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Abstract: Land surface temperature (LST) products derived from the moderate resolution imaging
spectroradiometer (MODIS) sensor are one of the most important data sources used to research
land surface energy and water balance at regional and global scales. However, MODIS data are
severely contaminated by cloud cover, which limits the applications of LST products. In this paper,
based on the spatio-temporal autocorrelation of land surface variables, a reconstruction algorithm
depending on the correlations between spatial pixels in multiple time phases from available MODIS
LST data is developed to reconstruct clear-sky LST values for missing pixels. Considering the
impacts of correlation and bias between predictors and reconstructed data on the modeling error,
the known data in the reconstructed time phase are combined with the data temporally nearest to
them as predictor variables to establish their temporal relationships with the reconstructed data.
The reconstructed results are validated by a series of evaluation indices. The average correlation
coefficient between the reconstructed results and ground-based observations is 0.87, showing high
temporal change accuracy. The difference in Moran’s I, representing spatial structure characteristics
between the known and reconstructed data, is 0.03 on average, indicating a slight loss of spatial
accuracy. The average reconstruction rate is approximately 87.0%. The modeling error, as part of
the reconstruction error, is only 1.40 K on average and accounts for 5.0% of the total error. If the
product and modeling errors are removed, the residual error represents approximately 3.5 K and
5.6 K of the annual mean difference between the cloudy and cloudless LST at night and during the
day, respectively. In addition, different reconstruction cases are demonstrated using various predictor
data, including many combinations of multi-temporal MODIS LST data, the microwave brightness
temperature, and the combination of the normalized difference vegetation index and terrain data.
Comparisons among cases show that the known MODIS LST data are more reliable as predictor
variables and that the data combination advocated in this paper is optimal.

Keywords: temporal correlation; time series; multi-temporal; reconstruction of MODIS land
surface temperature

1. Introduction

Land surface temperature (LST) plays an important role in land-atmosphere interactions.
Therefore, LST data are widely required for studies on climate change, the water cycle, and energy
budgets [1–3]. With the development of remote sensing technology, the LST data obtained by
transforming satellite-based thermal infrared observations are more valuable [4] and can better
meet regional and global research requirements than ground-based observations. Due to high
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spatio-temporal resolution, the moderate resolution imaging spectroradiometer (MODIS) sensor
has become one of the most widely used sources of satellite-derived LST data [5]. However, daily
MODIS LST products are strongly influenced by clouds, and only clear-sky pixel values are available,
which leads to limited research applications. To overcome this restriction, several MODIS LST
reconstruction algorithms have been developed.

To date, most of studies on the reconstruction of MODIS LST products have been focused on
recovering clear-sky LST values for missing pixels. There are three categories of statistical methods
using different information, including spatial, temporal, and spatio-temporal information. Spatial
methods are the most common, wherein the relationship in space between the auxiliary data with
spatial continuity and the available LST data is adopted, and the missing LST data are filled in by
sharing the relationship model assuming that the known and unknown LST data have the same
statistical relationship with the auxiliary data [6]. Neteler [7] used the digital elevation model (DEM)
as a covariate to generate reconstructed LST maps through linear regression when the LST map
consisted of over 10% valid pixels; otherwise, 16-day MODIS LST data were used as the target variable.
Fan, et al. [8] introduced land cover, normalized difference vegetation index, and MODIS band 7 as
auxiliary data to fill the missing pixels using three methods: linear regression, regression tree analysis,
and artificial neural networks. Ke, et al. [9] adopted latitude, longitude, DEM, and normalized
difference vegetation index (NDVI) as predictor variables to establish a regression model used to
capture large-scale spatial variability; they then applied the Kriging method to generate small-scale
spatial information to supplement the regression prediction [10]. For this category of methods,
modeling accuracies are determined by the correlation between LST and its covariates. However,
the LST variable is synthetically affected by many environmental factors, and limited kinds of predictor
data cannot accurately represent the spatial heterogeneity of LST. The second category of methods is
based on temporal information. Xu and Shen [11] used the harmonic analysis of time series (HANTS)
algorithm [12] to fit available time series of LST data at each pixel and then recovered missing pixels
using fitted values of the temporal model. Na, et al. [13] used another temporal method, called
Savitzky-Golay filter [14], to reconstruct MODIS LST data under clear-sky conditions. However,
the temporal filter method smooths LST diurnal variation and can represent only seasonal LST changes.
Thus, a temporal method such as HANTS or Savitzky-Golay is not generally suitable to reconstruct
daily MODIS LST products. The third category consists of spatio-temporal methods performed by
establishing a regression relationship between similar pixels and missing pixels. Yu, et al. [15] selected
pixels whose environmental factor vector (composed of DEM, slope, aspect, NDVI, and solar radiation)
had the nearest Euclidean distance to the reconstructed pixel as the most similar pixel. However,
the consistency in direction between environmental factor vectors of available and reconstructed pixels
was ignored. It is possible that both vectors have almost the same magnitude but opposite directions,
indicating a low degree of similarity between two pixels. Zeng, et al. [16] classified multi-temporal
LST data and then considered several pixels in the class which the reconstructed pixels belong to as
similar pixels. The more clearly land surface types are distinguished, the more accurate the regression
relationship; however, the use of too many classes can lead to a lack of available similar pixels.
Sun, et al. [17] defined similar pixels according to spatial distance. Pixels closer to the reconstructed
pixel made a greater contribution to the reconstruction process.

