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Abstract: Most of the traditional supervised classification methods using full-polarimetric synthetic
aperture radar (PolSAR) imagery are dependent on sufficient training samples, whereas the results
of pixel-based supervised classification methods show a high false alarm rate due to the influence
of speckle noise. In this paper, to solve these problems, an object-based supervised classification
method with an active learning (AL) method and random forest (RF) classifier is presented, which can
enhance the classification performance for PolSAR imagery. The first step of the proposed method
is used to reduce the influence of speckle noise through the generalized statistical region merging
(GSRM) algorithm. A reliable training set is then selected from the different polarimetric features of
the PolSAR imagery by the AL method. Finally, the RF classifier is applied to identify the different
types of land cover in the three PolSAR images acquired by different sensors. The experimental results
demonstrate that the proposed method can not only better suppress the influence of speckle noise,
but can also significantly improve the overall accuracy and Kappa coefficient of the classification
results, when compared with the traditional supervised classification methods.

Keywords: PolSAR imagery; object-based classification; generalized statistical region merging
(GSRM); active learning (AL); random forest (RF)

1. Introduction

Land-cover classification of remote sensing imagery is becoming more and more important for
local and regional planning [1,2], environmental impact assessment [3,4], agriculture monitoring [5],
etc. Meanwhile, classification methods using optical remote sensing images have been extensively
developed in recent decades because of the widespread accessibility of optical imagery. However,
optical remote sensing images are subject to the influence of weather and illumination [6]. Fortunately,
PolSAR data can not only overcome the disadvantages of optical remote sensing images, but can
also allow improved object interpretation through making full use of the polarimetric information of
PolSAR imagery [7].

Several supervised classification methods for PolSAR imagery have been developed, such as the
Wishart supervised classifier [1], convolutional neural networks (CNN)-based classifier [8], the support
vector machine (SVM) classifier [9], and the random forest (RF) classifier [10], and they have shown
good performances when the training samples are sufficient. However, the collection of training sample
sets is complicated and expensive; moreover, the process of traditional classification is time-consuming
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due to the redundant training samples. Fortunately, the active learning (AL) method [11,12] has been
developed in recent years, which can obtain a better classification performance than the traditional
supervised classification methods when the training samples are limited. Although numerous methods
using AL have been successfully applied to hyperspectral remote sensing images [11–13], the AL
method has rarely been applied to full-polarimetric SAR images, due to the influence of the complex
imaging mechanism, such as foreshortening, shadow, and overlay. At the same time, PolSAR images
are subject to the influence of inherent speckle noise and still have finely divided spots despite speckle
filtering, so the results of the traditional pixel-based supervised classification methods show a high false
alarm rate. Therefore, supervised classification using full-polarimetric SAR data remains a challenge.
In this regard, it is necessary to design a supervised classification method for PolSAR imagery that
uses as few labeled samples as possible to obtain better precision.

In this paper, focusing on the aforementioned problems of the traditional supervised classification
methods when using PolSAR imagery, we propose an object-based classification method named
GSRM_MBT_RF to enhance the classification performance. The proposed method should not be
regarded as a combination of many different methods, but rather as a fully unified algorithm with
different steps. The GSRM method is used to reduce the impact of inherent speckle noise; the AL
algorithm is applied to select reliable training samples from the different polarimetric features of the
PolSAR imagery; and the RF classifier is used as the classifier to identify the different types of land
cover in the PolSAR images.

The rest of this paper is organized as follows. The proposed object-based supervised classification
method with AL and RF is described in Section 2. Section 3 details the results of the proposed approach
on different PolSAR images from different sensors. Section 4 discusses the results of the case study.
Finally, our conclusions are drawn in Section 5.

2. Materials and Methods

In this paper, a novel object-based supervised classification method which integrates the
advantages of three different algorithms (the GSRM algorithm, the AL method, and the RF classifier) is
proposed for the classification of PolSAR imagery. The procedure of the proposed method is introduced
in this section.

2.1. Polarimetric Feature Extraction

Generally speaking, PolSAR imagery includes the backscattering coefficients of the four
polarimetric channels (HH/HV/VH/VV) [1]. For the orthogonal polarization basis, the scattering
information of ground objects can be represented by the following Sinclair matrix S [14]:

S =

[
Shh
Svh

Shv
Svv

]
(1)

The different elements in matrix S represent the backscattering coefficients of the different
polarimetric channels. For multi-look conditions, the covariance matrix C of the PolSAR imagery obeys
a complex Wishart distribution under the reciprocity hypothesis in mono-station case.

C =
〈

S · S∗T
〉
=

〈 |Shh|2 ShhS∗hv ShhS∗vv
ShvS∗hh |Shv|2 ShvS∗vv
SvvS∗hh SvvS∗hv |Svv|2

〉 (2)

To better achieve object interpretation, it is necessary to acquire the parameters of the polarimetric
features based on a physical scattering mechanism [15]. The backscattering coefficients (σ0

HH = |Shh|2,
σ0

HV = |Shv|2 and σ0
VV = |Svv|2) are the basic polarimetric features of PolSAR imagery. Meanwhile,
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the copolarized correlation coefficient (|ρHHVV |) can represent the attenuation and randomness of
different natural objects.

The theorems of polarimetric decomposition, which are related to the properties of different
objects, can also be used to extract the different polarimetric features of PolSAR imagery. In recent
years, several polarimetric decomposition methods have been developed and applied. In this
study, we extracted the polarimetric features using different methods of polarimetric decomposition.
A summary of the polarimetric parameters used in this study is shown in Table 1, including Cloude
polarimetric decomposition [15], H/A/Alpha polarimetric decomposition [16], Freeman–Durden
three-component decomposition [17], van Zyl decomposition [18], Yamaguchi decomposition [19],
TSVM decomposition [20] and Arii decomposition [21]. The polarimetric features were extracted using
the Polarimetric SAR Data Processing and Educational Tool (PolSARpro).

Table 1. A summary of the polarimetric parameters used in this study.

