
remote sensing

Article

A Fast Dense Spectral–Spatial Convolution Network
Framework for Hyperspectral Images Classification

Wenju Wang ID , Shuguang Dou * ID , Zhongmin Jiang and Liujie Sun

College of Communication and Art Design, University of Shanghai for Science and Technology,
Shanghai SH 021, China; wangwenju666@163.com (W.W.); jzmn@usst.edu.cn (Z.J.); liujiesunx@163.com (L.S.)
* Correspondence: doushuguang52@163.com; Tel.: +86-138-1834-7625

Received: 1 June 2018; Accepted: 3 July 2018; Published: 5 July 2018
����������
�������

Abstract: Recent research shows that deep-learning-derived methods based on a deep convolutional
neural network have high accuracy when applied to hyperspectral image (HSI) classification, but long
training times. To reduce the training time and improve accuracy, in this paper we propose
an end-to-end fast dense spectral–spatial convolution (FDSSC) framework for HSI classification.
The FDSSC framework uses different convolutional kernel sizes to extract spectral and spatial features
separately, and the “valid” convolution method to reduce the high dimensions. Densely-connected
structures—the input of each convolution consisting of the output of all previous convolution
layers—was used for deep learning of features, leading to extremely accurate classification.
To increase speed and prevent overfitting, the FDSSC framework uses a dynamic learning rate,
parametric rectified linear units, batch normalization, and dropout layers. These attributes enable the
FDSSC framework to achieve accuracy within as few as 80 epochs. The experimental results show
that with the Indian Pines, Kennedy Space Center, and University of Pavia datasets, the proposed
FDSSC framework achieved state-of-the-art performance compared with existing deep-learning-based
methods while significantly reducing the training time.

Keywords: hyperspectral image classification; densely connected convolutional neural network;
deep learning; parametric rectified linear unit

1. Introduction

Hyperspectral images (HSIs), which include hundreds of bands, contain a great deal of
information. Among the many typical applications of HSIs are civil and biological threat detection [1],
atmospheric environmental research [2], and ocean research [3], among others. The most commonly
used technology in these applications is the classification of pixels in the HSI, referred to as HSI
classification. However, HSI classification presents numerous difficulties, particularly in processing
high-dimensional data and images with high spatial resolution.

Machine learning and other feature-extraction methods have been applied to HSI classification to
cope with these difficulties. The relative performances of support vector learning machines (SVM),
a radial basis function (RBF) neural network, and k-neighbor classifiers demonstrate that the SVM
method could effectively replace the traditional method, which combines feature reduction algorithms
with classification [4]. Li [5], however, proposed a framework that uses local binary patterns (LBPs)
to extract image features and a high-efficiency extreme learning machine (ELM) as a classifier to
show that the ELM classifier is more efficient than SVM methods. However, when compared with
the LBP feature extraction method, the complex spectral and spatial information of HSIs requires
more sophisticated feature selection methods. Deng et al. [6] proposed a HSI classification framework
based on HSI micro-texture. The framework extends local response patterns to texture enhancement to
represent HSIs and uses discriminant locality-preserving projections to reduce the dimensionality of

Remote Sens. 2018, 10, 1068; doi:10.3390/rs10071068 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8549-4710
https://orcid.org/0000-0003-3231-8817
http://www.mdpi.com/2072-4292/10/7/1068?type=check_update&version=1
http://dx.doi.org/10.3390/rs10071068
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, 1068 2 of 19

the HSI data. However, the framework does not make use of the spectral information within the HSIs
and requires performance improvement.

The above-mentioned traditional machine learning methods for HSI classification all have
the same disadvantage—the classification accuracy needs improvement. Since these traditional
methods are based on hand-crafted features, hyperspectral data need an algorithm that can learn the
representative and discriminative features [7]. Recently, deep learning, an alternative to the traditional
machine learning algorithms discussed above, has been introduced into HSI classification, and is able
to extract deep spatial and spectral features from hyperspectral data. Much of the pioneering work
on deep learning applied to hyperspectral data classification has shown that identification of deep
features leads to higher classification accuracies for hyperspectral data classification [8].

In 2014, Chen et al. [8] first proposed a deep learning framework to merge spatial and spectral
features. The deep learning framework combined principal component analysis (PCA) with deep
learning architecture, and to obtain classification results it used stacked autoencoders to obtain
high-level features and logistic regression; this framework was abbreviated to SAE-LR. Although
SAE-LR has a disadvantage in terms of its training time, it showed that deep learning methods
had a large potential for HSI classification. The following year, Makantasis et al. [9] exploited a deep
supervised method for HSI classification through a convolutional neural network (CNN). The approach
used randomized PCA (R-PCA) to reduce the dimensions of raw input data, a CNN to construct
high-level features, and a multi-layer perceptron (MLP) for classification. In 2016, Zhao and Du [10]
proposed a spectral–spatial feature-based classification (SSFC) framework. Their SSFC framework
used a balanced local discriminant embedding (BLDE) algorithm to extract spectral features, a CNN to
find high-level spatial features, and a multiple-feature-based classifier for training. Chen et al. [11],
also in 2016, proposed a deep feature extraction (FE) method based on a CNN and built a deep FE
model based on a three-dimensional (3D) CNN to extract the spectral–spatial characteristics of HSIs.
This paper established a direction for the application of a CNN and its extended network in the field
of HSI classification.

In the last two years, Li et al. [12] have proposed a 3D CNN framework for accurate HSI
classification and used original 3D high-level data directly as an input without actively extracting the
features of the HSI. This framework does not rely on any pre- or post-processing, but effectively extracts
spectral–spatial features and does not distinguish between these two kinds of features. Distinguished
from the above-mentioned deep-learning-based methods, Zhong et al. [13] proposed a spectral–spatial
residual network (SSRN) that uses spectral and spatial residual blocks to learn the deep distinguishing
features from the rich spectral features and spatial backgrounds of HSIs.

Among deep-learning-based methods, the SSRN achieves the best performance compared to
other methods for three main reasons. First, the SSRN learns spectral and spatial features separately,
meaning that more discriminative features can be extracted. Second, SSRN depend on CNN to extract
high-level features. Third, SSRN has a deeper CNN structure than other deep learning methods.
Early work showed that the deeper a CNN is, the higher the accuracy. The disadvantage of the SSRN,
however, is an overly long training time.

Recently, other methods have been devised for which it is claimed that use of additional features
can improve classification accuracy. Zhou et al. [14] incorporated the group knowledge of the
hyperspectral features for deep-learning-based-method spatial-spectral classification. Ma et al. [15]
took a local decision based on weighted neighborhood information. Maltezos et al. [16] introduced a
set of features for improving overall classification accuracy. However, only for HSI classification might
these methods lead to sub-optimal results, because the SSRN achieved its optimal HSI classification
accuracy by learning deep spectral and spatial representations separately.

Inspired by the SSRN and to alleviate its problems, we aimed at building a deeper convolution
network that can learn deeper spectral and spatial features separately, but much faster. In 2017,
Gao et al. proposed a new deep network structure, DenseNet [17], based on Google Inception [18]
and Residual Net [19] (ResNet). As the depth of the network increases, DenseNet can reduce the

Remote Sens. 2018, 10, 1068 3 of 19

problem of gradients becoming zero, and the structure can more effectively utilize features and enhance
feature transfer between convolution layers. Despite its advantages, DenseNet has a long training
time. To reduce the training time and prevent overfitting, we use the parametric rectified linear unit
(PReLU), a dynamic learning rate, and other technical improvements (see Section 2.3).

We propose an end-to-end fast and dense spectral–spatial convolution (FDSSC) network
framework for HSI classification. The FDSSC framework has the following three characteristics
distinguishing it from the above-mentioned deep learning based methods:

(1) It is an end-to-end spectral–spatial convolution network without feature engineering as compared
with SAE-LR, Makantasis’s method, and the SSFC framework. Without relying on PCA, R-PCA,
or BLDE to reduce the dimension, our framework completely utilizes the CNN to reduce the
high dimensionality and to automatically learn spatial and spectral features separately at a very
high level, which is more effective and robust. Moreover, the FDSSC framework uses a smaller
training sample size than SAE-LR and Makantasis’s method, while achieving higher accuracy.

(2) It has a deeper structure than the SSFC framework, and the methods in [11,12] which are
CNN-based deep learning methods. A deeper structured CNN can learn more useful deep
spatial and spectral features, which leads to extremely high accuracy, and thus the FDSSC
framework has better performance than previous methods.

