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Abstract: In high-frequency surface wave radar (HFSWR), part of the radiation signal inevitably
propagates upward and illuminates the target through the ionosphere due to the poor controllability
of the antenna’s vertical pattern. As a result, a target may have several echoes from different
propagation modes, which affect target detection and tracking and is usually unmanageable in
existing HFSWR systems. Without the information of the elevation angle, it is difficult to distinguish
the propagation mode of measurements during the target detection phase. This paper makes the first
attempt to propose a multi-mode target tracker for HFSWR to solve this problem during the target
tracking phase. The multipath probability data association (MPDA) tracker is capable of exploiting
multipath target signatures of discrete propagation modes and has been widely used. Based on this,
we construct a modified multi-mode probability data association tracker for HFSWR to suppress
false tracks caused by multiple propagation modes. Numerical simulations demonstrate that this
novel tracker can effectively and accurately track the target from the measurements under multiple
propagation modes in HFSWR. The processing results of the actual data collected in Weihai, China
indicate that this tracker is of great significance for practical applications.

Keywords: HFSWR; target tracking; multipath; MPDA

1. Introduction

High-frequency surface wave radar (HFSWR) usually consists of a one-dimensional line array
with weak control of the vertical pattern. Therefore, energy cannot be strictly radiated along the sea
surface and partially radiates upwards and impinges on the ionosphere. In some cases, the incident
skywave energy may be reflected or scattered by the target or ionosphere and return to the receiver [1].
In fact, HF radar signals propagate through the ionosphere in three ways: the first is near-vertical
reflection; the second is to emit a wave at an angle less than vertical, reflected by the ocean or the target,
and then back along the same path or sea surface; the third is back-scattering phenomenon caused
by the irregularities and the fluctuations of the ionosphere [2]. Traditionally, in HFSWR, ionospheric
echo is generally considered as clutter, and there have been many studies on ionospheric clutter
suppression [2,3]. However, in the second scenario, ionospheric echo may carry the information of the
target (such as a plane, island, or vessel).

It is worth noting that the presence of the ionospheric echo of the target can extend the detection
range of the HFSWR, which has not been considered or analyzed in the previous HFSWR systems.
This paper proposes a novel tracker to solve the problem of false tracks in long-range detection of
HFSWR, making it possible to expand the surveillance area of HFSWR. This is very favorable for
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marine environmental monitoring, and it can be directly applied to existing HFSWR systems without
adding additional equipment.

However, the existence of ionospheric echo results in several echoes corresponding to one
target (the phenomenon of multiple propagation modes) in HFSWR. Irrespective of ionospheric
stratification, there are four propagation modes, as shown in Figure 1: emit and receive the wave
through the ground wave path—GG, emit/receive the wave through the ground wave path and
receive/emit the wave from the ionosphere—GS/SG, emit the wave to the ionosphere and receive
the wave from the ionosphere—SS [4].
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The phenomenon of multiple propagation modes results in the following problems:

(a) One target may have several measurements and one measurement may correspond to many
targets, which may cause false detections;

(b) The actual ground range calculation formula for each propagation modes are different, therefore,
misjudgment of the measurement’s propagation mode will lead to a false estimation of the target’s
true position; and

(c) One target may form multiple tracks.

Note that, multipath phenomenon caused by ionospheric stratification also exists. In addition,
multiple propagation modes’ phenomenon also brings some advantages. The skywave propagation
mode propagates farther than the groundwave propagation mode because its attenuation is smaller and
decays slower than the ground attenuation. Hence, if we analyze the echoes of multiple propagation
modes together, the detection range of HFSWR can be expanded. However, we need to solve those
problems caused by multiple propagation modes’ phenomenon at first. In addition, since the skywave
propagation mode echo may exceed the unambiguity range of the existing HFSWR, this paper extends
the unambiguity detection range of HFSWR through a range ambiguity resolution method to observe
the echoes of all propagation modes more effectively.