Polarimetric Parameters Physical Description

σ0
HH , σ0

HV , σ0
VV The backscattering coefficients of HH (σ0

HH), HV (σ0
HV), and VV (σ0

VV)

|ρHHVV | The copolarized phase difference between HH and VV

C3 The nine elements of covariance matrix C3

T3 The nine elements of coherence matrix T3

H/A/Alpha The entropy (H), anisotropy (A), and alpha angle (Alpha) obtained from
Cloude decomposition

Freeman_Odd
Freeman_Dbl
Freeman_Vol

The parameters of surface scattering, double scattering, and volume scattering
obtained from Freeman–Durden three-component decomposition

VanZyl3_Odd
VanZyl3_Dbl
VanZyl3_Vol

The parameters of surface scattering, double scattering, and volume scattering
obtained from van Zyl decomposition

Yamaguchi4_Odd
Yamaguchi4_Dbl
Yamaguchi4_Vol
Yamaguchi4_Hlx

The parameters of surface scattering, double scattering, volume scattering, and
helix scattering obtained from Yamaguchi four-component decomposition

TSVM_psi
TSVM_tau
TSVM_phi

TSVM_alpha

The sixteen decomposition parameters from TSVM decomposition

Arii3_NNED_Odd
Arii3_NNED_Dbl
Arii3_NNED_Vol

The parameters of surface scattering, double scattering, and volume scattering
obtained from Arii decomposition

2.2. Generalized Statistical Region Merging (GSRM)

PolSAR imagery is usually subjected to the impact of inherent speckle noise, which leads to a
poor performance for the traditional pixel-based supervised classification methods [22]. Fortunately,
object-based classification algorithms have the potential to suppress the influence of speckle noise,
and we can also use spatial feature information when using a supervised classification method [23].
Segmentation is one of the most important aspects of the object-based classification algorithms, and a
number of algorithms based on segmentation of PolSAR imagery have been developed in recent years,
such as the GSRM algorithm [24], the mean shift segmentation algorithm [25], and the normalized cut
(Ncut) segmentation algorithm [26].

The GSRM algorithm has a number of advantages, such as rapid computation and the fact that it
is independent of the data distribution, when compared with some of the traditional segmentation
methods using PolSAR data [24]. Therefore, the GSRM algorithm has been widely applied in the
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segmentation of PolSAR imagery [27–29]. Two essential components are defined when using the
GSRM algorithm: (1) the merging predicate, which is used to confirm whether adjacent regions are
merged or not; and (2) the merging order, which is followed to test the merging of regions.

2.2.1. Merging Predicate

The merging predicate of the GSRM algorithm can be derived from the theory of probability [30].
If (R, R’) is a pair of adjacent areas of an observed PolSAR imagery I, for any δ (0 < δ ≤ 1), a corollary
can be represented according to the Nock and Nielsen model [30]:

Pr

∣∣∣(R− R′
)
− E

(
R− R′

)∣∣∣ ≥
√√√√√ B2

2Q

E2(R)
|R| +

E2
(

R′
)

|R′|

 ln
2
δ

 ≤ δ (3)

where Q is the maximum value of the PolSAR imagery, and is uncertain. |·| stands for cardinal and
E
(

R− R′
)

is the expectation over all corresponding statistical pixels. Parameter B is set as 2 in this
paper [24].

As a result, a merging predicate PG(R, R′) can be obtained as follows:

PG(R, R′) =

{
true.
f alse.

‖R′ − R‖1 ≤ bG(R, R′)
otherwise

(4)

where

bG
(

R, R′
)
=

√√√√√ B2

2Q

‖E(R)‖∞
2

|R| +
‖E
(

R′
)
‖

∞
2

|R′|

 ln
2
δ

(5)

2.2.2. Merging Order

The merging order of the GSRM algorithm is not a stepwise optimization tactic, but is rather a
pre-ordering strategy. Under the guidance of pre-ordering, the first step of the merging order calculates
the gradient from the gradient function f (p, p′):

f (p, p′) = ‖ p− p′

p + p′
‖

1
(6)

where p and p′ is a pair of adjacent pixels in the PolSAR imagery. The second step of the merging
order sorts the order of f (p, p′) in increasing order and merge regions of p and p’ represent.

2.3. Active Learning (AL)

Most of the supervised classification methods for PolSAR imagery are limited by the availability
of effective training samples. Moreover, the process of classification is time-consuming due to the
redundant information of training samples. To address these issues, the AL method has been
introduced in recent years [13]. AL method can be used to better select a reliable training set
from unlabeled data, and has been successfully applied in the supervised classification of optical
imagery [31].

An AL algorithm is aimed at iteratively enlarging the training samples by human–machine
interaction, and labels samples with the maximum information from a set of unlabeled features for
each class [32]. The basic function of AL can be represented as follows [33]:

A = (C, Q, S, L, U) (7)
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where component C represents the classifier used in the AL method; component L is a group of labeled
training sets for each class; component Q stands for the query function, which is used to query the
informative training samples; component U represents the unlabeled features of the PolSAR data;
and component S stands for the unlabeled set to be labeled. The general process of AL is shown in
Algorithm 1.

Algorithm 1. The general process of AL.

Input: labeled sample set L, unlabeled sample set SU , the number of training sample sets N
1. Initialize training sample set DL based on random selection from labeled sample set L
2. While size of training sample set n < N do
3. Learn a model by classifier C according to training sample set DL

4. Select the most informative samples based on query function Q
5. Label the most informative samples from unlabeled sample set U
6. Update unlabeled sample set SU and new labeled sample set SL

7. n← n + 1
8. End while
Output: the training sample set SL of the most informative samples

The query function plays a key role in the AL method. Different schemes of sample selection have
been developed in recent years, such as membership query synthesis, which includes stream-based
selective sampling and pool-based selective sampling [32]. The pool-based query methods are some
of the most popular methods, and they can make the best use of the posterior probabilities for each
class [33]. Four different sampling schemes based on polarimetric and contextual information were
implemented in this study: (1) random selection (RS), which selects the training samples from the
unlabeled candidate pool using a random method; (2) a mutual information (MI)-based criterion;
(3) the breaking ties (BT) algorithm; and (4) a modified breaking ties (MBT) scheme [11,13].