The above methods can reconstruct cloud-free LST values but not cloudy ones; they are
nonetheless valuable for long-term trend analysis and further estimation of real LST values under
clouds. Few studies on recovering pixels under cloudy conditions have been performed based on
model-based and statistical methods. Due to the difficultly of acquiring additional information,
e.g., radiation and flux data at large spatial scales, model-based reconstruction methods have been
given little attention. Jin [18] proposed a neighboring pixel method based on the surface energy
balance theory assuming that the difference in LST values between a cloudy pixel and its neighboring
clear-sky pixel is caused by differences in energy fluxes, e.g., net radiation and sensible and latent
heat. Lu, et al. [19] improved the neighboring pixel method by introducing satellite observations.
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Zhang, et al. [20] used a one-dimensional heat transfer model to reconstruct cloudy pixels. In statistical
methods, the solution for recovering cloudy MODIS LST pixels is to introduce microwave temperature
brightness (TB) data due to penetrating clouds. Based on the strong correlation between infrared LST
and TB data, TB data, particularly in the high-frequency range, have been widely used to estimate
land surface emissivity [21,22] and LST [23,24] by employing infrared LST as auxiliary data. However,
due to the difference in spatial scale, the 25–40 km microwave pixels cannot be directly filled into
gaps of MODIS LST data. Kou, et al. [25] reconstructed missing MODIS LST pixels under cloudy
conditions by merging microwave data using a Bayesian Maximum Entropy method. However,
a complex land surface environment, e.g., with variations in terrain and vegetation, may reduce the
correlation between LST and TB and thereby increase the reconstruction error.

In this paper, a reconstruction algorithm based on spatio-temporal information is used to recover
daily MODIS LST data. The available LST data at different spatial pixels and times are used as predictor
variables and are optimally selected by analyzing the correlation and bias between multi-temporal
MODIS LST data. In addition, reconstructed results employing different kinds of predictor data, e.g.,
NDVI, DEM, and TB, are compared with each other.

2. Materials

2.1. Study Area

This work was performed in the Babao River Basin, which is situated in the eastern branch of the
upper reach of the Heihe River on the northeastern margin of Tibetan Plateau in Northwestern China
(Figure 1). The Babao River Basin is a cloudy area, and the cloudy time generally exceeds half of a year
due to a combination of westerlies, East Asia monsoon, and Tibetan Plateau monsoon. The stronger
the atmospheric circulation becomes, the more there is cloud cover. In addition, the characteristics of
the study area increase the probability of clouds. The elevation of the Babao River Basin is 3604 m on
average and ranges from 2640 m to 5000 m; the annual rainfall is approximately 400 mm, which drives
the formation of orographic clouds by forcing humid air to rise. The high vegetation cover and
soil water content in the study area increase the surface evapotranspiration under the strong solar
radiation, especially in summer afternoons, and the enhanced convective motion of the air promotes
the formation of convective clouds, causing the cloud cover to be higher during the day than the night.
The Babao River Basin is an ideal study area to research the reconstruction of MODIS LST products.
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2.2. Data

MODIS Aqua LST products are taken as the experimental data to be reconstructed. Figure 2
shows the spatial and temporal distribution of pixels requiring reconstruction. The missing Aqua
LST data at night are substantially fewer and more homogeneous in space than those during the day;
the highest intensity appears from April to October. The Aqua LST data are severely affected by clouds
during the day, showing a high missing data rate throughout the year. There is a significant correlation
between the number of absent data and elevation, indicating that a higher elevation leads to a larger
number of missing data.
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(MODIS) Aqua land surface temperature (LST) data.