(3) It reduces the training time while achieving state-of-the-art performance. Although it has a
deeper structure, the FDSSC framework is easier to train than other deep-learning-based methods.
Specifically, it achieves the best accuracy in only 80 epochs, compared with 600,000 epochs for
SAE-LR and 200 epochs for the SSRN framework.

The rest of this paper is structured as follows: In Section 2, we present our proposed FDSSC
framework. In Section 3, we introduce the HSI dataset and set up our proposed method. In Section 4,
we present the HSI classification results of the proposed framework and discuss the performance and
training time compared with other classification methods. Section 5 provides a summary, as well as
suggestions for future work.

2. Proposed Framework

In this section, we explain the FDSSC framework in detail, elaborate on how to extract spectral and
spatial features separately from HSI, how to go deeper with a densely-connected structure, and how it
manages fast training and prevents overfitting. At the end, we summarize all of the steps in a graphical
flowchart to explain the FDSSC network and describe the framework to clarify the advantages of the
proposed method.

2.1. Extracting Spectral and Spatial Features Separately from HSI

A 1D CNN extracts spectral features, whereas a 2D CNN extracts local spatial features of pixels.
However, HSIs contain both abundant spatial and spectral information. For HSI classification,
this means to the use of a 3D CNN, which can extract both types of information. As shown in
Figure 1a, the 2D convolution sends a channel of the input image to another feature map after a
convolution kernel operation. For an input image with three channels of spectral information (Band1,
Band2, and Band3), a 3D convolution processes the data from three channels using two convolution
kernels to obtain two characteristic maps, as shown in Figure 1b. Within the neural network, the value
Vxyz

i,j at position (x, y, z) on the jth feature cube in the ith layer can be formulated as follows [12]:

Vxyz
i,j = g

(
bi,j + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

Wp,q,r
i,j,m V(x+p)(y+q)(z+r)

i−1,m

)
(1)

where the feature map attached to the current feature map in the (i− 1)th layer is denoted m, the length
and width of the convolution kernel in space are denoted by Pi and Qi, respectively, the size of the

Remote Sens. 2018, 10, 1068 4 of 19

3D convolution kernel along the spectral dimension is denoted Ri, the (p, q, r)th value of the kernel
connected to the mth feature cube in the preceding layer is denoted Wp,q,r

i,j,m , the bias on the jth feature
cube in the ith layer is denoted bi,j, and the activation function is denoted g(·).
Remote Sens. 2018, 10, x FOR PEER REVIEW 4 of 18

Figure 1. (a) 2D convolution and (b) 3D convolution operations per Equation (1).

When a 3D CNN is applied to HSI classification, the target pixel is at the center of an 𝑟 × 𝑟 × 𝐿-

size block taken from the original pixels of the HSI as the input of the network, where 𝑟 × 𝑟 is the

size of the image block in the spatial domain and 𝐿 is the spectral dimension of the HSI. After the

convolution and pooling step, the results are converted into 1D feature vectors. Finally, the feature

vectors are input into a classifier to obtain the classification results.

The above operations describe the general process of a 3D CNN-based deep learning method.

The key to these operations is the size of the convolution kernel, because features determine accuracy.

Taking [12] as an example, a convolution kernel of 3 × 3 × 7 or similar size is used to learn the

spectral and spatial features at the same time. Distinguished from obtaining the spectral and spatial

features together, the proposed framework uses the CNN to learn the spectral and spatial features

separately to extract more discriminative features. Next, we explain how to use different-sized

kernels to achieve this.

A kernel of size 1 × 1 × 𝑑 (𝑑 > 1) learns the spectral features from a HSI. Local spatial features

exist in the HSI space, and the 2D convolution process aims to extract the local spatial features.

However, the convolution with a kernel size of 1 × 1 × 𝑑 does not extract any spatial features

because it does not consider the relationship between pixels and their neighbors in the spatial field.

Nevertheless, the convolution of a kernel size of 1 × 1 can make linear combinations or integrate

spatial information for each pixel in a spatial field. Therefore, for 3D hyperspectral data a kernel of

size of 1 × 1 × 𝑑 extracts spectral features and perfectly retains the spatial features.

The spectral information is encoded within bands of hyperspectral data, which is the reason for

the high dimensionality of hyperspectral data. However, after spectral features are learned by a

kernel of size 1 × 1 × 𝑑, the high dimensions of the hyperspectral data can be reduced by a 3D CNN

and a reshaping operation. The key to reducing high dimensionality lies in the method of padding

the 3D convolution layer. “Same” and “valid” are two frequently used ways of padding. “Same”

denotes convolution results at the reserved boundary, which usually cause the output shape to be

the same as the input shape. “Valid” represents only effective convolution; that is, the boundary data

Figure 1. (a) 2D convolution and (b) 3D convolution operations per Equation (1).

When a 3D CNN is applied to HSI classification, the target pixel is at the center of an r× r× L-size
block taken from the original pixels of the HSI as the input of the network, where r× r is the size of
the image block in the spatial domain and L is the spectral dimension of the HSI. After the convolution
and pooling step, the results are converted into 1D feature vectors. Finally, the feature vectors are
input into a classifier to obtain the classification results.

The above operations describe the general process of a 3D CNN-based deep learning method.
The key to these operations is the size of the convolution kernel, because features determine accuracy.
Taking [12] as an example, a convolution kernel of 3 × 3 × 7 or similar size is used to learn the
spectral and spatial features at the same time. Distinguished from obtaining the spectral and spatial
features together, the proposed framework uses the CNN to learn the spectral and spatial features
separately to extract more discriminative features. Next, we explain how to use different-sized kernels
to achieve this.

A kernel of size 1× 1× d (d > 1) learns the spectral features from a HSI. Local spatial features exist
in the HSI space, and the 2D convolution process aims to extract the local spatial features. However,
the convolution with a kernel size of 1× 1× d does not extract any spatial features because it does
not consider the relationship between pixels and their neighbors in the spatial field. Nevertheless,
the convolution of a kernel size of 1× 1 can make linear combinations or integrate spatial information
for each pixel in a spatial field. Therefore, for 3D hyperspectral data a kernel of size of 1× 1× d extracts
spectral features and perfectly retains the spatial features.

Remote Sens. 2018, 10, 1068 5 of 19

The spectral information is encoded within bands of hyperspectral data, which is the reason for
the high dimensionality of hyperspectral data. However, after spectral features are learned by a kernel
of size 1× 1× d, the high dimensions of the hyperspectral data can be reduced by a 3D CNN and a
reshaping operation. The key to reducing high dimensionality lies in the method of padding the 3D
convolution layer. “Same” and “valid” are two frequently used ways of padding. “Same” denotes
convolution results at the reserved boundary, which usually cause the output shape to be the same
as the input shape. “Valid” represents only effective convolution; that is, the boundary data are not
processed. The valid convolution is used to reduce dimensions and retain extracted spectral features
and raw spatial information.

A kernel of size of a × a × 1 (a > 1) learns the spatial features from a HSI after the spectral
features have been learned. By reducing the high dimension, a kernel of size a× a× 1 can learn the
spatial features from the reserved spatial information of the previous step.

In short, our framework uses a 3D convolution layer of a kernel of size 1× 1× d (d > 1) to learn the
spectral features. Next, the high dimension of the feature maps is reduced, and then a 3D convolution
layer of a kernel of size a× a× 1 (a > 1) learns the spatial features. Finally, the classification result is
obtained by average pooling, flattening, and a fully-connected layer.

2.2. Going Deeper with Densely-Connected Structures

2.2.1. Densely-Connected Structure

Assume that the CNN has l convolution layers, Xl is the output of the lth layer and Hl(∗)
represents the complex nonlinear transformation operations in the lth convolution layer. The connected
structure of the traditional CNN is such that the output of the (l − 1)th layer is the input of the lth layer:

Xl = Hl(Xl−1), l ∈ N+ (2)

As shown in Figure 2, DenseNet [17] uses an extremely densely-connected structure, with the
feature map of the output of the zeroth to the (l − 1)th layers acting as the input to the lth layer. The
connected structure is formulated as

Xl = Hl([X0, X1, , Xl−1]), l ∈ N+ (3)

Remote Sens. 2018, 10, x FOR PEER REVIEW 5 of 18

are not processed. The valid convolution is used to reduce dimensions and retain extracted spectral

features and raw spatial information.