The key of the above problems lies in how to judge the propagation mode of the measurements.
The direct method is to obtain the echo’s elevation angle which, however, is difficult for HFSWR, due
to one-dimensional line array is deployed there. Some researches on two-dimensional arrays has been
proposed, for example, Ref. [5] uses L-shaped arrays to suppress ionospheric interference and Ref. [6]
uses 4 × 4 square planar arrays to mitigate ionospheric clutter. However, it is still difficult to solve the
multi-mode problems in the target detection phase, because mode SG (GS) cannot be distinguished
with mode GG (SS) through the elevation angle. Therefore, in this paper, we consider to solve the
multi-mode problems when tracking targets for a one-dimensional array HFSWR system.

Target tracking in HFSWR has been extensively studied, and it mainly consists of various filters
to describe the target movement properly, such as the Kalman filter [7], deferred decision filter [8],
extended Kalman filter [9], and unscented Kalman filter [10], etc. To enhance the tracking performance
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in clutter background, many data association algorithms are employed to HFSWR, such as near
neighbor data association [11], probabilistic data association (PDA) [12] and joint probabilistic data
association (JPDA) [13]. There are also some knowledge-based tracking algorithms for reducing
the probability of the track breaking [14]. However, all those tracking method cannot solve the
multi-mode problem and will result in false tracks.

Multipath phenomenon of over the horizon radar (OTHR) caused by ionosphere stratification
also forms false tracks, and there are two common types of methods for tracking. The first type is
to establish a target dynamical model based on the radar coordinate system, and applying a data
association tracking algorithm to achieve tracking under the radar coordinate system. After tracking,
one target may form multiple tracks. Then, the track fusion algorithm is applied to find which
tracks correspond to the same target and calculate the real target track. The data association tracking
algorithm includes Viterbi data association (VDA) [15], probabilistic data association (PDA) [16]
and probabilistic multi-hypothesis tracking (PMHT) [17], etc. The track fusion algorithm includes
a dynamic weighted fusion algorithm [18], a sequential track-to-track fusion algorithm [19], etc.
The second type establishes the target dynamical model under the geographic coordinate system and
completes the data association in the radar coordinate system. This type of method can obtain the
real target track directly (only one track for one target). The corresponding data association algorithm
includes multipath data association (MPDA) [20], multipath Viterbi data association (MVDA) [21],
Markov chain Monte Carlo (MCMC) [22], and expectation maximization data association (EMDA) [23],
etc. The tracking accuracy of MCMC and EMDA is high, but their computation is heavy. MPDA
uses Markov chain to characterize the probability transfer of target state; MVDA uses the dynamic
programming optimization framework to merge or delete data association hypotheses, which is
sub-optimal. Those algorithms have both advantages and disadvantages.

The essential difference between the two types of methods is that the target dynamic model is
based on different coordinate systems. The first type is based on the radar coordinate system, while
the second type is under the geographic coordinate system. In addition, the first type of method does
not need the prior knowledge of the ionosphere, and can work stably without relying on coordinate
transformation. However, it will form many tracks correspond to one target, which needs track
fusion to obtain the real target track. Therefore, this type of method has a higher track loss rate when
the echoes of some modes are not detected, while the second type of method requires coordinate
transformation and ionosphere status information, which will introduce errors and degrade tracking
stability, but the track loss rate is lower. Certain modes’ echoes may not happen because of the path
attenuation and the instability of the ionosphere, which will be analyzed in Section 2. Therefore,
we choose the second type of method. Since this paper is the first attempt to propose the multi-mode
target tracking for HFSWR, we chose to modify the MPDA tracker that has been widely used.