A large amount of remote sensing data is employed to perform the reconstruction algorithm
(see Table 1). All available pixel values derived from MODIS Aqua and Terra LST products
(10.5067/MODIS/MOD11A1.006 and 10.5067/MODIS/MYD11A1.006) are potential predictor data for
filling missing pixels. To compare reconstruction results based on different data sources, two groups of
predictor variables are used to reconstruct MODIS Aqua LST data. One group is multi-frequency and
multi-polarization TB data derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2)
sensor (http://gcom-w1.jaxa.jp), and the other group is NDVI (10.5067/MODIS/MYD13A2.006)
and terrain data, e.g., slope and aspect calculated using DEM data derived from shuttle
radar topography mission (SRTM, https://lta.cr.usgs.gov/SRTM). As shown in Table 2,
the upwelling and downwelling longwave radiation data observed by six automatic meteorological

http://gcom-w1.jaxa.jp
https://lta.cr.usgs.gov/SRTM
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stations (10.3972/hiwater.248.2015.db, 10.3972/hiwater.249.2015.db, 10.3972/hiwater.255.2015.db,
10.3972/hiwater.254.2015.db, 10.3972/hiwater.253.2015.db, and 10.3972/hiwater.252.2015.db) are
applied to estimate the ground-based LST through combination with MODIS emissivity observations
(10.5067/MODIS/MYD11B1.006). The calculated ground-based LST data are employed to validate
the reconstruction results. All ground-based and remotely sensed observations from January 2014 to
December 2014 are adopted. NDVI = normalized difference vegetation index; AMSR2 = Advanced
Microwave Scanning Radiometer 2; TB = temperature brightness.

Table 1. Remote sensing data information.

Data Source Variable Passing Time
(Local Time)

Spatial
Resolution

Temporal
Resolution Date Version

MODIS Terra LST (MOD11A1) 10:30/22:30 1 km

Daily January 2014–
December 2014

6.0
MODIS Aqua

LST (MYD11A1)

01:30/13:30
1 km

NDVI (MYD13A2)

Emissivity (MYD11B1) 5 km

AMSR2
36 GHZ TB (V/H)

01:30/13:30 10 km 2.2
89 GHZ TB (V/H)

SRTM Elevation – 90 m – – 3.0

Table 2. Ground-based station information.

Station Longitude Latitude Elevation Land Cover Date Temporal
Resolution Variable

ARC 100.464◦ 38.047◦ 3033 m Alpine meadow

January 2014–
December

2014
10 min

Upwelling and
downwelling

longwave
radiation

ARS 100.411◦ 37.984◦ 3536 m Alpine meadow
JYL 101.116◦ 37.838◦ 3750 m Alpine meadow
HZS 100.192◦ 38.225◦ 2612 m Cropland
HCG 100.731◦ 38.003◦ 3137 m Alpine meadow
EBZ 100.915◦ 37.949◦ 3294 m Alpine meadow

2.3. Data Reprocessing

2.3.1. Resampling

The spatial reconstruction method employing terrain data as predictor data requires a consistent
spatial scale between the predictor and target variables. First, the slope and aspect values are
calculated using an algorithm incorporating the DEM values of the calculated cell’s eight neighbors [26],
and terrain data, including DEM, slope, and aspect, are then resampled at the same spatial scale as the
MODIS LST data by averaging all 90 m pixels in the 1 km grids.