A kernel of size of 𝑎 × 𝑎 × 1 (𝑎 > 1) learns the spatial features from a HSI after the spectral

features have been learned. By reducing the high dimension, a kernel of size 𝑎 × 𝑎 × 1 can learn the

spatial features from the reserved spatial information of the previous step.

In short, our framework uses a 3D convolution layer of a kernel of size 1 × 1 × 𝑑 (𝑑 > 1) to learn

the spectral features. Next, the high dimension of the feature maps is reduced, and then a 3D

convolution layer of a kernel of size 𝑎 × 𝑎 × 1 (𝑎 > 1) learns the spatial features. Finally, the

classification result is obtained by average pooling, flattening, and a fully-connected layer.

2.2. Going Deeper with Densely-Connected Structures

2.2.1. Densely-Connected Structure

Assume that the CNN has 𝑙 convolution layers, 𝑋𝑙 is the output of the 𝑙th layer and 𝐻𝑙(∗)

represents the complex nonlinear transformation operations in the 𝑙th convolution layer. The

connected structure of the traditional CNN is such that the output of the (𝑙 − 1)th layer is the input

of the 𝑙th layer:

 1l l lX H X l N 

 ,　 (2)

As shown in Figure 2, DenseNet [17] uses an extremely densely-connected structure, with the

feature map of the output of the zeroth to the (𝑙 − 1)th layers acting as the input to the 𝑙th layer.

The connected structure is formulated as

 0 1 1[,]l l lX H X X X l N 

  , ,　, (3)

DenseNet combines the number of channels and leaves the value of the feature maps unchanged.

To promote the down-sampling of the framework, DenseNet is divided into multiple densely-

connected blocks called Dense Blocks, with a transition layer connecting each one. Each layer of

DenseNet directly connects to the input and the prior layer, resulting in a hidden deep supervision.

This connected structure reduces the phenomenon of gradient disappearance and thus constructs a

deeper network. In addition, DenseNet has a regularizing effect that inhibits overfitting.

Figure 2. Example of a DenseNet with four composite layers (l = 4).

2.2.2. Separately Learning Deeper Spectral and Spatial Features

The densely-connected structure is used to learn deeper spectral and spatial features from HSIs.

The small cube block 𝑟 × 𝑟 × 𝐿 is the input of our model. To improve down-sampling and separately

learn the deeper spatial and spectral features of HSIs, we divided the model into two densely-

connected blocks called dense spectral and spatial blocks.

Dense spectral blocks identify the deeper spectral features between multiple channels of a HSI.

The first 3D convolution layer processes the original pixel data of size 𝑟 × 𝑟 × 𝐿 to produce 𝑛 feature

maps with size 𝑟 × 𝑟 × 𝑏. The maps are the input to a dense spectral block denoted 𝑥1
0, where the

Figure 2. Example of a DenseNet with four composite layers (l = 4).

DenseNet combines the number of channels and leaves the value of the feature maps
unchanged. To promote the down-sampling of the framework, DenseNet is divided into multiple
densely-connected blocks called Dense Blocks, with a transition layer connecting each one. Each layer
of DenseNet directly connects to the input and the prior layer, resulting in a hidden deep supervision.

Remote Sens. 2018, 10, 1068 6 of 19

This connected structure reduces the phenomenon of gradient disappearance and thus constructs a
deeper network. In addition, DenseNet has a regularizing effect that inhibits overfitting.

2.2.2. Separately Learning Deeper Spectral and Spatial Features

The densely-connected structure is used to learn deeper spectral and spatial features from HSIs.
The small cube block r× r× L is the input of our model. To improve down-sampling and separately
learn the deeper spatial and spectral features of HSIs, we divided the model into two densely-connected
blocks called dense spectral and spatial blocks.

Dense spectral blocks identify the deeper spectral features between multiple channels of a
HSI. The first 3D convolution layer processes the original pixel data of size r × r × L to produce
n feature maps with size r × r × b. The maps are the input to a dense spectral block denoted x0

1,
where the subscript 1 represents the data in the dense spectral block of the model and the superscript
0 represents the data in the starting position of the dense spectral block. The 3D convolution layers
(including the first 3D convolution layer) use k kernels of size 1× 1× d to learn deeper spectral features.
The convolution layer in the dense spectral block is recorded as D1(·). Since the model is densely
connected, the input of the lth layer is

xl
1 = D1

(
x0

1, x1
1, , xl−1

1

)
l ∈ N+ (4)

As shown in Figure 3, the size of the input and output feature maps of each composite convolution
layer is the constant value r × r × b and the number of output feature maps is also a constant,
k. However, the number of input feature maps increases linearly with the number of composite
convolution layers. The number of the input feature maps can be formulated as follows:

kl = n + (l − 1)× k (5)

where n is the index of the initial feature map. Through the dense spectral block, the channel
feature maps merge to become km, and successfully learn deeper spectral features and keep the
spatial information.

Remote Sens. 2018, 10, x FOR PEER REVIEW 6 of 18

subscript 1 represents the data in the dense spectral block of the model and the superscript 0

represents the data in the starting position of the dense spectral block. The 3D convolution layers

(including the first 3D convolution layer) use 𝑘 kernels of size 1 × 1 × 𝑑 to learn deeper spectral

features. The convolution layer in the dense spectral block is recorded as 𝐷1(∙). Since the model is

densely connected, the input of the 𝑙th layer is

 0 1 1

1 1 1 1 1, , ,l lx D x x x l N   　 (4)

As shown in Figure 3, the size of the input and output feature maps of each composite

convolution layer is the constant value 𝑟 × 𝑟 × 𝑏 and the number of output feature maps is also a

constant, k. However, the number of input feature maps increases linearly with the number of

composite convolution layers. The number of the input feature maps can be formulated as follows:

 1lk n l k   

(5)

where 𝑛 is the index of the initial feature map. Through the dense spectral block, the channel feature

maps merge to become 𝑘𝑚 , and successfully learn deeper spectral features and keep the spatial

information.

Figure 3. Structure of dense spectral block with three convolution layers (l = 3).

The reducing dimensional layer connects the dense spectral block and dense spatial block. The

aim is to compress the model and reduce the high dimensionality of feature maps. Inside the dense

spectral and spatial blocks, the method of padding a 3D convolution layer is “same”, which is the

reason the output sizes are constant (𝑟 × 𝑟 × 𝑏). However, in reducing the dimensional layer, the

method used for padding the 3D convolution layer is “valid” to change the size of feature maps.

As shown in Figure 4, 𝑘𝑚 feature maps with a size of 𝑟 × 𝑟 × 𝑏 proceed through the 3D

convolution layer, which has a kernel size of 1 × 1 × 𝑏 and a kernel number 𝑝 (𝑝 > 𝑏). Due to the

3D convolution layer with “valid” padding, the results is p feature maps of size 𝑟 × 𝑟 × 1. Through a

reshaping operation, 𝑝 channels of 𝑟 × 𝑟 × 1 feature maps become one channel of size 𝑟 × 𝑟 × 𝑝.

Then, a 3D convolution layer that has a kernel size of 𝑎 × 𝑎 × 𝑝 and a kernel number n transforms

the feature map to an 𝑠 × 𝑠 × 1 with 𝑛 channels.

In summary, through two 3D convolution layers with “valid” padding and reshaping, the size

of the feature maps becomes 𝑠 × 𝑠 × 1, which reduces the space size, the large number of channels,

and the high dimensionality of the data blocks. This process facilitates the extraction of new features

from the dense spatial block.

Figure 3. Structure of dense spectral block with three convolution layers (l = 3).

The reducing dimensional layer connects the dense spectral block and dense spatial block. The aim
is to compress the model and reduce the high dimensionality of feature maps. Inside the dense spectral
and spatial blocks, the method of padding a 3D convolution layer is “same”, which is the reason the
output sizes are constant (r× r× b). However, in reducing the dimensional layer, the method used for
padding the 3D convolution layer is “valid” to change the size of feature maps.

Remote Sens. 2018, 10, 1068 7 of 19

As shown in Figure 4, km feature maps with a size of r× r× b proceed through the 3D convolution
layer, which has a kernel size of 1× 1× b and a kernel number p (p > b). Due to the 3D convolution
layer with “valid” padding, the results is p feature maps of size r × r × 1. Through a reshaping
operation, p channels of r × r × 1 feature maps become one channel of size r × r × p. Then, a 3D
convolution layer that has a kernel size of a× a× p and a kernel number n transforms the feature map
to an s× s× 1 with n channels.Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 18

Figure 4. Structure of reducing dimensional layer. “Filter” is the number of convolution kernels and

“padding” is the strategy of supplementing zero.