2.3.1. The Mutual Information (MI)-Based Criterion

The MI-based criterion [11] of AL method obtains the training samples by maximizing the mutual
information between the classifier and class labels, which can select samples from the most complicated
region. We suppose that x̂MI

i stands for the MI between the classifier and the class labels, and a new
feature vector xi is selected. The MI-based criterion of AL method can then be represented as follows:

x̂MI
i = arg max

xi ,i∈SU
I(ω; yi|xi ) (8)

where

I(ω; yi|xi ) =
1
2

log(

∣∣HMI
∣∣

H
) (9)

where H is the Hessian matrix, and HMI stands for the Hessian matrix after including the new
polarimetric feature xi. H and HMI can be represented as follows:

H ≡ ∇2(−logp(ω̂|DL ))HMI = H + (diag(pi(ω̂|DL ))− pi(ω̂|DL )pi(ω̂|DL )
T)⊗ h(xi)h(xi)

T (10)

where pi(ω̂|DL ) represents the posterior probabilities of class labels, which we can obtain by Bayes’
theorem. Component h(xi) stands for the input polarimetric feature. ⊗ is an operation of the Kronecker
product. We obtain the MI by combining Equations (8)–(10).

I(ω; yi|xi ) =
1
2

log(1 +
1
K

K

∏
k=1

xT
i H−1xi) (11)

where K represents the number of categories.
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2.3.2. Breaking Ties (BT) Algorithm

The BT algorithm [32] selects the training samples by minimizing the distance of the two most
probable classes, and it can select samples from the boundary region between the two most probable
classes. The BT algorithm for AL method can be represented as follows:

x̂BT
i = arg min

xi ,i∈SU
{max

k∈L
p(yi = k|xi, ω̂ )− max

k∈L\{k+}
p(yi = k|xi, ω̂ )} (12)

where max
k∈L\{k+}

p(yi = k|xi, ω̂ ) stands for the most probable class for feature vector xi, which is the

maximum of the posterior probabilities of class labels; and max
k∈L

p(yi = k|xi, ω̂ ) represents the second

most probable class for feature vector xi, which can also be easily obtained by Bayes’ theorem [11,13].

2.3.3. The Modified Breaking Ties (MBT) Algorithm

Even though the MI-based criterion and BT algorithm can obtain better performances than RS,
they do have some disadvantages: (1) the MI-based criterion focuses on the most complicated area,
so it is prone to confused among different classes and less accurate; and (2) the BT algorithm focuses on
the boundary area between the two most probable classes, so it is prone to having only one boundary.
Fortunately, the MBT scheme was put forward, which can promote more diversity than the other two
methods [13]. The goal of MBT scheme is to obtain the training samples by calculating the minimum
probability between the largest classes in each individual class.

The MBT scheme includes two main steps: the first step of MBT is to select samples from the
unlabeled pool according to the samples with the same maximum a posteriori (MAP) estimation;
and the second step of MBT is used to iteratively select samples from the most complicated region
according to the following Formula (13):

x̂MBT
i = arg max

xi ,i∈SUs ,k∈L\{s}
p(yi = k|xi, ω̂ ) (13)

where max
xi ,i∈SU ,k∈L\{s}

p(yi = k|xi, ω̂ ) stands for the most possibility of each class for feature vector xi.

2.4. The Procedure of the Proposed Method

The basic processing procedure of the proposed method (as shown on Figure 1) consists of:
(1) preprocessing of the PolSAR imagery; (2) polarimetric decomposition and feature extraction;
(3) segmentation of PolSAR imagery, i.e., delineation of the land parcels using the GSRM algorithm;
(4) selection of an effective training set; and (5) image classification.

In this proposed method, it is essential to preprocess the PolSAR imagery because of the
complexity of the PolSAR imaging procedure and the characteristics of phase coherence processing.
The preprocessing of PolSAR data includes: (1) radiation correction; and (2) filtering. In this study,
the radiation correction was implemented using PolSARpro software and Next ESA SAR Toolbox
(NEST) software. The Lee Sigma filter has the advantages of being able to retain better details and a
reduced time cost when compared with other filter methods [7], so we chose the 7 × 7 Lee Sigma filter
to suppress the speckle noise. The different polarimetric features were extracted using PolSARpro
software, and the GSRM algorithm was used to reduce the impact of the inherent speckle noise in the
next step. The AL algorithm was then applied to select reliable training samples from the different
polarimetric features of the PolSAR imagery. Finally, the RF classifier was used as the classifier to
identify the different types of land cover in the PolSAR images.
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3. Experiments and Results

Three PolSAR image datasets were used for the evaluation of the proposed method and our
method was implemented using MATLAB language. To evaluate the effectiveness of the proposed
method, we compared the overall accuracy (OA) and Kappa coefficient (Kappa) of the experimental
results with those of other classifiers that select data points either at random or via another related
sample selection strategies.

3.1. Description of the Image Datasets

In the experiments, the first full-polarimetric SAR dataset used was obtained by the Airborne
Synthetic Aperture Radar (AIRSAR) sensor. The imagery is L-band data acquired by NASA/JPL from
Flevoland in the Netherlands in 1989. The PolSAR imagery size is 750 × 1024 pixels and the spatial
resolution is 6.60 m × 12.10 m. The Pauli-RGB imagery is shown in Figure 2a and the ground truth is
shown in Figure 2b. The land-cover types of this area are mainly crops, and 15 different land-cover
categories are listed in Figure 2c.

The second full-polarimetric SAR dataset was acquired by the 38th Research Institute of the China
Electronics Technology Group Corporation (CETC38) in 2012. This imagery is an Uninhabited Aerial
Vehicle Synthetic Aperture Radar (UAVSAR) imagery (X-band) of an area near the city of Lingshui in
China. The Pauli-RGB image is shown in Figure 2d. The PolSAR image size is 2220 × 2333 pixels and
the spatial resolution is 0.5 m × 0.5 m. The ground truth of the PolSAR image is shown in Figure 2e,
which was established by on-the-spot field investigation. Five different growth stages of paddy fields
are identified in Figure 2f.

The third full-polarimetric SAR dataset was acquired by the Radarsat-2 on 7 December 2011.
This imagery is a C-band of an area near the city of Wuhan, in China. The Pauli-RGB image is
shown in Figure 2g. The PolSAR image size is 1200 × 1000 pixels and the spatial resolution is
8.0 m × 8.0 m. The ground truth of the PolSAR image is shown in Figure 2h, which was obtained by
visual interpretation of the optical imagery corresponding to the time of Radarsat-2 imagery. Four
different land-cover categories are listed in Figure 2i.
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3.2. Experiments and Results 

Figure 2. Pauli-RGB images of the three experimental datasets and the ground-truth maps:
(a) Pauli-RGB of AIRSAR imagery; (b) Ground-truth map for the AIRSAR imagery; (c) Land-cover
categories of AIRSAR imagery;(d) Pauli-RGB of UAVSAR imagery; (e) Ground-truth map for the
UAVSAR imagery; (f) Land-cover categories of UAVSAR imagery; (g) Pauli-RGB of RadarSat-2 imagery;
(h) Ground-truth map for the RadarSat-2 imagery; (i) Land-cover categories of RadarSat-2 imagery.