2.3.2. Processing Outliers

Outlier data may increase prediction uncertainties. Generally, it is recommended to leave the data
in the 95% confidence interval, which cannot directly be applied to temporal data due to the existence
of trends. It is feasible to find time series outlier values by identifying the unreasonable bias between
the data and their trend. The criterion to select available data that are not affected by clouds is defined
as follows:

µ− 1.96σ ≤ εbias ≤ µ + 1.96σ (1)

where εbias is calculated by removing the temporal trend from data and µ and σ are the mean and
standard deviation of εbias, respectively. The data with eligible εbias are retained.
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2.3.3. LST Retrieval from Ground-Based Measurements

Ground-based radiation observations cannot be used to evaluate reconstructed results and need
to be converted into LST values. Based on thermal radiative transfer theory, the ground-based LST
Tin-situ can be calculated using in-situ longwave radiation observations [27]:

Tin-situ =

[
L↑in-situ − (1− εb)L↓in-situ

εbδ

] 1
4

(2)

where L↑in-situ and L↓in-situ indicate ground-based upwelling and downwelling longwave radiation,
respectively. δ is the Stefan-Boltzmann constant (5.67× 10−8 W ·m−2 ·K−4) and εb is the broadband
emissivity, which can be estimated by MODIS narrowband emissivity products [28,29]:

εb = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (3)

where ε29, ε31, and ε32 are the narrow emissivities of MODIS bands 29, 31, and 32, respectively.

3. Methodology

3.1. MODIS LST Reconstruction Algorithm

In consideration of the spatio-temporal autocorrelation characteristics of land surface variables,
the MODIS LST data that are not affected by clouds as the predictor variables are more reliable than
other data sources, e.g., TB and NDVI, for predicting missing MODIS LST pixels. MODIS LST data
are observed at 01:30, 10:30, 13:30, and 22:30 local time. The missing MODIS LST pixel values can be
estimated based on the spatio-temporal correlation among LST values at different spatial pixels and
times. Due to the strong temporal variability, suppose that the temporal correlation range is less than
one day. Then, the MODIS LST pixels without values at the jth pixel at local time t on the dth day are
filled using the equation as follows:

Td,t
j =

n(d,t1)

∑
i=1

wt1
i Td,t1

i +
n(d,t2)

∑
i=1

wt2
i Td,t2

i +
n(d,t3)

∑
i=1

wt3
i Td,t3

i +
n(d,t4)

∑
i=1

wt4
i Td,t4

i (4)

where Td,tk
i is the available MODIS LST value situated at the ith pixel and observed at local time tk

on the dth day. In eight directions with equal intervals from 0◦ to 360◦, the nearest Td,tk
i to Td,t

j in the
spatial distance measurement is selected to maintain the spatial continuity between the reconstructed
and known LST data. tk(k = 1, 2, 3, 4) represents four MODIS LST data observation times. n(d, tk)

indicates the number of data Td,tk
i . wtk

i , the weighting coefficient, which is assigned to Td,tk
i , can be

estimated using the following equation:

Tm,tk
n(d,tk)

ω
tk
n(d,tk)

= Tm,t
j (5)

where ω
tk
n(d,tk)

is the weighting coefficient vector and each element is matched with wtk
i in Equation (4).

Tm,t
j is a temporal vector, including the known LST data at the jth pixel at time t on the mth

(m = 1, 2, 3, · · · ; d 6= m) day, represented as
[

T1,t
j , T2,t

j , · · · , Tm,t
j

]′
. The observation matrix Tm,tk

n(d,tk)

is constructed using LST time series data
[

T1,t
n(d,tk)

, T2,t
n(d,tk)

, · · · , Tm,tk
n(d,tk)

]′
and is written as follows:
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
T1,t1

1 · · · T1,t1
n(d,t1)

T1,t2
1 · · · T1,t2

n(d,t2)
T1,t3

1 · · · T1,t3
n(d,t3)

T1,t4
1 · · · T1,t4

n(d,t4)

T2,t1
1 · · · T2,t1

n(d,t1)
T2,t2

1 · · · T2,t2
n(d,t2)

T2,t3
1 · · · T2,t3

n(d,t3)
T2,t4

1 · · · T2,t4
n(d,t4)

...
...

...
...

...
...

...
...

...
...

...
...