The dense spatial block learns the deeper spatial features of the HSI. For the convolution layer

in the dense spatial block, the kernel size is 𝑎 × 𝑎 × 1, and the number of kernels is also 𝑘. The

convolution layer in the dense spatial block is termed 𝐷2(∙). The output of the convolution layer of

the 𝑙th layer in the dense spatial block is given by

 0 1 1

2 2 2 2 2, , ,l lx D x x x l N   　

(6)

As shown in Figure 5, the size of the input and output feature maps of each convolution layer

are of a constant size (𝑠 × 𝑠 × 1) and the number of output feature maps is also constant with value k.

The number of input feature maps is the same as in Equation (5).

Figure 5. Structure of dense spatial block with three convolution layers (l = 3).

2.3. Going Faster and Preventing Overfitting

There are a large number of training parameters in our framework, which means long training

times and a tendency to overfit the training sets. Here, we explain how our framework is able to be

faster and prevent overfitting.

We selected PReLU as the activation function [20]. It introduces a very small number of

parameters on the basis of the ReLU [21]. Its formula is

PReLU(𝑥𝑖) = {
𝑥𝑖 , 𝑖𝑓 𝑥𝑖 > 0

𝑎𝑖𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≤ 0
 (7)

where 𝑥𝑖 is the input of the nonlinear activation on the 𝑖th channel and 𝑎𝑖 is a learnable parameter

that determines the slope of the negative part. PReLU adopts the momentum method when updating

𝑎𝑖:

Figure 4. Structure of reducing dimensional layer. “Filter” is the number of convolution kernels and
“padding” is the strategy of supplementing zero.

In summary, through two 3D convolution layers with “valid” padding and reshaping, the size
of the feature maps becomes s× s× 1, which reduces the space size, the large number of channels,
and the high dimensionality of the data blocks. This process facilitates the extraction of new features
from the dense spatial block.

The dense spatial block learns the deeper spatial features of the HSI. For the convolution layer in
the dense spatial block, the kernel size is a× a× 1, and the number of kernels is also k. The convolution
layer in the dense spatial block is termed D2(·). The output of the convolution layer of the lth layer in
the dense spatial block is given by

xl
2 = D2

(
x0

2, x1
2, , xl−1

2

)
l ∈ N+ (6)

As shown in Figure 5, the size of the input and output feature maps of each convolution layer
are of a constant size (s× s× 1) and the number of output feature maps is also constant with value k.
The number of input feature maps is the same as in Equation (5).

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 18

Figure 4. Structure of reducing dimensional layer. “Filter” is the number of convolution kernels and

“padding” is the strategy of supplementing zero.

The dense spatial block learns the deeper spatial features of the HSI. For the convolution layer

in the dense spatial block, the kernel size is 𝑎 × 𝑎 × 1, and the number of kernels is also 𝑘. The

convolution layer in the dense spatial block is termed 𝐷2(∙). The output of the convolution layer of

the 𝑙th layer in the dense spatial block is given by

 0 1 1

2 2 2 2 2, , ,l lx D x x x l N   　

(6)

As shown in Figure 5, the size of the input and output feature maps of each convolution layer

are of a constant size (𝑠 × 𝑠 × 1) and the number of output feature maps is also constant with value k.

The number of input feature maps is the same as in Equation (5).

Figure 5. Structure of dense spatial block with three convolution layers (l = 3).

2.3. Going Faster and Preventing Overfitting

There are a large number of training parameters in our framework, which means long training

times and a tendency to overfit the training sets. Here, we explain how our framework is able to be

faster and prevent overfitting.

We selected PReLU as the activation function [20]. It introduces a very small number of

parameters on the basis of the ReLU [21]. Its formula is

PReLU(𝑥𝑖) = {
𝑥𝑖 , 𝑖𝑓 𝑥𝑖 > 0

𝑎𝑖𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≤ 0
 (7)

where 𝑥𝑖 is the input of the nonlinear activation on the 𝑖th channel and 𝑎𝑖 is a learnable parameter

that determines the slope of the negative part. PReLU adopts the momentum method when updating

𝑎𝑖:

Figure 5. Structure of dense spatial block with three convolution layers (l = 3).

Remote Sens. 2018, 10, 1068 8 of 19

2.3. Going Faster and Preventing Overfitting

There are a large number of training parameters in our framework, which means long training
times and a tendency to overfit the training sets. Here, we explain how our framework is able to be
faster and prevent overfitting.

We selected PReLU as the activation function [20]. It introduces a very small number of parameters
on the basis of the ReLU [21]. Its formula is

PReLU(xi) =

{
xi, i f xi > 0
aixi, i f xi ≤ 0

(7)

where xi is the input of the nonlinear activation on the ith channel and ai is a learnable parameter that
determines the slope of the negative part. PReLU adopts the momentum method when updating ai:

∆ai := µ∆ai + lr
∂ε

∂ai
(8)

For the updating formula, µ is the momentum and lr is the learning rate. When updating ai,
the weight decay should not be used because ai may tend to zero. ai = 0.25 is used as the initial value.
Although ReLU is a useful nonlinear function, it hinders counter-propagation, whereas PReLU makes
the model converge more quickly. Batch normalization (BN) [22] adds standardized processing to
the input data of each layer in the training process of a neural network and means that the gradients
converge faster, saving time and resources during model training. For the proposed framework,
BN and PReLU are added before the 3D convolution layer, except for the first 3D convolution layer.

Early stopping and the dynamic learning rate are also used when training a model. Stopping
early means that, after a certain number of epochs (such as 50 in this paper), if the loss is no longer
decreasing, the training process will be stopped early. This reduces the training time as well as
preventing overfitting. We adopted a variable learning rate because the step size should decrease as
the result approaches an optimal value. With a better initial learning rate, the learning rate is halved
when the precision does not increase after a certain number of epochs (such as 10 epochs in this paper).
If precision no longer increases after a certain number of epochs, the learning rate will be reduced by
half again and will loop until it is less than the set minimum learning rate. In this paper, the minimum
learning rate was set to 0; that is, the learning rate looped until the maximum number of epochs
was reached.

Since the network of the proposed model is deeper, we used a dropout layer [23] before the full
connection layer to reduce the possibility of overfitting. We set the dropout rate to 50% because at this
point the network structure randomly generated by the dropout layer is the greatest and produced the
best results. Cross-validation prevents overfitting for complex models, so we divided our datasets into
a training, validation, and test datasets for cross-validation.

2.4. Fast Dense Spectral–Spatial Convolution Framework

2.4.1. Objective Function

HSI classification presents a typical classification problem. For such problems, a cross-entropy
loss function is commonly used to measure the difference between predicted value and real value to
optimize the parameters of the model. In this paper, the predicted value of the FDSSC framework is a
vector, ỹ, where ỹ ∈ R1×C, and is formulated as follows:

ỹ = FDSSC
(

xr×r×L, δ
)

(9)

Remote Sens. 2018, 10, 1068 9 of 19

where δ is the parameter of the FDSSC model to be optimized and C is the number of categories to
be classified. Since HSI classification requires multiple classification discriminations, we performed a
softmax regression, with the loss function

Ls = −
m

∑
i=1

log
eWT

yi
xi+byi

∑n
j=1 eWT

j xi+bj
(10)

where m denotes the size of the mini-batch, n the number of categories to be classified, xi the ith deep
feature belonging to the yith class, Wj the jth column of the weights W in the last fully connected layer,
and b the bias term.

Therefore, the objective function of the FDSSC framework, FFDSSC, is

FFDSSC = min
δ

(−
m

∑
i=1

log
eWT

yi
xi+byi

∑n
j=1 eWT

j xi+bj
) (11)

2.4.2. Fast Dense Spectral–Spatial Convolution Network for Classification of Labeled Pixels

For a hyperspectral image with L channels and H ×W size, r was selected as 9; that is, a target
pixel served as the center of a small cube with size 9× 9× L selected from the original pixel data as the
input of the neural network. In this paper, the convolution kernel number of dense blocks k was 12 and
the number of convolution layers of dense blocks l was 3. The FDSSC network is shown in Figure 6.