In Section 2, we analyze the multiple propagation modes’ phenomenon in HFSWR, and study the
coverage of each propagation mode by analyzing path attenuation. Then, we show the processing
results of the actual data collected in Weihai, China to illustrate the existence of multiple propagation
modes’ phenomenon (false tracks). In Section 3, we construct a modified multi-mode probability
data association tracker. MPDA establishes a target dynamical model and measurement model in
the geographic coordinate and the radar coordinate, respectively. Thus, firstly, we show the target
dynamical model and measurement model. The target dynamical model uses a linear discrete-time
model described by range, velocity, azimuth, and azimuth rate. The measurement model is constructed
through the geometrical relationship between target ground range and each propagation mode’s path
length and it consists of path length, azimuth, and velocity. Obviously, the measurement model is
nonlinear, so the Jacobian of the coordinate transformation is also needed. Moreover, a one-point
initiation algorithm proposed in [20] is modified to apply to HFSWR. In Section 4, the simulation
results show that the modified multi-mode probability data association tracker can suppress false
tracks and track the real target correctly. Moreover, the multi-mode target tracker is successfully
applied to the actual data and it found a trajectory, which should be a plane flying to Hohhot, China.
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2. Multiple Propagation Modes’ Phenomenon Analysis

Considering that both the groundwave path and the skywave path exist in HFSWR, there should
be four propagation modes irrespective of ionospheric stratification, labeled as GG, GS, SG, and SS,
as shown in Figure 1. However, the plasma distribution of the ionosphere varies with height, time,
solar activity, latitude and longitude, etc. According to the plasma distribution, the ionosphere is
usually divided into three layers, the E-layer, the Es-layer, and the F-layer, which may be separated
into the F1-layer and F2-layer [24]. The layer from which the wave is reflected is uncertain and is
related to the frequency, angle of incidence, and site, etc. Therefore, considering the complexities
of the ionosphere, there will be quite a large number of propagation modes. In order to reduce the
complexity of the tracking algorithm when taking the ionospheric characteristics into account, we only
analyze these five propagation modes in this paper—Mode 1-GG, Mode 2-GS1 (ionospheric height is
h1), Mode 3-SG2 (ionospheric height is h2), Mode 4-SS1 (ionospheric height is h1), and Mode 5-SS2
(ionospheric height is h2).

Then, we calculate the attenuation of each mode through their corresponding groundwave
attenuation and skywave attenuation. Here, groundwave attenuation is calculated by the
groundwave-propagation program GRWAVE developed by Rotheram [25], and skywave attenuation
is calculated according to the empirical formula proposed by CCIR (Consultative Committee of
International Radio) [26]. Moreover, the path length of each mode is calculated through the geometric
relationship, as shown in Figure 2 and its calculation formula is the same as the measurement model
that will be given in Section 3.
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Figure 3a shows that the path length (the length calculated through the echo’s delay time) of each
of five propagation modes is a function of ground range (target’s ground range). Here, the ionospheric
heights are h1 = 110 km and h2 = 220 km, and the electromagnetic frequency is 5 MHz. Figure 3b
shows the path attenuation (the electric field level) in five propagation modes changing with the path
length. It can be seen that there is one propagation mode within 200 km, four modes in the range
of 200 km to 400 km, and five modes over 400 km. In addition, as the distance increases, the path
attenuation is so large that the target cannot be detected. In this case, the number of propagation
modes may be less than the theoretical value. The multipath range is also related to electromagnetic
frequency and the ionospheric state, which will not be analyzed in detail in this paper.
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Figure 3. (a) Five modes’ path lengths as a function of the ground range; and (b) the path attenuation
in five propagation modes changing with the path length.

Next, the actual data collected in Weihai, China is processed to illustrate the existence of the
phenomenon of multiple propagation modes’. The processing result is shown in Figure 4, where red
dots represent the detection targets with positive speed (the target is approaching the radar), and blue
dots represent the detection targets with negative speed (the target is moving away from the radar).
As the illuminated area is inland, a large amount of clutter affects the detection performance. Within
900–1100 km, we determine two suspected tracks, represented by green (track A) and yellow (track B)
squares, respectively. The measured values of the two suspected tracks are shown in Tables 1 and 2.