3.2. Experiments and Results

3.2.1. Experiments with AIRSAR Image

In this set of experiments, 15 land-cover categories were considered for the classification.
Polarimetric decomposition was implemented to extract the polarimetric parameters from the AIRSAR
data and the GSRM algorithm was applied to segment the AIRSAR imagery. We used the AL algorithm
to select an effective training set with high representation quality and low redundancy; the RF classifier
was then used as the classifier to identify the different types of land cover in the AIRSAR images;
and, finally, we evaluated the classification accuracy of the different methods.

As shown in Figure 3a, PolSAR imagery is usually affected by speckle noise, which leads to the
AIRSAR imagery to still have finely divided spots despite the speckle filtering in Figure 3b. For this
reason, the GSRM algorithm is used to segment original AIRSAR image. To avoid the phenomenon
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of over-segmentation or under-segmentation, the segmentation parameters are set during the GSRM
segmentation in this paper and we found the segmentation parameters which the scale parameter
Q is 32 and the gradient threshold ∆ is 0.5 can better retain details and preserve the shape of small
land parcels than other scale parameters or gradient thresholds by visual assessment. The number of
regions is 2235 and average number of pixels per region is 343, where the red line is the boundary of
homogeneous area in Figure 3c. The result shows that GSRM segmentation can better suppress the
influence of speckle noise than traditional filtering methods.
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Figure 3. The Pauli-RGB imagery of AIRSAR after speckle filtering and GSRM segmentation: (a) The
Pauli-RGB imagery of original AIRSAR imagery; (b) The Pauli-RGB imagery of AIRSAR after speckle
filtering; (c) The Pauli-RGB imagery of AIRSAR after GSRM segmentation.

We designed several contrasting experiments to evaluate the effectiveness of the proposed method:
Four different sample selection strategies (RS, MI, BT, and MBT) were considered first. In detail, we first
randomly selected five training samples per class as the initial training set, which was done spatially
by randomly selecting the segmented objects within a class and that all polarimetric parameters were
considered in this step; in the second step, five samples per class were selected using the four different
sample selection strategies (RS, MI, BT, and MBT) at each iteration, with the stopping criterion of the
iteration set to 10 times; and the RF classifier was finally applied to identify the different types of
land cover in the AIRSAR imagery. In addition, two other contrasting experiments were designed:
(1) a pixel-based classification method using MBT strategies and RF classifier (named MBT_pixel);
and (2) an object-based classification combined with MBT strategies and RF classifier, but it only uses
the full T3 matrix (named MBT_T3). Figure 4 shows the classification results obtained with the AIRSAR
imagery when 55 samples in each category are picked using the different strategies. It is noted that the
training samples are used to train model of classification and test samples are used to evaluate the
performance of the classification, so training samples used for classification accuracy assessment are
independent of those used for algorithms training in this paper.
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Table 2 lists the classification accuracies of each category, OA and Kappa of the classification
results obtained for the AIRSAR imagery with the different strategies when 55 samples in each
category are picked, which can be used to quantitatively compare the classification performances of
different strategies.



Remote Sens. 2018, 10, 1092 11 of 25

Table 2. The classification results obtained for the AIRSAR imagery with different strategies.

Categories MBT_pixel MBT_T3 RS MI BT MBT

Rape seed 0.7891 ± 0.0183 0.9325 ± 0.0071 0.9658 ± 0.0025 0.9997 ± 0.0002 0.9608 ± 0.0034 0.9985 ± 0.0007
Stem beams 0.9441 ± 0.0095 0.9607 ± 0.0053 0.9350 ± 0.0047 0.7747 ± 0.0214 0.9949 ± 0.0005 0.9958 ± 0.0012

Bare soil 0.2694 ± 0.0212 0.7284 ± 0.0115 0.9116 ± 0.0102 0.9998 ± 0.0001 0.9910 ± 0.0010 0.9998 ± 0.0001
Water 0.9636 ± 0.0064 0.9637 ± 0.0087 0.9876 ± 0.0034 0.9997 ± 0.0002 0.9916 ± 0.0004 0.9996 ± 0.0001
Forest 0.8947 ± 0.0120 0.9572 ± 0.0046 0.8219 ± 0.0072 0.9969 ± 0.0024 0.9791 ± 0.0011 0.9974 ± 0.0010

Wheat C 0.8975 ± 0.0074 0.9802 ± 0.0027 0.9926 ± 0.0012 0.9996 ± 0.0001 0.9988 ± 0.0002 0.9989 ± 0.0004
Lucerne 0.9101 ± 0.0038 0.9917 ± 0.0013 0.9993 ± 0.0007 0.8615 ± 0.0216 0.9991 ± 0.0005 0.9997 ± 0.0002
Wheat A 0.8876 ± 0.0167 0.9909 ± 0.0011 0.9954 ± 0.0014 0.9698 ± 0.0117 0.9976 ± 0.0011 0.9827 ± 0.0040

Peas 0.9601 ± 0.0078 0.9925 ± 0.0004 0.9908 ± 0.0003 0.9998 ± 0.0001 0.9814 ± 0.0018 0.9720 ± 0.0037
Wheat B 0.7901 ± 0.0147 0.9169 ± 0.0029 0.9493 ± 0.0041 0.9964 ± 0.0013 0.9879 ± 0.0025 0.9902 ± 0.0010

Beet 0.9308 ± 0.0201 0.4568 ± 0.0146 0.9597 ± 0.0023 0.9884 ± 0.0024 0.8275 ± 0.0033 0.9969 ± 0.0002
Potatoes 0.9124 ± 0.0094 0.9997 ± 0.0001 0.9775 ± 0.0017 0.9738 ± 0.0011 0.9168 ± 0.0101 0.9891 ± 0.0011
Barely 0.8654 ± 0.0182 0.9891 ± 0.0016 0.9692 ± 0.0051 0.9989 ± 0.0007 0.9983 ± 0.0020 0.9997 ± 0.0002