Remote Sens. 2018, 10, x FOR PEER REVIEW 9 of 18

2.4.2. Fast Dense Spectral–Spatial Convolution Network for Classification of Labeled Pixels

For a hyperspectral image with 𝐿 channels and 𝐻 × 𝑊 size, r was selected as 9; that is, a target

pixel served as the center of a small cube with size 9 × 9 × 𝐿 selected from the original pixel data as

the input of the neural network. In this paper, the convolution kernel number of dense blocks 𝑘 was

12 and the number of convolution layers of dense blocks 𝑙 was 3. The FDSSC network is shown in

Figure 6.

Figure 6. The fast dense spectral–spatial convolution (FDSSC) network for hyperspectral image (HSI)

classification of labeled pixels with a 9 × 9 × 𝐿 input. L is the number of bands of HSI. C is the number

of categories to be classified.

For the following detailed explanation, BN and PReLU are added before all convolution and

average pooling layers, except the first 3D convolution layer. As shown in Figure 6, the 9 × 9 × 𝐿

original data pass through the first 3D convolution layer generated 𝑛 = 24 feature maps of size 9 ×

9 × 𝑏 because the stride of the first convolution layer is (1,1,2) and the method of padding is “valid.”

For the convolution layers of the dense spectral block, the kernel size is (1,1,7), the kernel number is

12, the method of padding is “same”, and the stride is (1,1,1), so the output of each convolution layer

is 12 9 × 9 × 𝑏 feature maps containing the learned spectral features. Merging all output and the

initial input, the size of feature maps is unchanged and the number of channels is 24 + 12 × 3 = 60.

In reducing the dimensional layer, 60 feature maps with a size of 9 × 9 × 𝑏 proceed through the

3D convolution layer, which has a kernel size of 1 × 1 × 𝑏 and a kernel number of 200. Since the 3D

convolution layer has “valid” padding, there are 200 9 × 9 × 1 feature maps. Through a reshaping

operation, the 200 channels of 9 × 9 × 1 feature maps become one feature map with a size of 9 ×

9 × 200. Next, a 3D convolution layer with 𝑛 = 24 and a size of 3 × 3 × 200 transformed the feature

map into a 7 × 7 × 1 with 24 channels.

For the convolution layers of the dense spatial block, the kernel size is (3,3,1), the kernel number

is 12, and the padding is “same,” so each output of the convolution layers is 12 7 × 7 × 1 feature

maps to learn the deeper spatial features. Similar to the dense spectral block, 60 feature maps with a

size of 7 × 7 × 1 are produced.

Finally, the 3D average pooling layer with a 7 × 7 × 1 pooling size changes the size of the

feature maps to 1 × 1 × 1. Through the flattening operation, dropout layer, and fully-connected

layers, a prediction vector 1 × 1 × 𝐶 is produced, where 𝐶 is the number of categories to be

classified.

Figure 6. The fast dense spectral–spatial convolution (FDSSC) network for hyperspectral image (HSI)
classification of labeled pixels with a 9× 9× L input. L is the number of bands of HSI. C is the number
of categories to be classified.

For the following detailed explanation, BN and PReLU are added before all convolution and
average pooling layers, except the first 3D convolution layer. As shown in Figure 6, the 9× 9× L
original data pass through the first 3D convolution layer generated n = 24 feature maps of size 9× 9× b
because the stride of the first convolution layer is (1, 1, 2) and the method of padding is “valid.” For the
convolution layers of the dense spectral block, the kernel size is (1, 1, 7), the kernel number is 12,
the method of padding is “same”, and the stride is (1, 1, 1), so the output of each convolution layer is
12 9× 9× b feature maps containing the learned spectral features. Merging all output and the initial
input, the size of feature maps is unchanged and the number of channels is 24 + 12× 3 = 60.

Remote Sens. 2018, 10, 1068 10 of 19

In reducing the dimensional layer, 60 feature maps with a size of 9× 9× b proceed through the
3D convolution layer, which has a kernel size of 1× 1× b and a kernel number of 200. Since the 3D
convolution layer has “valid” padding, there are 200 9× 9× 1 feature maps. Through a reshaping
operation, the 200 channels of 9× 9× 1 feature maps become one feature map with a size of 9× 9× 200.
Next, a 3D convolution layer with n = 24 and a size of 3× 3× 200 transformed the feature map into a
7× 7 × 1 with 24 channels.

For the convolution layers of the dense spatial block, the kernel size is (3, 3, 1), the kernel number
is 12, and the padding is “same,” so each output of the convolution layers is 12 7× 7× 1 feature maps
to learn the deeper spatial features. Similar to the dense spectral block, 60 feature maps with a size of
7× 7× 1 are produced.

Finally, the 3D average pooling layer with a 7× 7× 1 pooling size changes the size of the feature
maps to 1 × 1 × 1. Through the flattening operation, dropout layer, and fully-connected layers,
a prediction vector 1× 1× C is produced, where C is the number of categories to be classified.

2.4.3. Fast Dense Spectral–Spatial Convolution Framework

Summarizing the above steps, we have proposed a framework that learns deeper spectral and
spatial features while reducing the training time compared to deep learning CNN-based methods.
The FDSSC framework is shown in Figure 7.

Remote Sens. 2018, 10, x FOR PEER REVIEW 10 of 18

2.4.3. Fast Dense Spectral–Spatial Convolution Framework

Summarizing the above steps, we have proposed a framework that learns deeper spectral and

spatial features while reducing the training time compared to deep learning CNN-based methods.

The FDSSC framework is shown in Figure 7.

Figure 7. FDSSC Framework for HSI classification of labeled pixels. The details of the FDSSC network

are shown in Figure 6.

The partition of HSI data and labels is the first step of the proposed framework. For cross-

validation, we randomly divided the labeled pixels and corresponding labels into training,

validation, and testing datasets selected with size 9 × 9 × 𝐿 from the original 𝐻 × 𝑊 × 𝐿 HSIs,

denoting these datasets 𝑋train, 𝑋val, and 𝑋test, respectively.

Taking the cross-entropy as the objective function, 𝑋train and 𝑋val were utilized to train the

FDSSC network to obtain the best FDSSC model under the control of the dynamic learning rate and

early stopping. The FDSSC framework was only used 𝑋train to optimize the parameters of the model

through back-propagation, and tested the initial trained models using 𝑋val . Through cross-

validation, the FDSSC could obtain the best-trained model. Finally, FDSSC made use of the best-

trained model to obtain three evaluation indices of performance by 𝑋test and classified all datasets.

Combining Figures 6 and 7 clarifies the technical advantages of the proposed method. First, the

FDSSC network only uses a convolution layer and an average pooling layer to learn features and the

fully-connected layer as a classifier, so it is an end-to-end framework and reduces high dimensions

without complicated feature engineering. Second, because of the densely-connected method, the

FDSSC network has a deeper structure resulting in extremely efficient performance. Finally, the

convergence rate of the model is very fast because of the BN and PReLU applied to the FDSSC

network and dynamic learning rate, and early stopping. Therefore, the training time of the proposed

framework is shorter, and although the FDSSC model has a high quantity of parameters, it lacks

overfitting on account of the dropout layer in the FDSSC network, early stopping, and cross-

validation.

3. Datasets and Experimental Setup

3.1. Datasets

In our experiments, we used the Indiana Pines (IN), the University of Pavia (UP, Pavia, Italy),

and the Kennedy Space Center (KSC, Merritt Island, FL, USA) datasets (Supplementary Materials).

The KSC data were obtained by the AVIRIS spectrometer in Florida in 1996. The size of the original

data is 512 × 614 × 176 and it contains 13 kinds of ground cover. Table 1 summarizes the categories

and image counts for each. The University of Pavia data are from flights of the ROSIS sensor over

Pavia in Northern Italy in 2003. The original data has size 610 × 340 × 103 with spatial resolution

1.3 m. Table 2 shows the nine types of ground cover and the image counts for each. The IN data were

obtained by the AVIRIS spectrometer in Northwestern Indiana in 1996. The original data size is

145 × 145 × 220, with 16 kinds of ground cover. Table 3 provides detailed category information.

Figure 7. FDSSC Framework for HSI classification of labeled pixels. The details of the FDSSC network
are shown in Figure 6.

The partition of HSI data and labels is the first step of the proposed framework.
For cross-validation, we randomly divided the labeled pixels and corresponding labels into training,
validation, and testing datasets selected with size 9× 9× L from the original H×W× L HSIs, denoting
these datasets Xtrain, Xval, and Xtest, respectively.