Tm,t1
1 · · · Tm,t1

n(d,t1)
Tm,t2

1 · · · Tm,t2
n(d,t2)

Tm,t3
1 · · · Tm,t3

n(d,t3)
Tm,t4

1 · · · Tm,t4
n(d,t4)

 (6)

However, if the correlation among column vectors in the observation matrix is high, especially
when both sets of sequence data are spatially close, invalid weighting coefficients that lead to
over-fitting will be estimated. This problem can be addressed by performing ridge regression [30,31]:

ω̂
tk
n(d,tk)

=

[(
Tm,tk

n(d,tk)

)′
Tm,tk

n(d,tk)
+ λI

]−1(
Tm,tk

n(d,tk)

)′
Tm,t

j (7)

where ω̂
tk
n(d,tk)

is the estimator of the weighting coefficient vector. λ is a regularization parameter.
Herein, we set λ to 0.1.

3.2. Evaluation Index

The performance of the reconstruction algorithm is considered from four aspects: (1) the level of
uncertainty in the reconstruction process; (2) whether the reconstructed data is consistent with the
temporal changes with the known data; (3) whether the reconstructed data maintains similar spatial
structure characteristics to the known data; and (4) the value of the reconstructed rate.

(1) Error Analysis:

When the ground-based LST data are used as the ground truth to evaluate reconstructed data,
the sources of reconstruction error can be decomposed as follows:

εre = εproduct + ε
sky
cloudy + εmodeling (8)

where the reconstruction error εre can be estimated by calculating the differences between the
reconstructed data and the ground-based LST data:

εre =

√
E(Tre − Tin-situ)

2 (9)

where E(·) represents the mean and Tre and Tin-situ are the reconstructed value and ground-based
validation data calculated by Equation (2), respectively.

εproduct indicates the accuracy of the MODIS LST product, which can be obtained by evaluating
the known LST data:

εproduct =

√
E(Tknown − Tin-situ)

2 (10)

where Tknown is the LST data that are not affected by clouds.
εmodeling, the modeling error representing the modeling reliability, can be obtained from the

residual errors of the model described by Equation (5):

εmodel =

√
E
(

Tm,t
j − Tm,tk

n(d,tk)
ω̂

tk
n(d,tk)

)2
(11)

The missing LST data are reconstructed in clear sky days, but the ground-based LST values under
clouds are employed as validation data. Thus, the difference ε

sky
cloudy between the reconstructed data Tre
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and true LST data under the clouds is also an important component of εre. Suppose that all errors ε are
uncorrelated and have a zero mean and that ε

sky
cloudy can be written as

ε
sky
cloudy =

√
D(εre)− D

(
εproduct

)
− D

(
εmodeling

)
(12)

where D(·) represents variance.

(2) Temporal Consistency:

The stochastic characteristics of reconstruction errors can decrease the temporal consistency
between the reconstructed data and the ground-based LST data. The correlation coefficient is typically
used to evaluate the prediction accuracy of temporal changes:

rre =
Cov(Tre, Tin-situ)√
D(Tre)

√
D(Tin-situ)

(13)

where Cov(·) and D(·) indicate covariance and variance, respectively.

(3) Spatial Structure:

In addition to temporal variability, spatial heterogeneity is a significant inherent characteristic of
land surface variables. Thus, it is necessary to evaluate the spatial structure of reconstructed LST data.
Moran’s I is generally used to quantifiably evaluate the spatial autocorrelation of the variable:

I =
n

n
∑

i=1

n
∑

j=1
wij

n
∑

i=1

n
∑

j=1
wij
(
Ti − T

)(
Tj − T

)
n
∑

i=1

(
Ti − T

)2
(14)

where Ti is the attribution value for feature i. wij represents the spatial weight between features i
and j and is estimated using the inverse distance between Ti and Tj. n is equal to the total number
of features.

(4) Reconstruction Rate

The reconstruction rate is an index to evaluate algorithm performance. The reconstruction rate is
defined as follows:

RR =
Nre

Nmissing
× 100% (15)

where Nmissing is the number of the missing pixels and Nre is the number of reconstructed pixels.