Firstly, we calculate the ground distance of every measurement of the two tracks with two different
ionospheric height. We assume the ionospheric heights for tracks A and B are 140 km and 200 km,
respectively, then we calculate the ground distance, as shown in the third column of Tables 1 and 2.
Then, we calculate the absolute value of the difference between the two tracks’ parameters at each
moment, as shown in Table 3. Using the accuracy of the measurements as a criterion. The accuracy of
the distance measurements is 1 km, the accuracy of velocity is 0.6 m/s, and the accuracy of azimuth is
five degrees. Since the ionospheric height is not accurate, the accuracy of the distance will increase,
set to 5 km. We find that the differences between the two tracks’ ground distance, velocity, and azimuth
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are smaller than 5 km, 0.6 m/s, and five degrees, respectively, and, according to our criteria, the two
tracks are corresponding to the same target. Therefore, there are multiple tracks (false tracks) for one
target, i.e., the phenomenon of multiple propagation modes in HFSWR.

After the above analysis, we know that the two tracks should come from one target. The echoes
of modes GG/SG1/GS2 of this target have not been detected because path attenuation of the target at
about 900 km in these three modes is very high. However, this is also a case of the phenomenon of
multiple propagation modes in HSFWR.
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Table 1. Tracking parameters of Track A.

Time Path Length/km Ground Distance/km Velocity m/s Azimuth/Degrees

10:57:56 974 934 33.8 −27
10:58:03 973 933 34.1 −27
10:58:10 971 930 33.9 −28
10:58:17 971 931 33.6 −28
10:58:24 971 930 33.3 −27
10:58:31 969 928 33.3 −27
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Table 2. Tracking parameters of Track B.

Time Path Length/km Ground Distance/km Velocity m/s Azimuth/Degrees

10:57:49 1013 932 33.6 −29
10:57:56 1013 932 33.2 −28
10:58:03 1010 929 34.4 −27
10:58:10 1013 932 33.8 −25

Table 3. The absolute value of the difference between two tracks’ tracking parameters.

Time Ground Distance/km Velocity m/s Azimuth/Degrees

10:57:49 - - -
10:57:56 2 0.6 1
10:58:03 4 0.3 0
10:58:10 1 0.1 3
10:58:17 - - -
10:58:24 - - -
10:58:31 - - -

3. Modified Multi-Mode PDA Tracker for HFSWR

To suppress false tracks, this section constructs a modified multi-mode PDA tracker, which
consists of target dynamical model, measurement model, track initiation, event probabilities and state
estimator. For simplicity, we assume a non-maneuvering and constant-velocity aircraft tracking in an
ideal ionospheric state.

3.1. Target Dynamical Model

The target state at time k is described in ground coordinates through ground range L(k) (length of
the red line 1 in Figure 2), ground range rate

.
L(k), azimuth θ(k) (angle with the center of illuminating

aperture angle), azimuth rate
.
θ(k). Therefore, the target status at time k is written as:

x(k) = [ L(k)
.
L(k) θ(k)

.
θ(k) ]′, (1)

We assume that the target moves along a straight line with a certain deviation which can be
expressed as an additive noise term v(k). Then, the equation of target status can be given by a
recursion formula:

x(k + 1) = Fx(k) + v(k), (2)

where the matrix F is given by:

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, (3)

T is the revisit time, v(k) is a white Gaussian sequence with zero-mean and covariance Q(k)
which is calculated according to [22]:

Q(k) =


T3δ2

p/3 T2δ2
p/2 0 0

T2δ2
p/2 Tδ2

p 0 0

0 0 T3δ2
b /3 T2δ2

b /2

0 0 T2δ2
b /2 Tδ2

b

, (4)

where δ2
p and δ2

b are the noise variance of range and bearing filter, respectively.
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3.2. Measurement Model

The radar measurement consists of path length Rs (delay time of echo), velocity Rr, and azimuth
Az (angle with the center of illuminating aperture angle). Hence, the measurement vector at time k is
defined as follows:

y(k) = [ Rs(k) Rr(k) Az(k) ]′, (5)