Taking the cross-entropy as the objective function, Xtrain and Xval were utilized to train the FDSSC
network to obtain the best FDSSC model under the control of the dynamic learning rate and early
stopping. The FDSSC framework was only used Xtrain to optimize the parameters of the model
through back-propagation, and tested the initial trained models using Xval. Through cross-validation,
the FDSSC could obtain the best-trained model. Finally, FDSSC made use of the best-trained model to
obtain three evaluation indices of performance by Xtest and classified all datasets.

Combining Figures 6 and 7 clarifies the technical advantages of the proposed method.
First, the FDSSC network only uses a convolution layer and an average pooling layer to learn features
and the fully-connected layer as a classifier, so it is an end-to-end framework and reduces high
dimensions without complicated feature engineering. Second, because of the densely-connected
method, the FDSSC network has a deeper structure resulting in extremely efficient performance.
Finally, the convergence rate of the model is very fast because of the BN and PReLU applied to

Remote Sens. 2018, 10, 1068 11 of 19

the FDSSC network and dynamic learning rate, and early stopping. Therefore, the training time
of the proposed framework is shorter, and although the FDSSC model has a high quantity of
parameters, it lacks overfitting on account of the dropout layer in the FDSSC network, early stopping,
and cross-validation.

3. Datasets and Experimental Setup

3.1. Datasets

In our experiments, we used the Indiana Pines (IN), the University of Pavia (UP, Pavia, Italy),
and the Kennedy Space Center (KSC, Merritt Island, FL, USA) datasets (Supplementary Materials).
The KSC data were obtained by the AVIRIS spectrometer in Florida in 1996. The size of the original
data is 512× 614× 176 and it contains 13 kinds of ground cover. Table 1 summarizes the categories
and image counts for each. The University of Pavia data are from flights of the ROSIS sensor over
Pavia in Northern Italy in 2003. The original data has size 610× 340× 103 with spatial resolution 1.3 m.
Table 2 shows the nine types of ground cover and the image counts for each. The IN data were obtained
by the AVIRIS spectrometer in Northwestern Indiana in 1996. The original data size is 145× 145× 220,
with 16 kinds of ground cover. Table 3 provides detailed category information.

Table 1. Category information for the Kennedy Space Center dataset.

Order Number Classification Number of Samples

1 Scrub 347
2 Willow swamp 243
3 CP hammock 256
4 Slash pine 252
5 Oak/broadleaf 161
6 Hardwood 229
7 Swamp 105
8 Graminoid marsh 390
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211

Table 2. Category information for the University of Pavia dataset.

Order Number Classification Number of Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3682
9 Shadows 947

Total 42,776

Remote Sens. 2018, 10, 1068 12 of 19

Table 3. Category information for the Indiana Pines dataset.

Order Number Classification Number of Samples

1 Alfafa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Building-grass-trees-drives 386
16 Stone-steal-towers 93

Total 10,249

3.2. Experimental Setup for Classification of Labeled Pixels

We configured our FDSSC framework for the classification of labeled pixels as follows: The kernel
number of the dense blocks was set to k = 12 and the number of convolution layers in each dense
block was set to 3. From the possible batch sizes of (16, 20, 24, 32, 64), 32 was selected in view of the
performance of our graphics processing unit (GPU) and test accuracy. The time limit of the initial
training epochs was 400, but on the basis of our prior experimental results the best precision was
reached within 80 epochs, so the number of epochs used during training was only 80.

Taking the IN data as an example, the RMSprop [24], Adam [25], and Nadam [26] optimizers
yielded final precision results of 99.777%, 99.665%, and 99.567%, respectively. Thus, we chose the
RMSprop optimizer. The initial learning rate was 0.0003. We used the He normal distribution
initialization method [20] as the initialization method for all convolution layers in the neural network
model. We used the Xavier normal distribution initialization method [27], also known as the Glorot
normal distribution initialization method, for the fully-connected layer.

For the 3D CNN used for HSI classification, the spatial size of the input sample is an important
factor affecting the HSI classification. Using the three datasets, we set r to 5, 7, 9, 11, and 13; that is,
spatial sizes of 5× 5, 7× 7, 9× 9, 11× 11, and 13× 13 for the input sample. We measured the overall
accuracy (OA), the average accuracy (AA), and kappa coefficient (K) for each dataset. Figure 8a shows
that with an increase in the size of the input space the classification accuracy on the IP dataset began
to fall after 7× 7. For the KSC dataset, Figure 8b shows that the classification accuracy increased
with increasing size of the input space, but after 9× 9, the accuracy reached 99.9% and then increased
by less than 0.01%. The UP dataset showed very little increase in accuracy after 9× 9, as shown in
Figure 8c. Therefore, we chose 9× 9 as the size for testing the performance of the FDSSC framework.

Deep learning algorithms rely greatly on the training samples. The more data used in training, the
higher the test accuracy. We tried different training sample sizes on the three datasets, using 10%, 15%,
20%, 25%, and 30% on the IP and KSC datasets. For the UP dataset, the large number of data samples
meant that the accuracy of the three training samples reached 99.97% with a training sample size of
only 15%. Thus, we chose to test with sample sizes of 5%, 7.5%, 10%, 12.5%, and 15%. Figure 9a shows
that, as the training sample size increased on the IN dataset, the OA and AA also increased, but the
kappa coefficient decreased after 20%. As shown in Figure 9b, after the 20% training sample size with
the KSC dataset, the OA, AA, and kappa coefficient reached 99.9%, and when the training sample
size increased to 30%, all three reached 100%. As shown in Figure 9c, for the UP dataset, the OA,
AA, and kappa coefficent reached 99.9% at a 10% training sample size. At a 15% training sample

Remote Sens. 2018, 10, 1068 13 of 19

size, all three datasets achieved 0.01–0.02% higher accuracy than at 10%. Therefore, for the FDSSC
framework, although larger training sample sizes improve accuracy to a degree, accuracy was over
99.9% for the KSC dataset with only a 20% training sample size, with the same accuracy for the UP
dataset at only 10%. Even substantial increases in training time brought only very limited increases in
accuracy. Therefore, we chose a training sample size of 20% for the IN and KSC datasets and 10% for
the UP dataset; for all of the HSI datasets the validation dataset size was half the training dataset size
and the remainder comprised the test dataset.

1

Figure 8. Accuracy with different spatial size inputs: (a) Indian Pines; (b) Kennedy Space Center; and
(c) University of Pavia scenes.

1

Figure 9. Accuracy with different training sample proportions: (a) Indian Pines (IN); (b) Kennedy
Space Center (KSC); and (c) University of Pavia (UP) scenes.

4. Experimental Results and Discussion

In our experiment, we compared the proposed FDSSC framework to other deep-learning-based
methods, that is, SAE-LR [8], CNN [9], 3D-CNN-LR [11], and the state-of-art SSRN method [13]
(only for labeled pixels). SAE-LR was implemented with Theano [28]. CNN, SSRN, and the proposed
FDSSC were implemented with Keras [29] using TensorFlow [30] as a backend. 3D-CNN-LR was
obtained from the literature [11]. In the following, the detailed classification accuracy and training
times are shown and discussed.

4.1. Experimental Results

In our experiment, we randomly selected 10 groups of training samples from the KSC, UP, and IN
datasets. Experimental results are given in the form “mean ± variance.” The training and testing time
results were obtained using the same computer, which was configured with 32 GB of memory and
a NVIDIA GeForce GTX 1080Ti GPU. The OA, AA, and kappa coefficient were used to determine
the accuracy of the classification results. Work from [9] was denoted CNN. The input spatial size is
important for the 3D convolution method. Therefore, to ensure a fair comparison, an appropriate
spatial size was chosen for each method. For the SSRN method, the classification accuracy increases
with the spatial size, so we used an input spatial size of 9× 9, which was the same as that of the FDSSC
framework. Figures 10–12 show classification maps for each of the methods.

Remote Sens. 2018, 10, 1068 14 of 19

Remote Sens. 2018, 10, x FOR PEER REVIEW 13 of 18

for the UP dataset; for all of the HSI datasets the validation dataset size was half the training dataset

size and the remainder comprised the test dataset.

Figure 9. Accuracy with different training sample proportions: (a) Indian Pines (IN); (b) Kennedy

Space Center (KSC); and (c) University of Pavia (UP) scenes.

4. Experimental Results and Discussion

In our experiment, we compared the proposed FDSSC framework to other deep-learning-based

methods, that is, SAE-LR [8], CNN [9], 3D-CNN-LR [11], and the state-of-art SSRN method [13] (only

for labeled pixels). SAE-LR was implemented with Theano [28]. CNN, SSRN, and the proposed

FDSSC were implemented with Keras [29] using TensorFlow [30] as a backend. 3D-CNN-LR was

obtained from the literature [11]. In the following, the detailed classification accuracy and training

times are shown and discussed.