4. Results and Discussion

4.1. Selection of Predictor Data

If the correlation coefficient between both temporal variables is equal to 1, when using one
as a predictor variable to estimate the other, the prediction error will be 0. However, a complete
correlation is almost impossible, and then temporal bias between the predictor and target variables
affects prediction accuracy. Due to the use of multi-temporal LST data as predictor data, bias between
both sets of temporal data observed at different local times is obvious. Figure 3 shows the influence
of the combination of correlation coefficient and absolute bias on the prediction accuracy, which is
recorded using a temporal MODIS LST observation at one pixel to estimate those at other pixels via
Equation (5). With the decrease of the correlation coefficient and the growth of bias between LST data,
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the prediction errors gradually increase. Thus, it is necessary to optimally select multi-temporal LST
data as predictor variables to decrease prediction uncertainty.
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prediction accuracy.

In MODIS LST data reconstruction, Aqua LST products are taken as the experiment data to
perform the reconstruction algorithm. Based on the above analysis, the suitable predictor data need to
be selected for the reconstruction of Aqua LST products. Figures 4 and 5 show analyses of correlation
and bias, respectively, between the LST data at the reconstructed time and themselves and the LST
data at other times. The highest average correlation and smallest average bias occur between the Aqua
LST data and themselves, showing an average correlation coefficient of 0.98 at night and 0.86 during
the day and an average bias of 2.2 K at night and 6.0 K during the day. Thus, the Aqua LST data that
are not affected by clouds are the best predictor data. According to Figure 3, if the available Aqua data
are used to predict the missing pixels, the average prediction errors are 1.6 K at night and 3.9 K during
the day.
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However, the reconstruction rate is low if only using the available Aqua LST data at the
reconstructed time. Without substantially increasing the prediction errors, the multi-temporal LST
data can also be taken as predictor data. For the nighttime Aqua data, the correlation and difference
with nighttime Terra data show the following average correlation coefficient and bias, representing
0.96 and 2.7 K, respectively, which leads to an average prediction error of 2.3 K. For daytime Aqua
data, the average correlation coefficients with MODIS LST data at three other times are approximately
0.82, but the daytime Terra data have the smaller bias of 6.7 K, and the average prediction error is
approximately 4.3 K.

Through above analysis, in addition to the Aqua data that are not contaminated by clouds,
the nighttime Terra data one day ahead may be introduced as predictor data to reconstruct nighttime
Aqua data, and daytime Terra data may be used to reconstruct daytime Aqua data.

4.2. Reconstruction of MODIS Aqua LST Data

Figure 6 shows the monthly reconstruction rates of MODIS Aqua LST data. The average
percentage of reconstructed pixels is 92.8% at night and 81.7% during the day. The average
reconstruction rates in spring and winter are higher than those in summer and autumn. Depending
on the reconstruction algorithm, the missing MODIS LST data can be completely filled as long as the
predictor data exist. Thus, a high missing rate does not imply a low reconstruction rate (e.g., missing
pixels accounting for more than 90% of daytime Aqua LST data in December are recovered to a degree
of 96.7%). Even if MODIS LST data are completely affected by clouds, the absence of pixel values is
still estimated by introducing other available temporal LST data. MODIS Aqua LST products have a
number of data with 100% loss, specifically, 67 at night and 121 during the day, and 42 nighttime and
66 daytime empty data are reconstructed, indicating that multi-temporal data can be used to increase
the reconstruction rate.
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4.3. Spatial Characteristics of Reconstructed Data

The examples of the reconstructed Aqua LST data with different missing rates in space are shown
in Figure 7. Strong spatial continuity generally exists between the known and reconstructed data,
and the renewed nighttime data show better continuity. Near the northeast boundary at coordinate
(100.4◦, 38.2◦) and around coordinate (100.2◦, 38.1◦), the reconstructed daytime data exhibit spatial
randomness caused by the stronger temporal heterogeneity of the daytime data (see Figure 5) and
severe data loss (see Figure 2) representing a lack of prior knowledge of the target variable Tm,t

j in
Equation (5) at those two locations.
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Figure 7. Examples of reconstructed MODIS Aqua LST data with different missing rates in space.
The reconstructed data are within the red polygon.