The target measurement is a non-linear function of target status x(t) and associated with
propagation mode. Assuming that there are Nk propagation modes, their measurement equation is
expressed as:

ym(k) = Hm(x(k)) + wm(k), m = 1, · · · , Nk, (6)

where m is the index of propagation mode, ym(k) is the measurement vector of the mth mode, wm(t) is
the measurement noise term of the mth mode with zero-mean and covariance Rm(k). Assuming v(k)
and w(k) is unrelated. Rm(k) can be obtained as:

Rm(k) = cov(wm(k)) =


δ2

R 0 0

0 δ2
D 0

0 0 δ2
A

, (7)

where δ2
R, δ2

D, and δ2
A are the error variances of range, velocity, and azimuth, respectively.

The measurements are obtained under radar coordinates, Hm(·) in measurement equation is the
mapping from ground coordinates X to radar coordinates Y. From the geometric relations shown in
Figure 2, the coordinate transformation formula from X to Y of five propagation modes 1-GG, 2-GS1,
3-SG2, 4-SS1, and 5-SS2 (Table 4) are expressed as follows

Rsm = a(m)L + b(m)K(m)

Rrm = a(m)
.
L + b(m)S(m)

Azm = θ

, m = 1, · · · , 5, (8)

a = [ 1 1/2 1/2 0 0 ], (9)

b = [ 0 1/2 1/2 1 1 ], (10)

h =
[

0 h1 h2 h1 h2

]
, (11)

K = 2

√(
µ sin

(
L

2µ

))2
+

(
h + µ

(
1− cos

(
L

2µ

)))2
, (12)

S =
2(h + µ)

Rg
sin
(

L
2µ

)
.
L, (13)

where µ is the earth radius, h contains two different ionospheric height—h1 and h2.
As a result, Hm(·) in the measurement equation is as follows:

Hm(x) =

 a(m)L + b(m)K(m)

a(m)
.
L + b(m)S(m)

θ

, m = 1, · · · , 5, (14)

The Jacobian of transformation from ground coordinates to radar coordinates is defined as follows:

Jm =
∂y
∂x

=

 a(m) + b(m)A(m) 0 0 0
b(m)B(m) a(m) + b(m)A(m) 0 0

0 0 1 0

, m = 1, · · · , 5, (15)
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A =
2(h + µ)

Rs
sin
(

L
2µ

)
, (16)

B =
2(h + µ)

.
L

Rs2

(
cos
(

L
2µ

)
Rs
2µ
− sin

(
L

2µ

)
Rr

.
L

)
, (17)

Table 4. Index of propagation modes.

Index 1 2 3 4 5

Mode GG GS SG SS SS
h - h1 h2 h1 h2

3.3. Initiation

In this paper, we apply a one-point initiation algorithm proposed by [20]. This algorithm forms the
initial state estimates for all propagation modes, which can prevent certain modes from being missed.
For each valuable measurement y(k) =

[
Rs Rr Az

]
in scan k, this algorithm forms an initial state

estimate x̂m(0|0) =
[

L
.
L θ

.
θ
]

of every propagation mode m (GG, GS1, SG2, SS1, SS2) using
the appropriate ionospheric height h, i.e., mapping measurements from Y to X. The initial covariance
P(0|0) is assigned based on the known measurement noise variances R. The formula for mapping
measurements from Y to X is:

GG :


L = Rs
.
L = Rr
θ = Az
.
θ ≈ 0

, (18)

GS1/SG2 :



L = 2
h

(
−Rsµ +

√
Rg2µ2 − µh(h2 − Rs2)

)
.
L = Rr

1
2+

h+µ
Rs sin

(
L

2µ

)
θ = Az
.
θ ≈ 0

, (19)

SS1/2 :



L = 2µ cos−1
(

h2+2µ2+2µh−Rs2/4
2µ2+2µh

)
.
L = RrRs

2(h+µ) sin
(

L
2µ

)
θ = Az
.
θ ≈ 0

, (20)

where h = h′1 for mode GS1 and SS1, h = h′2 for mode SG2 and SS2. Moreover, h′1 and h′2 are assigned
according to the predicted value of the ionospheric height.