4.1. Experimental Results

In our experiment, we randomly selected 10 groups of training samples from the KSC, UP, and

IN datasets. Experimental results are given in the form “mean ± variance.” The training and testing

time results were obtained using the same computer, which was configured with 32 GB of memory

and a NVIDIA GeForce GTX 1080Ti GPU. The OA, AA, and kappa coefficient were used to determine

the accuracy of the classification results. Work from [9] was denoted CNN. The input spatial size is

important for the 3D convolution method. Therefore, to ensure a fair comparison, an appropriate

spatial size was chosen for each method. For the SSRN method, the classification accuracy increases

with the spatial size, so we used an input spatial size of 9 × 9, which was the same as that of the

FDSSC framework. Figures 10–12 show classification maps for each of the methods.

Figure 10. Classification maps for KSC dataset: (a) real image of one band in KSC dataset; (b) ground-

truth map; (c) SAE-LR, OA = 92.99%; (d) CNN, OA = 99.31%; (e) SSRN, OA = 99.94%; and (f) FDSSC,

OA = 99.96%.

Figure 10. Classification maps for KSC dataset: (a) real image of one band in KSC dataset;
(b) ground-truth map; (c) SAE-LR, OA = 92.99%; (d) CNN, OA = 99.31%; (e) SSRN, OA = 99.94%;
and (f) FDSSC, OA = 99.96%.

Remote Sens. 2018, 10, x FOR PEER REVIEW 14 of 18

Figure 11. Classification maps for UP dataset: (a) real image of one band in UP dataset; (b) ground-

truth map; (c) SAE-LR, OA = 98.46%; (d) CNN, OA = 99.38%; (e) SSRN, OA = 99.93%; and (f) FDSSC,

OA = 99.96%.

Figure 12. Classification maps for IN dataset: (a) real image of one band in the IN dataset; (b) ground-

truth map; (c) SAE-LR, OA = 93.98%; (d) CNN, OA = 95.96%; (e) SSRN, OA = 99.35%; and (f) FDSSC,

OA = 99.72%.

The comparison of deep-learning-based methods relies heavily on training data. Sometimes a

method may appear better, but in reality it simply has more training data. Therefore, the same

Figure 11. Classification maps for UP dataset: (a) real image of one band in UP dataset; (b) ground-truth
map; (c) SAE-LR, OA = 98.46%; (d) CNN, OA = 99.38%; (e) SSRN, OA = 99.93%; and (f) FDSSC,
OA = 99.96%.

Remote Sens. 2018, 10, 1068 15 of 19

Remote Sens. 2018, 10, x FOR PEER REVIEW 14 of 18

Figure 11. Classification maps for UP dataset: (a) real image of one band in UP dataset; (b) ground-

truth map; (c) SAE-LR, OA = 98.46%; (d) CNN, OA = 99.38%; (e) SSRN, OA = 99.93%; and (f) FDSSC,

OA = 99.96%.

Figure 12. Classification maps for IN dataset: (a) real image of one band in the IN dataset; (b) ground-

truth map; (c) SAE-LR, OA = 93.98%; (d) CNN, OA = 95.96%; (e) SSRN, OA = 99.35%; and (f) FDSSC,

OA = 99.72%.

The comparison of deep-learning-based methods relies heavily on training data. Sometimes a

method may appear better, but in reality it simply has more training data. Therefore, the same

Figure 12. Classification maps for IN dataset: (a) real image of one band in the IN dataset;
(b) ground-truth map; (c) SAE-LR, OA = 93.98%; (d) CNN, OA = 95.96%; (e) SSRN, OA = 99.35%;
and (f) FDSSC, OA = 99.72%.

The comparison of deep-learning-based methods relies heavily on training data. Sometimes a
method may appear better, but in reality it simply has more training data. Therefore, the same amount
of training data should be used for all of the methods compared. However, for some methods, such as
the CNN for the IN dataset, when we used the same proportion to train the model the overall accuracy
would fall by approximately 2%. Therefore, in order to obtain the best accuracy for each model, in these
cases we use the same training proportion as previously used in the literature. For SAE-LR, the split
ratio of training, validation, and testing data was 6:2:2; for a CNN, the split ratio was 8:1:1; for the
SSRN method, the split ratio was 2:1:7 for the IN and KSC datasets, and 1:1:8 for the UP dataset; for the
proposed FDSSC framework, we used 20% of the labeled pixels as the training set, and 10% and 70%
for validation and testing datasets, respectively, for the IN and KSC datasets, and 10%, 5%, and 85%
for the UP dataset. Table 4 shows the OA, AA, and kappa coefficient for the different methods for the
KSC, IN, and UP datasets. From Table 4, it can be clearly seen that the proposed FDSSC framework is
superior to SAE-LR, CNN, and 3D-CNN-LR methods. For the state-of-the-art SSRN method, we note
slight improvements of 0.02%, 0.37%, and 0.04% for the KSC, IN, and UP datasets, respectively. There is
no more obvious improvement because the OAs of two of the methods are higher than 99%.

Table 5 summarizes the average training times, training epochs, and testing times of 10 runs of the
SAE-LR, CNN, SSRN, and FDSSC methods. SAE-LR was trained with 3300 epochs of pre-training and
400,000 epochs of fine-tuning [8]; the training time for fine-tuning was only 61.7 min. For a CNN [9],
the training process of this model converged in almost 40 epochs, but in our experiments the model
trained with 120 epochs achieved the best accuracy. The SSRN method needed 200 training epochs [13]
and the FDSSC framework only needed 80 training epochs to achieve the best accuracy. Therefore,
the FDSSC training time was less than that of other deep-learning-based methods. The hyperspectral
data became larger from KSC to UP, and the time difference of the FDSSC framework increased
compared with other deep-learning-based methods. Therefore, the larger the hyperspectral data,
the more time was reduced by the FDSSC framework.

Remote Sens. 2018, 10, 1068 16 of 19

Table 4. Classification results of different methods for labeled pixels of the KSC, IN, and UP datasets.

Method

Dataset

KSC IN UP

OA% AA% K × 100 OA% AA% K × 100 OA% AA% K × 100

SAE-LR [8] 92.99 ± 0.82 89.76 ± 1.25 92.18 ± 0.91 96.53 ± 0.08 96.03 ± 0.49 96.05 ± 0.11 98.46 ± 0.02 97.67 ± 0.04 97.78 ± 0.03

CNN [9] 99.31 ± 0.04 98.92 ± 0.15 99.23 ± 0.07 95.96 ± 0.44 97.75 ± 0.05 95.42 ± 0.57 99.38 ± 0.01 99.23 ± 0.01 99.17 ± 0.02

3D-CNN-LR [11] 96.31 ± 1.25 94.68 ± 1.97 95.90 ± 1.39 97.56 ± 0.43 99.23 ± 0.19 97.02 ± 0.52 99.54 ± 0.11 99.66 ± 0.11 99.41 ± 0.15

SSRN [13] 99.94 ±0.07 99.93 ± 0.08 99.94 ± 0.08 99.35 ± 0.19 88.44 ± 2.35 99.26 ± 0.22 99.93 ± 0.03 99.91 ± 0.05 99.91 ± 0.04

FDSSC 99.96 ± 0.06 99.94 ± 0.10 99.95 ± 0.07 99.75 ± 0.13 99.67 ± 0.15 99.72 ± 0.15 99.97 ± 0.02 99.96 ± 0.03 99.96 ± 0.03

Table 5. Training and testing time of different methods for three datasets.

