be introduced to other remote sensing data applications.
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5.2. Flood Analysis Using the Products

Water level runoff curve is one of the most important means to assess and forecast floods.
However, due to flood fluctuations and changes in return water and other effects, it is often unstable
for the water level runoff curve reflecting the flood [33]. The water extracted by remote sensing data
can intuitively demonstrate flooding range. Figure 16 showed the relationship between water area and
water level at Poyang Lake during the 2015 wet season. Their correlation is very high (r = 0.9394) and
the peak is also consistent. Obviously, the products can better reflect the flood process.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 20 

 

can intuitively demonstrate flooding range. Figure 16 showed the relationship between water area 
and water level at Poyang Lake during the 2015 wet season. Their correlation is very high (r = 0.9394) 
and the peak is also consistent. Obviously, the products can better reflect the flood process. 

 
Figure 16. Variation of water area of Poyang Lake and water level of Hukou hydrological station 
during the wet period in 2015. 

In future, we will further to explore the application of this data in the flood process of other lakes 
and rivers in the study area. Moreover, as a disaster event, floods can also be used to explore the 
impact of floods on some things, such as economic losses and crop damage [34]. Remote sensing data 
with high temporal resolution can be used as basic data for determining the extent of floods for 
disaster result analysis. 

5.3. Surface Water Characteristics of the YRB in 2000–2016 

The surface water in the YRB is mainly distributed in several important lakes, reservoirs, and 
rivers. The surface water inundation frequency and the changes in permanent and seasonal water 
indicate a huge difference in different lakes or rivers in the YRB (Figures 8 and 9). The water extents 
of Poyang Lake and Dongting Lake change greatly, and the changes in Taihu Lake and Dianchi Lake 
are very small. This first reason is because the water from the upper reaches of the lake is different. 
More importantly, Poyang Lake and Dongting Lake are directly connected to the Yangtze River. This 
similar conclusion can be found in in the research of Wang et al. [35]. 

Precipitation is the most important factor causing changes in water area for the whole basin. 
Although affected by the inflow and outflow of the Yangtze River, Poyang Lake and Dongting Lake 
also meet this relationship, mainly because wet season and dry season are relatively consistent in the 
whole basin. Apart from precipitation, some other factors can also affect changes in the surface water, 
such as human activities. Given the slope of the precipitation is greater than the slope of the water 
area (Figure 14), they have reduced the water area to a certain extent. 

Water conservation facilities have a great impact on the change in surface water. Three Gorges 
Dam has a significant impact on the downstream lakes and rivers, which reduced peak and slightly 
increased low discharges [36]. It is consistent with the conclusion of this study that the seasonal water 
reduced, and the permanent water increased. The water storage capacity of the Danjiangkou 
Reservoir in the middle line of the South-to-North Water Diversion Project has increased since 2014. 
Farmland reclamation, urbanization and artificial breeding are also important human activities, 
typical examples are Poyang Lake, Dongting Lake and Taihu Lake. This will be the next work to be 
carried out. 

5.4. Issues and Uncertainties 

This study attemped to acquire continuous long-term serial water maps by remote sensing data 
in the study area. However, some issues still exist, and further work needs to be carried out. Although 

Figure 16. Variation of water area of Poyang Lake and water level of Hukou hydrological station
during the wet period in 2015.

In future, we will further to explore the application of this data in the flood process of other lakes
and rivers in the study area. Moreover, as a disaster event, floods can also be used to explore the
impact of floods on some things, such as economic losses and crop damage [34]. Remote sensing data
with high temporal resolution can be used as basic data for determining the extent of floods for disaster
result analysis.

5.3. Surface Water Characteristics of the YRB in 2000–2016

The surface water in the YRB is mainly distributed in several important lakes, reservoirs, and
rivers. The surface water inundation frequency and the changes in permanent and seasonal water
indicate a huge difference in different lakes or rivers in the YRB (Figures 8 and 9). The water extents
of Poyang Lake and Dongting Lake change greatly, and the changes in Taihu Lake and Dianchi Lake
are very small. This first reason is because the water from the upper reaches of the lake is different.
More importantly, Poyang Lake and Dongting Lake are directly connected to the Yangtze River.
This similar conclusion can be found in in the research of Wang et al. [35].

Precipitation is the most important factor causing changes in water area for the whole basin.
Although affected by the inflow and outflow of the Yangtze River, Poyang Lake and Dongting Lake
also meet this relationship, mainly because wet season and dry season are relatively consistent in the
whole basin. Apart from precipitation, some other factors can also affect changes in the surface water,
such as human activities. Given the slope of the precipitation is greater than the slope of the water
area (Figure 14), they have reduced the water area to a certain extent.