Building 0.9943 ± 0.0024 0.9989 ± 0.0007 0.9624 ± 0.0011 0.9981 ± 0.0003 0.8273 ± 0.0007 0.9981 ± 0.0004
Grass 0.8484 ± 0.0102 0.9662 ± 0.0035 0.9814 ± 0.0014 0.9888 ± 0.0010 0.9935 ± 0.0004 0.9917 ± 0.0017
OA 0.9014 ± 0.0111 0.9442 ± 0.0052 0.9816 ± 0.0016 0.9862 ± 0.0022 0.9924 ± 0.0017 0.9974 ± 0.0012

Kappa 0.8915 ± 0.0181 0.9388 ± 0.0057 0.9798 ± 0.0015 0.9848 ± 0.0024 0.9916 ± 0.0019 0.9971 ± 0.0015

As Figure 4 and Table 2 show, the object-based supervised classification methods can suppress the
influence of speckle noise (MBT_pixel, OA 90.14% and Kappa 0.8915) and obtain pleasing classification
performances when compared with the pixel-based supervised classification method. However, the
performance with the RS strategy (OA 98.16% and Kappa 0.9798) is the worst among the different
sample selection strategies when 55 samples in each category are picked, because the RS strategy
randomly selects the training samples from the ground-truth maps, and the strategy does not consider
the information contained in the training samples. The performances with MI (OA 98.62% and Kappa
0.9848) and BT (OA 99.24% and Kappa 0.9916) are better than the performance with RS strategy,
as these methods adequately consider the information contained in the training samples. The MI
strategy focuses on the most complicated area and the strategy of the BT algorithm focuses on the
boundary area between the two most probable classes. As a result, these two methods are both
prone to confusion and are less accurate than the MBT strategy (OA 99.74% and Kappa 0.9971) when
the scenario is complicated. At the same time, the proposed method can fully use the polarimetric
information and it can improve the performance when compared with the MBT_T3 (OA 94.42% and
Kappa 0.9338) method.

Figure 5 shows the classification accuracies with different numbers of training samples from the
different strategies. The horizontal axis represents the number of training samples and the vertical axis
represents the OA or Kappa. It can be seen that the classification performances become stable when
the samples in each category are more than 50, and the performance of the MBT strategy is the best
among the different strategies of sample selection when the samples in each category are more than 35.
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To quantitatively compare the classification results obtained by different classification algorithms,
four different classification algorithms were considered: (1) k-nearest neighbor (KNN) classifier;
(2) Wishart classifier; (3) LOR-LBP classifier; and (4) RF classifier. The four different classifiers
are common classification algorithms of machine learning, which have been widely applied for the
classification of PolSAR images. The KNN classifier is one of the most common classification algorithms
in the remote sensing field [34]. The Wishart classifier is an important classifier based on the Wishart
probability density function of PolSAR imagery [1]. The LOR-LBP classifier is a classifier based on
Logistic regression via the loopy belief propagation (LBP) algorithm [13]. The RF classifier is an
algorithm used to integrate multiple decision trees by the idea of ensemble learning [4].

In detail, we first randomly selected five training samples per class as the initial training set,
which was done spatially by randomly selecting the segmented objects within a class and that all the
polarimetric parameters were considered in this step; in the second step, five samples per class were
selected using the MBT strategy of sample selection at each iteration, with the stopping criterion of
the iteration set to 10 times; and the four different classification algorithms were finally applied to
identify the different types of land cover in the AIRSAR imagery. Figure 6 shows the classification
results obtained with the AIRSAR imagery when 55 samples in each category are picked using the
different classification algorithms.
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Table 3 lists the classification performances (OA and Kappa) obtained for the AIRSAR imagery
with the different classification algorithms when 55 samples in each category are picked, which can
be used to quantitatively compare the classification results of different classification algorithms.
The performance with the RF classifier (OA 99.74% and Kappa 0.9771) is the best among the different
classification algorithms, which is because the RF classifier has strong generalization ability and also
carries out the selection of implied features in the process of classification.

Table 3. Classification results obtained for the AIRSAR imagery with the different classification algorithms.

Classification Algorithm OA Kappa

KNN 0.8332 ± 0.0143 0.8173 ± 0.0139
Wishart 0.8680 ± 0.0024 0.8571 ± 0.0028

LOR-LBP 0.9557 ± 0.0039 0.9512 ± 0.0041
RF 0.9974 ± 0.0012 0.9971 ± 0.0015

Figure 7 plots the classification accuracies of the different classification algorithms with different
numbers of training samples. The horizontal axis represents the number of training samples, and the
vertical axis represents the OA or Kappa of the different classification algorithms. Analogously, the
classification performances become stable when the samples in each category are more than 40, and the
performance with the RF classifier is the best among the different classification algorithms.
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Several conclusions can be made from the results in Figures 4 and 6. On the one hand,
the proposed method (GSRM_MBT_RF) obtains the best performance (OA 99.74% and Kappa 0.9971)
in all experiments, i.e., it can better suppress the speckle noise and obtain a higher OA and Kappa by
taking full advantage of the polarimetric and spatial information. On the other hand, the performance
using the MBT strategy is better than the other sample selection strategies, because the MBT strategy
can more effectively select the labeled samples.

3.2.2. Experiments with UAVSAR Image

To further assess the effectiveness and feasibility of the proposed approach, a relatively complex
situation (Paddy land from the city of Lingshui) was used to test the proposed approach. Five different
growth stages of paddy (as shown in Figure 8) are researched in this situation, including stage of
tillering, stem-elongation, panicle-exsertion, flowering and ripening. There are different heights and
densities of paddies, so the performance of Radar cross-section (RCS) in UAVSAR imagery is different
and it also leads to different polarimetric responses.
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Figure 8. Five different growth stages of paddy: (a) stage of tillering; (b) stage of stem-elongation;
(c) stage of panicle-exsertion; (d) stage of flowering; and (e) stage of ripening.