Dataset Time SAE-LR SSRN CNN FDSSC

KSC
Training 61.7 m 329.3 s 313.6 s 201.2 s
Testing 0.12 s 1.79 s 1.83 s 2.57 s

IN
Training 142.2 m 720.5 s 441.2 s 423.7 s
Testing 0.05 s 4.14 s 2.19 s 5.56 s

UP
Training 115.2 m 1189.8 s 1799.2 s 498.2 s
Testing 0.08 s 12.56 s 2.22 s 15.51 s

Training epochs 400,000 200 120 80

Remote Sens. 2018, 10, 1068 17 of 19

4.2. Discussion

In terms of accuracy of the HSI classification methods, for deep-learning-based methods,
our experiments show that the deeper the framework is, the higher the classification accuracy.
The proposed FDSSC framework is obviously superior to the SAE-LR, CNN, and 3D-CNN-LR methods.
Compared with the SSRN method, which has state-of-the-art accuracy, the FDSSC method improves
OA and AA by 0.40% and 11.23%, respectively, for the IN dataset. It is precisely because of the greater
depth of the FDSSC network that the spectral and spatial features of HSIs are more effectively utilized,
with better feature transfer between the convolution layers. Although the training size of the SAE-LR
and CNN methods are greater than that of the FDSSC framework, the FDSSC framework has higher
accuracy than the SAE-LR and CNN methods. In addition, compared with the 24 kernel numbers of
the SSRN method, the FDSSC framework uses only 12 kernel numbers, and the model is narrower.

In terms of the training time, the FDSSC framework takes less time and has the characteristics
of fast convergence. Many deep learning methods, such as the SSRN, use ReLU, but the FDSSC
framework uses PReLU. Problems with ReLU include neuronal death and the offset phenomenon. The
former occurs because when x < 0, ReLU will be in the hard-saturation area. As training advances,
part of the input will fall into the hard-saturation area, meaning that the corresponding weight cannot
be updated. The latter occurs because the mean of the activations is always greater than zero. Neuronal
death and offset phenomena jointly influence the convergence of a network. Compared with ReLU,
PReLU converges faster because the output of PReLU is closer to zero. BN and dynamic learning rate
are the other reasons for fast convergence. Thus, compared with the 400,000 epochs required by the
SAE-LR method, 200 epochs required by the SSRN method, and 120 epochs by the CNN, the FDSSC
framework needs only 80 epochs to obtain the best accuracy, which leads to a shorter training time
than other deep-learning-based methods.

Therefore, taking both accuracy and running time into account, we conclude that the FDSSC
framework has state-of-the-art accuracy with less required training time than methods achieving
similar accuracy.

5. Conclusions and Future Work

In this paper, we propose an end-to-end, fast, and dense spectral–spatial convolution framework
for HSI classification. The most significant features of the proposed FDSSC framework are depth
and speed. Furthermore, the FDSSC framework has no complicated mechanism for reducing the
dimensionality, and instead uses original 3D pixel data directly as input. The proposed framework
uses two different dense blocks to extract abundant spatial features and spectral features in HSIs
automatically. The densely-connected arrangement of dense blocks deepens the network, reducing
the problem of gradient disappearance. The result is that the classification precision of the FDSSC
framework reaches a very high level. We introduced BN, dropout layers, and dynamic learning rates,
and adopted PReLU as the activation function of the neural network to initialize fully-connected layers.
These improvements led the FDSSC framework to converge faster and prevented overfitting, such that
only 80 epochs were needed to achieve the best classification accuracy.

The future direction of our work is hyperspectral data segmentation, aimed at segmenting
hyperspectral data based on our classification work. We plan to study an end-to-end, pixel-to-pixel
deep-learning-based method for hyperspectral data segmentation.

Supplementary Materials: The Kennedy Space Center, Indiana Pines, and University of Pavia datasets are
available online at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
They are also available online at http://www.mdpi.com/2072-4292/10/7/1068/s1.

Author Contributions: All the authors made significant contributions to this work. W.W. and S.D. conceived and
designed the experiments; S.D. performed the experiments; W.W. and Z.J. analyzed the data; and L.S. contributed
analysis tools.

Funding: This study was funded by the Laboratory of Green Platemaking and Standardization for Flexography
Printing (grant no. ZBKT201710).

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.mdpi.com/2072-4292/10/7/1068/s1

Remote Sens. 2018, 10, 1068 18 of 19

Acknowledgments: The authors are grateful to the editor and reviewers for their constructive comments,
which have significantly improved this work.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

References

1. Plaza, A.; Du, Q.; Chang, Y.; King, R.L. High Performance Computing for Hyperspectral Remote Sensing.
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 528–544. [CrossRef]

2. Nolin, A.W.; Dozier, J. A Hyperspectral Method for Remotely Sensing the Grain Size of Snow.
Remote Sens. Environ. 2000, 74, 207–216. [CrossRef]

3. Mohanty, P.C.; Panditrao, S.; Mahendra, R.S.; Kumar, S.; Kumar, T.S. Identification of Coral Reef Feature
Using Hyperspectral Remote Sensing. In Proceedings of the SPIE-The International Society for Optical
Engineering, New Delhi, India, 4–7 April 2016; pp. 1–10.

4. Melgani, F.; Bruzzone, L. Classification of Hyperspectral Remote Sensing Images with Support Vector
Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

5. Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral
Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [CrossRef]

6. Deng, S.; Xu, Y.; He, Y.; Yin, J.; Wu, Z. A Hyperspectral Image Classification Framework and Its Application.
Inf. Sci. 2015, 299, 379–393. [CrossRef]

7. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the
Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

8. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

9. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep Supervised Learning for Hyperspectral
Data Classification through Convolutional Neural Networks. In Proceedings of the 2015 IEEE International
Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 4959–4962.

10. Zhao, W.; Du, S. Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension
Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

11. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral
Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

12. Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional
Neural Network. Remote Sens. 2017, 9, 67. [CrossRef]

13. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-Spatial Residual Network for Hyperspectral Image
Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2017, 99, 1–12. [CrossRef]

14. Zhou, X.; Li, S.; Tang, F.; Qin, K.; Hu, S.; Liu, S. Deep Learning with Grouped Features for Spatial Spectral
Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 97–101. [CrossRef]

15. Ma, X.; Wang, H.; Wang, J. Semisupervised Classification for Hyperspectral Image Based on Multi-Decision
Labeling and Deep Feature Learning. ISPRS J. Photogramm. Remote Sens. 2016, 120, 99–107. [CrossRef]

16. Maltezos, E.; Doulamis, N.; Doulamis, A.; Ioannidis, C. Deep Convolutional Neural Networks for Building
Extraction from Orthoimages and Dense Image Matching Point Clouds. J. Appl. Remote Sens. 2017, 11, 1–22.
[CrossRef]

17. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of
the 2017 IEEE Conference on Pattern Recognition and Computer Vision (CVPR), College Park, MD, USA,
25–26 July 2017; pp. 1–9.

18. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

http://dx.doi.org/10.1109/JSTARS.2010.2095495
http://dx.doi.org/10.1016/S0034-4257(00)00111-5
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TGRS.2014.2381602
http://dx.doi.org/10.1016/j.ins.2014.12.025
http://dx.doi.org/10.1109/MGRS.2016.2540798
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.1109/LGRS.2016.2630045
http://dx.doi.org/10.1016/j.isprsjprs.2016.09.001
http://dx.doi.org/10.1117/1.JRS.11.042620

Remote Sens. 2018, 10, 1068 19 of 19

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
Imagenet Classification. In Proceedings of the 15th IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, 11–18 December 2015; pp. 1026–1034.

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural
Networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

22. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,
Lile, France, 6–11 July 2015; pp. 1–9.

23. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

24. Tijmen, T.; Hinton, G. Lecture 6.5-Rmsprop: Divide the Gradient by a Running Average of Its Recent
Magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–31.

25. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International
Conference on Learning Representations 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

26. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the Importance of Initialization and Momentum in Deep
Learning. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16–21 June 2013; pp. 1139–1147.

27. Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS 2010,
Sardinia, Italy, 13–15 May 2010; pp. 249–256.

28. Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.;
Belikov, A.; Belopolsky, A.; et al. Theano: A Python Framework for Fast Computation of Mathematical
Expressions. arXiv 2016.

29. François, C.; Keras-Team. GitHub Repository. 2015. Available online: https://github.com/fchollet/keras
(accessed on 1 June 2018).

30. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
arXiv 2016.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/fchollet/keras
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Framework
	Extracting Spectral and Spatial Features Separately from HSI
	Going Deeper with Densely-Connected Structures
	Densely-Connected Structure
	Separately Learning Deeper Spectral and Spatial Features

	Going Faster and Preventing Overfitting
	Fast Dense Spectral–Spatial Convolution Framework
	Objective Function
	Fast Dense Spectral–Spatial Convolution Network for Classification of Labeled Pixels
	Fast Dense Spectral–Spatial Convolution Framework

	Datasets and Experimental Setup
	Datasets
	Experimental Setup for Classification of Labeled Pixels

	Experimental Results and Discussion
	Experimental Results
	Discussion

	Conclusions and Future Work
	References