Water conservation facilities have a great impact on the change in surface water. Three Gorges
Dam has a significant impact on the downstream lakes and rivers, which reduced peak and slightly
increased low discharges [36]. It is consistent with the conclusion of this study that the seasonal
water reduced, and the permanent water increased. The water storage capacity of the Danjiangkou
Reservoir in the middle line of the South-to-North Water Diversion Project has increased since 2014.
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Farmland reclamation, urbanization and artificial breeding are also important human activities, typical
examples are Poyang Lake, Dongting Lake and Taihu Lake. This will be the next work to be carried out.

5.4. Issues and Uncertainties

This study attemped to acquire continuous long-term serial water maps by remote sensing
data in the study area. However, some issues still exist, and further work needs to be carried out.
Although RF classifier is an efficient machine learning method, the classification results also exist partial
misclassification and misclassification of water bodies. Some small rivers have not been extracted in
Figure 8a,b. Figure 8a,c show that the simulation results are hardly affected by thin clouds. Figure 8d
shows that part of the water bodies containing impurities is not extracted. These indicate: (1) the
extraction results are better for the wet season; (2) clouds have a great impact on water extraction,
but the impact is small after treatment, especially for thin clouds; (3) water extraction accuracy is
affected by various kinds of impurities, such as algae and sediment. Recently, some efficient and
intelligent water extraction methods such as SMDPSO by Jia et al. and C/M by Tarpanelli et al. have
been proposed to better acquire water bodies [37,38].

Sample selection and data correction are also critical. The quality and number of sample points
will have a profound influence on the results [39]. This study selected approximately 500,000 sample
points and considered spatial difference in the sample points by uniformly sampling. Some wrongly
sampled points must exist, but the wrong use of a small number of sample points will not have a
significant impact on the results. Water result correction mainly refers to the research of Pekel et al. and
Khandelwal et al. [10,13]. This paper does not make specific detailed introduction to the correction of
each tile, but corrected results are proved to be reliable by verification. Furthermore, a feasible fusion
method has been proposed to combine these two sets of water results. This method mainly considers
the temporal relationship of two sets of data and establishes a mathematical function based on spatial
autocorrelation to determine the fused results. Fusion results eliminated some misclassification water
pixels and are proved to have higher precision than before (Table 1). Visibility, it applies well to the
field of remote sensing. However, the problem is the fusion results eliminated some real water pixels.
Next, we are also going to try to improve the function for better integration of results.

Validation of the water body result is not completely sufficient for only a few typical cases.
Some comparisons should exist with other data results. Considering current available results from
Pekel’s research still have some problems for the study area [9], this study does not make specific
comparisons. Although no suitable water dynamic extent data of the study area has been found
yet, some other data from satellite altimetry, Gravity Recovery and Climate Experiment (GRACE)
and Global Land Data Assimilation System (GLDAS), etc. can be also used as comparisons and
validation [25,38,40]. This will be the work that we will continue to carry out in the next step, which
may better illustrate the water resources issue in the research area.

6. Conclusions

Surface water plays an important role in the allocation of water resources. Persistent surface water
bodies mapped with short time intervals and long time series are valuable for flood, drought, and
water resource management in the YRB. In this study, 762 continuous surface water dynamic maps of
the YBR from 2000 to 2016 were obtained by using RF method and MODIS data. Two highlights can be
summarized for this study below.

First, this study constructed an approach for surface water automatic extraction based on the RF
classifier. Moreover, a data fusion method was proposed to obtain more accurate water extraction
results with higher spatiotemporal resolution. This method is innovative, and it can be used to acquire
surface water maps with greater scale or higher spatiotemporal resolution in the future. It may also be
used for the remote sensing classification of other features such as vegetation to some extent.

Second, quantitative analysis is conducted to assess dynamic changes in 2000–2016 for surface
water of the study area based on these products. This result shows that:
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(1) The largest water area is 33.99 × 103 km2 occurred in day 2016201, and the smallest water area
is 27.34 × 103 km2 occurred in day 2007097. The maximum area of surface water inundation at
least once in the YBR from 2000 to 2016 is 48.53 × 103 km2, and seasonal and permanent water
areas are 20.51 × 103 km2 and 28.01 × 103 km2.

(2) Surface water area is increasing in the YRB. Permanent water body rises and seasonal water body
drops. The seasonal water area decreased by 3450 km2, and the permanent water area increased
by 3565 km2 in 2001–2015.

(3) Precipitation plays an important role in the variation of surface water area in the YRB.
Precipitation and water area both showed a certain increased trend, but the increase in
precipitation is more pronounced than the water area for the entire basin. Similar conclusions can
be obtained for the PLB and DLB. Human activities have reduced the water area to some extent
for this study from 2000 to 2016.

This research puts forward a better approach to explore the dynamic changes of surface water
bodies, and the quantitative results can provide some basis for the relevant departments to formulate
the water resource management policy for the study area.
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