As shown in Figure 9a, UAVSAR imagery is more affected by speckle noise due to its
high-resolution and leads to fewer scattering elements in the resolution unit of UAVSAR imagery.
Therefore, the AIRSAR imagery still has finely divided spots despite the speckle filtering in Figure 9b.
To suppress the influence of speckle noise, the GSRM algorithm is used to segment original UAVSAR
imagery. The performance of segmentation is better when the scale parameter Q is 8 and the gradient
threshold ∆ is 4, by visual assessment. The number of regions is 11,836 and average number of pixels
per region is 437. The result after GSRM segmentation is shown in Figure 9c and it shows that GSRM
can better suppress the influence of speckle noise than traditional filtering method.
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Pauli-RGB imagery of original UAVSAR imagery; (b) The Pauli-RGB imagery of UAVSAR after speckle
filtering; (c) The Pauli-RGB imagery of UAVSAR after GSRM segmentation.

Similarly, four different sample selection strategies (RS, MI, BT, and MBT) were considered first.
In detail, we first randomly selected five training samples in each category as the initial training
set in these experiments, which was done spatially by randomly selecting the segmented objects
within a class and that all the polarimetric parameters were considered in this step; in the second
step, five samples in each category were selected using the four different sample selection strategies
at each iteration, where the stopping criterion of the iteration was set to 10 times; and, finally, the RF
classifier was applied to identify the different types of land cover in the PolSAR imagery. In addition,
two other contrasting experiments were designed: (1) a pixel-based classification method using MBT
strategies and RF classifier (named MBT_pixel); and (2) an object-based classification combined with
MBT strategies and RF classifier, but it only uses the full T3 matrix (named MBT_T3). Figure 10 shows
the classification results for the UAVSAR imagery when 55 samples in each category are picked from
the different strategies.
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Figure 10. Classification results for the UAVSAR imagery with different sample selection strategies:
(a) MBT_pixel; (b) MBT_T3; (c) RS; (d) MI; (e) BT; (f) MBT.

Table 4 lists classification accuracies of each category and the classification results (OA and Kappa)
for the UAVSAR imagery with the different strategies when 55 samples in each category are picked,
which can be used to quantitatively compare the classification performances of different strategies.

Table 4. Classification results for the UAVSAR imagery with different strategies.

Categories MBT_pixel MBT_T3 RS MI BT MBT

Paddy 1 0.9080 ± 0.0075 0.9229 ± 0.0021 0.9371 ± 0.0020 0.9257 ± 0.0025 0.9072 ± 0.0031 0.8730 ± 0.0023

Paddy 2 0.8697 ± 0.0124 0.9021 ± 0.0030 0.9187 ± 0.0044 0.8251 ± 0.0091 0.8714 ± 0.0020 0.7836 ± 0.0102

Paddy 3 0.8670 ± 0.0100 0.9567 ± 0.0017 0.9534 ± 0.0017 0.9617 ± 0.0010 0.9835 ± 0.0004 0.9731 ± 0.0009

Paddy 4 0.5489 ± 0.0089 0.7855 ± 0.0041 0.7774 ± 0.0059 0.7897 ± 0.0028 0.8503 ± 0.0011 0.8145 ± 0.0012

Paddy 5 0.5989 ± 0.0102 0.7671 ± 0.0033 0.7606 ± 0.0043 0.8193 ± 0.0027 0.7333 ± 0.0102 0.8723 ± 0.0007

OA 0.7704 ± 0.0060 0.8725 ± 0.0041 0.8794 ± 0.0052 0.8856 ± 0.0043 0.8873 ± 0.0043 0.9093 ± 0.0012

Kappa 0.7516 ± 0.0063 0.8317 ± 0.0069 0.8207 ± 0.0070 0.8349 ± 0.0043 0.8372 ± 0.0042 0.8509 ± 0.0025



Remote Sens. 2018, 10, 1092 16 of 25

Again, the experimental results demonstrate that the object-based supervised classification
methods can suppress the influence of speckle noise (MBT_pixel, OA 77.04% and Kappa 0.7516)
and obtain pleasing classification performances, as shown in Figure 10 and Table 4. Meanwhile, the
performance with the RS strategy (OA 87.94% and Kappa 0.8207) is the worst among the different
strategies. This is because the RS strategy randomly selects the training samples from the ground-truth
maps, and the RS strategy does not consider the information contained in the training samples.
The performances with MI (OA 88.56% and Kappa 0.8349) and BT (OA 88.73% and Kappa 0.8372)
are better than the performance with RS, which is because the former strategies adequately consider
the information contained in the training samples. However, the MI strategy focuses on the most
complicated area, and the BT algorithm strategy focuses on the boundary area between the two most
probable classes, so these methods are prone to confusion and are less accurate than the MBT strategy
(OA 90.93% and Kappa 0.8509). At the same time, the proposed method can fully use the polarimetric
information and it can improve the performance when compared with the MBT_T3 method (OA 87.25%
and Kappa 0.8317).

Figure 11 shows the classification accuracy with different numbers of training samples from
the different strategies. The horizontal axis represents the number of training samples, and the
vertical axis represents the OA or Kappa of the different sample selection strategies. The classification
performances become stable when the samples in each category are more than 50, and the performance
of the proposed method is the best among the different strategies.
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training samples per class as the initial training set, which was done spatially by randomly selecting 
the segmented objects within a class and that all the polarimetric parameters were considered in this 
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Figure 11. OA and Kappa curves with different numbers of training samples from the different
strategies: (a) OA; (b) Kappa.

To quantitatively compare the classification results with different classification algorithms,
four different classification algorithms were also considered. In detail, we first randomly selected five
training samples per class as the initial training set, which was done spatially by randomly selecting
the segmented objects within a class and that all the polarimetric parameters were considered in
this step; in the second step, five samples per class were selected using the MBT strategy of sample
selection at each iteration, with the stopping criterion of the iteration set to 10 times; and the four
different classification algorithms were finally applied to identify the different types of land cover in
the UAVSAR imagery. Figure 12 shows the classification results obtained with the UAVSAR imagery
when 55 samples in each category are picked using the different classification algorithms.
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(a) KNN classifier; (b) Wishart classifier; (c) LOR-LBP classifier; (d) RF classifier.

Table 5 lists the classification results (OA and Kappa) for the UAVSAR imagery with the
different classification algorithms when 55 samples in each category are picked, which can be used to
quantitatively compare the classification results of different classification algorithms. The performance
with RF (OA 90.93% and Kappa 0.8509) is the best among the different classification algorithms, which
is because the RF classifier has strong generalization ability and also carries out the selection of implied
features in the process of classification.

Table 5. Classification results for the UAVSAR imagery with different classification algorithms.