The mapping from Y-Rs to X-L of mode GS1/SG2 needs to solve the transcendental equation.
For its calculation, here we substitute the cosine with the first two terms of its Taylor’s expansion.
Figure 5 shows the transformation errors of modes GS1/SG2 mapping from Y-Rs to X-L. It can be
seen that the ground range error increases rapidly with ground range, the error within the distance of
interest (0 to about 1000 km) is acceptable for track initiation.
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3.4. Event Probabilities

Tracking a single target determines the minimum mean-square-error estimator (MMSE) x̂(k|k) of
the state x(k) based on the multi-mode measurement process.

The PDA tracker needs to exhaust all possible associations of valid measurements with
propagation modes. In order to reduce the number of valid detections, a validation gate (or region) for
each mode is needed at each scan k, as shown in Figure 6 (G1 and G2). In heavy clutter, we define a
validation gate for each target state estimate, “a validation region or ‘gate’ in the measurement space
in which we expect to see a detection from the target at the next dwell. In this way, many detections
that are statistically distant from the expected target location are eliminated from the processing.
Detections falling within the validation region are referred to as validated or gated measurements for
that target” [22]. For every validation gate Gm(k) of mode m, we can obtain the validated measurement
sets

{
y1(k), · · · , yMk

(k)
}

by judging whether the measurement y in the k-th scan satisfies:

Gm(k)⇒ {y ∈ R3 : [y− ŷm(k + 1|k)]′(Sm(k + 1))−1

[y− ŷm(k + 1|k)] < γm}, m = 1, · · · , Nk
, (21)

where Nk is the number of propagation modes, the scalar constant γm is determined by the validation
gate probability PG

m(k) in the k-th scan based on hypothesis testing of χ2(n), n is the measurement
vector dimension (equal to three in this paper). ŷm(k + 1|k) and Sm(k + 1) are the predicted
measurement and corresponding covariance for mode m respectively, which can be calculated by the
following formulas:

x̂(k + 1|k) = Fx̂(k|k), (22)

P(k + 1
∣∣k) = FP(k

∣∣k)F′ + Q(k), (23)

ŷm(k + 1|k) = Hm(x̂(k + 1|k)), m = 1, · · · , Nk, (24)

Sm(k + 1) = JmP(k + 1
∣∣k)Jm(k + 1)′ + Rm(k), m = 1, · · · , Nk, (25)

where x̂(k + 1|k) is the predicted state that obtained by one-point initiation algorithm, P(k + 1|k) is
the prediction covariance, and Jm(k + 1) is the Jacobian of the measurement equation Hm(x) evaluated
at the current predicted state x̂(k + 1|k) for mode m.
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Then, we need to exhaust all possible associations. Let θ
j
i,m(t) denote the i-th possible association

hypothesis for the j− th(j = 1, · · · , Mk) validated measurements when the number of active modes at
time k is m ∈ {0, · · · , min(Mk, Nk)}. It satisfies:

θ
j
i,m =

{
the associated mode , i f target
0 , i f clutter

, (26)

Let rk(m) denote the number of association hypotheses at time k when the active modes’ number
is m.

For example, if there are three valid measurements {y1(k), y2(k), y3(k)} in two validation
gates

{
G1(k), G2(k)