Classification Algorithm OA Kappa

KNN 0.8391 ± 0.0092 0.7717 ± 0.0084
Wishart 0.8492 ± 0.0051 0.7890 ± 0.0039

LOR-LBP 0.8747 ± 0.0022 0.8210 ± 0.0020
RF 0.9093 ± 0.0012 0.8509 ± 0.0025

Figure 13 shows the classification accuracies with different numbers of training samples from the
different classification algorithms. The horizontal axis represents the number of training samples, and
the vertical axis represents the OA or Kappa of the different classification algorithms. Analogously, the
performance with the RF classifier remains the best among the different classification algorithms.
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Analogously, several conclusions can be made from the results in Figures 10 and 12. On the one
hand, the proposed method obtains the best performance (OA 90.93% and Kappa 0.8509) in all the
experiments, i.e., it can better suppress the speckle noise and obtain a higher OA and Kappa by taking
full advantage of the polarimetric and spatial information. On the other hand, the performance with
the MBT strategy is better than the other sample selection strategies, because the MBT strategy can
more effectively select the labeled samples.

3.2.3. Experiments with RadarSat-2 Image

To further assess the effectiveness and feasibility of the proposed approach, an actual urban
scene (the city of Wuhan, China) was used to test the proposed approach. To avoid the influence
of speckle noise, filtering method and GSRM algorithm were applied to original RadarSat-2 image.
The segmentation parameters were set during the GSRM segmentation and we found the segmentation
parameters when the scale parameter Q is 16 and the gradient threshold ∆ is 0.5 can better retain
details and preserve the shape of small land parcels than other scale parameters or gradient thresholds
by visual assessment. The number of regions is 4135 and average number of pixels per region is 283.
The result after GSRM segmentation (Figure 14c) shows that GSRM segmentation can better suppress
the influence of speckle noise than traditional filtering methods.
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classifier was applied to identify the different types of land cover in the PolSAR imagery. In 
addition, two other contrasting experiments were designed: (1) a pixel-based classification method 
using MBT strategies and RF classifier (named MBT_pixel); and (2) an object-based classification 
combined with MBT strategies and RF classifier, but it only uses the full T3 matrix (named MBT_T3). 
Figure 15 shows the classification results for the RadarSat-2 imagery when 55 samples in each 
category are picked from the different strategies. 
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Figure 14. The Pauli-RGB imagery of UAVSAR after speckle filtering and GSRM segmentation: (a) The
Pauli-RGB imagery of original RadarSat-2 imagery; (b) The Pauli-RGB imagery of RadarSat-2 after
speckle filtering; (c) The Pauli-RGB imagery of RadarSat-2 after GSRM segmentation.

Similarly, four different sample selection strategies were considered first. In detail, we still first
randomly selected five training samples in each category as the initial training set in these experiments,
which was done spatially by randomly selecting the segmented objects within a class and that all the
polarimetric parameters were considered in this step; in the second step, five samples in each category
were selected using the four different sample selection strategies at each iteration, where the stopping
criterion of the iteration was set to 10 times; and, finally, the RF classifier was applied to identify the
different types of land cover in the PolSAR imagery. In addition, two other contrasting experiments
were designed: (1) a pixel-based classification method using MBT strategies and RF classifier (named
MBT_pixel); and (2) an object-based classification combined with MBT strategies and RF classifier,
but it only uses the full T3 matrix (named MBT_T3). Figure 15 shows the classification results for the
RadarSat-2 imagery when 55 samples in each category are picked from the different strategies.
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Figure 15. Classification results for the RadarSat-2 imagery with different strategies: (a) MBT_pixel;
(b) MBT_T3; (c) RS; (d) MI; (e) BT; (f) MBT.

Table 6 lists classification accuracies of each category and the classification results (OA and Kappa)
for the RadarSat-2 imagery with the different strategies when 55 samples in each category are picked,
which can be used to quantitatively compare the classification performances of different strategies.

Table 6. Classification results for the RadarSat-2 imagery with different strategies.

Categories MBT_pixel MBT _T3 RS MI BT MBT

Building 0.6045 ± 0.0164 0.6096 ± 0.0093 0.6593 ± 0.0141 0.7347 ± 0.0072 0.6606 ± 0.0047 0.6537 ± 0.0047
Forst 0.5928 ± 0.0138 0.8294 ± 0.0037 0.7825 ± 0.0133 0.6754 ± 0.0124 0.8573 ± 0.0028 0.8360 ± 0.0021
Water 0.9286 ± 0.0019 0.9450 ± 0.0014 0.9483 ± 0.0020 0.9599 ± 0.0010 0.9287 ± 0.0011 0.9583 ± 0.0023
Soil 0.2997 ± 0.0022 0.1501 ± 0.0077 0.1309 ± 0.0083 0.1446 ± 0.0049 0.1374 ± 0.0106 0.2591 ± 0.0104
OA 0.8226 ± 0.0031 0.8486 ± 0.0038 0.8179 ± 0.0113 0.8382 ± 0.0116 0.8462 ± 0.0040 0.8623 ± 0.0039

Kappa 0.6959 ± 0.0064 0.7398 ± 0.0054 0.6936 ± 0.0154 0.7180 ± 0.0205 0.7345 ± 0.0073 0.7590 ± 0.0068

Again, the experimental results demonstrate that the object-based supervised classification
methods can suppress the influence of speckle noise (MBT_pixel, OA 82.26% and Kappa 0.6959)
and obtain pleasing classification performances, as shown in Figure 15 and Table 6. Meanwhile, the
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performance with the RS strategy (OA 81.79% and Kappa 0.6936) is the worst among the different
sample selection strategies. This is because the RS strategy randomly selects the training samples from
the ground-truth maps, and the RS strategy does not consider the information contained in the training
samples. The performances with MI (OA 83.82% and Kappa 0.7180) and BT (OA 84.64% and Kappa
0.7345) are better than the performance with RS, which is because the former strategies adequately
consider the information contained in the training samples. However, the MI strategy focuses on the
most complicated area, and the BT algorithm strategy focuses on the boundary area between the two
most probable classes, so these methods are prone to confusion and are less accurate than the MBT
strategy (OA 86.23% and Kappa 0.7590). The proposed method fully use the polarimetric information
and it can improve the performance when compared with the MBT_T3 method (OA 84.86% and
Kappa 0.7398).

Figure 16 shows the classification accuracy with different numbers of training samples from the
different strategies. The horizontal axis represents the number of training samples, and the vertical axis
represents the OA or Kappa of the different sample selection strategies. The classification performances
become stable when the samples in each category are more than 50, and the performance with the
proposed method is the best among the different strategies.
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Figure 16. OA and Kappa curves with different numbers of training samples from the different
strategies: (a) OA; (b) Kappa.

To quantitatively compare the classification results with different classification algorithms, four
different classification algorithms were also considered. In detail, we first randomly selected five
training samples per class as the initial training set in these experiments, which was done spatially by
randomly selecting the segmented objects within a class and that all the polarimetric parameters were
considered in this step; in the second step, five samples per class were selected using the MBT strategy
of sample selection at each iteration, with the stopping criterion of the iteration set to 10 times; and the
four different classification algorithms were finally applied to identify the different types of land cover
in the RadarSat-2 imagery. Figure 17 shows the classification results obtained with the RadarSat-2
imagery when 55 samples in each category are picked using the different classification algorithms.
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Figure 17. Classification results for the RadarSat-2 imagery with the different classification algorithms:
(a) KNN classifier; (b) Wishart classifier; (c) LOR-LBP classifier; (d) RF classifier.

Table 7 lists the classification results (OA and Kappa) for the RadarSat-2 imagery with the
different classification algorithms when 55 samples in each category are picked, which can be used to
quantitatively compare the classification results of different classification algorithms. The performance
with RF (OA 86.23% and Kappa 0.7590) is the best among the different classification algorithms,
which is because the RF classifier has strong generalization ability and also carries out the selection of
implied features in the process of classification.

Table 7. Classification results for RadarSat-2 imagery with different classification algorithms.

Classification Algorithm OA Kappa

KNN 0.8109 ± 0.0149 0.6786 ± 0.0112
Wishart 0.8201 ± 0.0103 0.6927 ± 0.0191

LOR-LBP 0.8469 ± 0.0064 0.7351 ± 0.0101
RF 0.8623 ± 0.0039 0.7590 ± 0.0068

Figure 18 shows the classification accuracies with different numbers of training samples from the
different classification algorithms. The horizontal axis represents the number of training samples, and
the vertical axis represents the OA or Kappa of the different classification algorithms. Analogously, the
performance with the RF classifier remains the best among the different classification algorithms.

Analogously, several conclusions can be made from the results in Figures 16 and 18. On the one
hand, the proposed method obtains the best performance (OA 86.23% and Kappa 0.7590) in all the
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experiments, i.e., it can better suppress the speckle noise and obtain a higher OA and Kappa by taking
full advantage of the polarimetric and spatial information. On the other hand, the performance with
the MBT strategy is better than the other sample selection strategies, because the MBT strategy can
more effectively select the labeled samples.Remote Sens. 2018, 10, x FOR PEER REVIEW  23 of 25 
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4. Discussion

Most state-of-the-art supervised classification methods using PolSAR imagery are limited by the
availability of effective training samples, and the results of the traditional pixel-based supervised
classification methods are subject to the influence of speckle noise. In this paper, to solve the problems of
existing supervised classification methods when using PolSAR data, we have proposed an object-based
supervised classification method (GSRM_MBT_RF), which combines the advantages of the GSRM
algorithm, the AL method, and the RF classifier. The experimental results indicated that the proposed
approach achieves the best performances with regard to OA and Kappa. Moreover, the proposed
method can not only better suppress the speckle noise, but can also perform well when the training
samples are limited.

The accuracies of experiments from different sensors are different by proposed method and
the sources of the results mainly include that: (1) The resolution of PolSAR imagery is different.
The UAVSAR is high-resolution and it leads to the fewer scattering elements in the resolution unit of
UAVSAR imagery. Nevertheless, the AIRSAR imagery and RadarSat-2 imagery are medium resolution
and they are relatively simple. (2) The categories of PolSAR imagery are different. The AIRSAR
imagery and UAVSAR imagery mainly focus on agricultural field. The categories of AIRSAR imagery
are entirely different and it leads to different polarization responses. However, the categories of
UAVSAR imagery are five different growth stages of paddy and it might bring about the confusion
in classification procedures. The RadarSat-2 imagery is urban scene and the situation is relatively
complex. (3) The influence of topography is different. The city of Wuhan has an undulating relief and
it is prone to misclassification.

The proposed method has several advantages when compared with the traditional supervised
classification methods for PolSAR data: (1) The proposed method can obtain obviously higher
classification accuracy when compared with pixel-based supervised classification methods, due to
using the GSRM algorithm to better suppress the influence of speckle noise. (2) The proposed method
considers the maximum information of the training samples and more effectively selects the labeled
samples by the AL method. This allows the proposed method to perform well, even when the training
samples are limited. (3) The RF classifier integrates a feature evaluation technique, so that it is not
necessary to carry out feature selection. (4) The proposed approach takes full advantage of the
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polarimetric information and spatial information of PolSAR imagery. As a result, it can obtain a better
OA and Kappa when compared with the traditional supervised classification methods.

However, the proposed method still has some disadvantages: (1) the redundancy of polarimetric
features might pollute the classifier and it is necessary to analyze and select the most relevant features
before implementation of proposed method; and (2) the algorithm structure is relatively complex and
time-consuming when compared with the state-of-the-art supervised classification methods.

5. Conclusions

A novel object-based supervised classification method for PolSAR imagery is proposed in this
paper. The first step of the proposed method is aimed at reducing the speckle noise through the
GSRM algorithm. A reliable training set is then selected from the different polarimetric features of the
PolSAR imagery by the AL method. Finally, the RF classifier is applied to identify the different types
of land cover. To validate the performance of the proposed method, three PolSAR datasets acquired by
different sensors were considered, and the experimental results showed that the proposed method
significantly improves the classification accuracy for PolSAR images. Meanwhile, four different sample
selection strategies and four different classification algorithms were applied to assess the effectiveness
and feasibility of the proposed method. The analysis showed that the proposed method can not only
better suppress the speckle noise, but can also significantly improve the OA and Kappa, even when
the training samples are limited. Nevertheless, further investigation is still necessary. For example,
in our future work, it is necessary to suppress the effect of terrain for classification using relevant DEM
data, and the proposed method should be optimized by considering feature optimization.
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