}
as shown in Figure 6, there are nine possible association hypotheses: when

m = 0, r(0) = 1,
{

θ1
1,0 = 0, θ2

1,0 = 0, θ3
1,0 = 0

}
; when m = 1, r(0) = 4,

{
θ1

1,1 = 1, θ2
1,1 = 0, θ3

1,1 = 0
}

,{
θ1

2,1 = 0, θ2
2,1 = 1, θ3

2,1 = 0
}

,
{

θ1
3,1 = 0, θ2

3,1 = 2, θ3
3,1 = 0

}
,
{

θ1
4,1 = 0, θ2

4,1 = 0, θ3
4,1 = 2

}
; when m = 2,

r(0) = 5,
{

θ1
1,2 = 1, θ2

1,2 = 1, θ3
1,2 = 0

}
,
{

θ1
2,2 = 1, θ2

2,2 = 2, θ3
2,2 = 0

}
,
{

θ1
3,2 = 1, θ2

3,2 = 0, θ3
3,2 = 2

}
,{

θ1
4,2 = 0, θ2

4,2 = 1, θ3
4,2 = 2

}
;
{

θ1
5,2 = 0, θ2

5,2 = 2, θ3
5,2 = 2

}
.
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Next, for active modes m = 0, 1, · · · , Nk and feasible association hypotheses i = 1, · · · , rk(n) at
time k, we compute the event probabilities β(k), β0(k) and {βi,n(k)}.

β(k) represents the probability of the event that the target does not exist and all detections in the
validation gate are clutter. β0(k) represents the probability of the event that the target exists and is
observable by all modes, but all measurements in the validation gate are clutter. {βi,m(k)} represents
the probability of the event that the target exists and is observable and the measurements fall in the
validation gate of mode m = 1, · · · , Nk [20].
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Denote Pr(Ek

∣∣∣Yk−1) and Pr(Ek

∣∣∣Yk−1) to represent the target existence possibility and inexistence
possibility, respectively. The probabilities are governed by a homogeneous Markov chain with known
transition matrix M:

M =

(
Pr(Ek|Ek−1) Pr(Ek

∣∣Ek−1)

Pr(Ek
∣∣Ek−1) Pr(Ek

∣∣Ek−1)

)
, (27)

The propagation Markov chain is: Pr(Ek

∣∣∣Yk−1)

Pr(Ek

∣∣∣Yk−1)

 = M′

 Pr(Ek−1

∣∣∣Yk−1)

Pr(Ek−1

∣∣∣Yk−1)

, (28)

We choose the Poisson model to describe the clutter. Hence, the probability of n clutter
measurements in the validation region G(k) is:

gc(n) =
(λVG(k))

ne−λVG(k)

n!
, n = 0, 1, 2, · · · , (29)

where, λ is the density of detections, VG is the volumes of validation region G(k).
Then, the event probabilities are:

β(k) = δ−1
k Pr

(
Ek

∣∣∣Yk−1
)λMk

Mk!
exp{−λVG(k)}, (30)

β0(k) = δ−1
k Pr

(
Ek

∣∣∣Yk−1
)
(1− PDPG)

Nk
λMk

Mk!
exp{−λVG(k)}, (31)

βi,m(k) = δ−1
k Pr

(
Ek

∣∣∣Yk−1
)
(PD)

m(1− PDPG)
Nk−m 1

rk(m)

× ∏
j∈{j:θ j

i,m 6=0}
(2π)−ny/2(detSq(k)

)−1/2 exp
{
− 1

2 djq

}

×

 1 cm = 0

exp{−λVG(k)} λMk−m

(Mk−m)! cm > 0

m = 1, · · · , min{Mk, Nk}, i = 1, · · · , rk(m),

(32)

djq =
(

yj(k)− ŷq(k|k− 1)
)
′Sq(k)

−1
(

yj(k)− ŷq(k|k− 1)
)

, (33)

q = θ
j
i,m(k)1, (34)

where δk is a normalization factor at time k, ny is the dimension of the measurement vector, PD is the
probability of detection, and PG is the validation gate probability.

3.5. State Estimator

For every possible association hypothesis, the conditional state estimates x̂i,m(k + 1|k + 1) and
covariance Pi,m(k + 1|k + 1) , i = 1, · · · , rk(m), m = 1, · · · , min{Mk, Nk} are calculated according to
the following formulas:

x̂i,m(k|k) , x̂(k|k− 1) + ∑
j∈{j:θ j

i,m 6=0}
∑

l∈{l:θl
i,m 6=0}

P(k|k− 1)

×J′qj∑jl (k)
{

yj(K)− ŷql(k|k− 1)
} , (35)
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Pi,m(k|k) , P(k|k− 1)− ∑
j∈{j:θ j

i,m 6=0}
∑

l∈{l:θl
i,m 6=0}

P(k|k− 1)

×J′qj∑jl (k)Jql(k)P(k|k− 1)
, (36)

Next, we form the iterative update equation for the state estimate as expressed in Equation (37)
and the state estimation error covariance as expressed in Equation (38):

x̂(k|k) = {β(k) + β0(k)}x̂(k|k− 1) +
min(Mk ,Nk)

∑
n=1

rk(n)

∑
i=1

βi,n(k)x̂i,n(k|k), (37)

P(k|k) = β0(k)P(k|k− 1) + β(k)P(k) + {β(k) + β0(k)}x̂(k|k− 1)x̂′(k|k− 1)

−x(k|k)x′(k|k) +
min(Mk ,Nk)

∑
n=1

rk(n)
∑

i=1
βi,n(k){Pi,n(k|k) + x̂i,n(k|k)x̂′ i,n(k|k)

, (38)

We repeat the above steps of Sections 3.4 and 3.5 using the update state estimate x̂(k|k) and the
state estimation error covariance P(k|k) .

4. Numerical Simulation and Actual Data Processing

In this section, we give the simulation results of the modified multi-mode PDA tracker and then
apply the tracker to process the actual data collected in Weihai, China. Table 5 lists the simulation
parameters of target state model and measurement model.

Table 5. Simulation parameters.

Label Parameter Value

T Revisit time 10 (s)
L Total number of iterations 50

x(0|0) The initial state of target 100 km, 0.15 km/s,
5 deg, 0.001 deg/s

δp Range noise standard deviation 10−6 (km)
δd Bearing filter noise standard deviation 5 × 10−5 (deg)
δ2

R Range error variance 0.0025 (km2)
δ2

D Velocity error variance 0.0001 ((m/s)2)
δ2

A Azimuth error variance 0.04 (deg2)

For the validation gate, the gate probability at the k-th scan PG(k) is set to 0.95, same for each
propagation mode. According to the hypothesis testing of χ2(3), the scalar constant γ should be 7.8.
The clutter density is assigned 0.002.

Then, we assume that the probability of target detection PD is the same for all propagation mode.
Markov transition matrix M is:

M =

[
0.75 0.25
0.05 0.95

]
, (39)

When the probability of target detection PD is equal to 0.4, the tracking result is shown in Figure 7a
and the tracking error is given in Figure 7b. The false tracks are suppressed and the target state is
estimated correctly.
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The actual data collected in Weihai, China has been analyzed in Section 2. Since the detection
number is enormous and the suspected target tracks’ locations are known, we just apply the modified
multi-mode PDA tracker to the measurements around the suspected two tracks as shown in Figure 8.
According to the previous analysis, the two suspected tracks belong to the same target, that is, the
multiple propagation modes’ phenomenon. If we use the traditional tracking method, two tracks
appear. The tracking result of the proposed tracker is shown in Figure 9 and the arrows indicate
the direction of target movement. We can determine that the tracking results are basically consistent
with the analysis in Section 2. The tracking result has only one track without false tracks. Therefore,
the processing result proves that the modified multi-mode PDA tracker is significant for HFSWR to
suppress false tracks caused by the phenomenon of multiple propagation modes.
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5. Conclusions

The ionospheric echo of the targets in the HFSWR can be used to detect the targets at further
distances, which have not received sufficient attention in the past. However, this will lead to the
problem of multi-mode transmission, which is the main issue of this paper. We propose the multi-mode
target tracking to solve the multiple propagation modes’ problem causes by the existence of ionospheric
echo in HFSWR. The multiple propagation modes’ problem caused several measurements for one
target, which will affect target detection and tracking. This problem can be solved by the modified
multi-mode PDA tracker. The simulation results show that the tracker can track targets without
false tracks. In addition, the tracker is applied to actual data collected in Weihai, China, and the
processing result indicates the tracker is significant for HFSWR to solve problem of the multiple
propagation modes.
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