The LST variable exhibits spatial autocorrelation [32], which can be quantified by Moran’s I index.
The closer the value of Moran’s I is to 1, the stronger the spatial autocorrelation. To detect the ability
of the reconstruction algorithm to recover spatial structure, the differences in the Moran’s I index
of monthly data between the reconstructed and known data were calculated, as shown in Figure 8.
The average absolute differences are 0.02 at night and 0.04 during the day, meaning that the spatial
characteristics of reconstructed nighttime data are closer to the known data. The average spatial
autocorrelations of the known nighttime and daytime data are separately quantified as 0.93 and 0.86,
respectively, using Moran’s I index, indicating that the LST variable has stronger randomness during
the day than at night (especially the daytime data in June, July, and August, with an average Moran’s
I value of 0.77). Spatial randomness increases the difficulty of recovering spatial characteristics.
In addition to the weak spatial autocorrelation, severe data loss is a significant factor resulting
in missing data that cannot be accurately reconstructed in terms of spatial structure because it is
challenging to capture spatial randomness when employing few data.
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4.4. Validation Using Ground-Based Observations

The upwelling and downwelling longwave radiation observations at six ground-based stations
(see Table 2) are transformed into LST values using Equation (2) to validate the reconstructed results.
The comparisons between ground-based observations and reconstructed Aqua LST data are shown
in Figures 9 and 10, for the nighttime and daytime, respectively. The missing data affected by clouds
are estimated under clear sky conditions, but the ground-based observations used to validate the
reconstructed data represent values under clouds. Thus, the fitted line of the reconstructed nighttime
data (red dotted line) is located below the fitted line of known data (blue dotted line) due to the higher
LST under clouds than under clear sky caused by the downwelling longwave radiation of clouds at
night. In contrast, the reconstructed daytime data values are higher than the ground-based LST data
because the solar radiation reaching the ground is reduced by clouds, as indicated by the fitted line of
the reconstructed data lying above the fitted line of the known data.

The detailed accuracy information of reconstructed data is shown in Table 3. The goal of the
algorithm is to reconstruct cloud-free LST data; thus, the reconstruction error εre calculated using
cloudy ground-based LST data cannot exactly represent the achievement of the goal. As shown in
Equation (8), εre comprises three parts: εproduct, ε

sky
cloudy, and εmodeling. The unchangeable product error

εproduct makes a significant contribution to εre, and the average percentage of εproduct to εre is 54.3% at
night and 44.2% during the day. The modeling error εmodeling can be taken as an indirect measure of the

accuracy of reconstructed LST data under clear sky. The smaller εmodeling is, the better ε
sky
cloudy expresses

the differences in the LST values between cloudy and cloud-free conditions. In this case, the average
εmodeling is approximately 1.4 K and accounts for only 5.0% and 4.0% of εre at night and during the day,

respectively. Thus, ε
sky
cloudy can indicate the average temporal differences between cloudy and cloud-free

LST values, which is reliable information to further recover LST values under clouds. However, it is
more challenging to recover daytime cloudy LST values due to the stronger spatial heterogeneity of
ε

sky
cloudy during daytime, with considerable differences existing among the six stations.

Table 3. Evaluations of the reconstructed data.

Station εre εproduct εmodeling ε
sky
cloudy rknown rre Nmissing Nre

Aqua Night (01:30)

ARC 6.40 4.15 1.48 4.65 0.95 0.87 164 149
ARS 4.93 4.07 1.35 2.43 0.92 0.88 170 155
JYL 5.79 4.72 1.34 3.08 0.92 0.88 182 176
HZS 4.44 2.76 1.07 3.32 0.97 0.92 184 169
HCG 5.78 4.31 1.30 3.62 0.93 0.88 165 150
EBZ 6.04 4.49 1.44 3.78 0.93 0.88 172 157

Aqua Day (13:30)

ARC 6.71 4.55 1.29 4.76 0.92 0.92 265 206
ARS 5.94 3.85 1.29 4.34 0.89 0.88 301 244
JYL 8.81 6.90 1.90 5.13 0.85 0.83 324 269
HZS 6.80 4.00 1.71 5.22 0.94 0.80 232 170
HCG 10.66 6.67 1.38 8.20 0.87 0.85 265 201
EBZ 8.33 5.39 1.45 6.18 0.87 0.86 287 226

In addition, the correlation coefficient rre calculated using Equation (13) is adapted to measure
the temporal consistency between ground-based observations and reconstructed data. rre is close to
the reference value rknown representing the correlation coefficient between ground-based observations
and the known Aqua LST data. The average difference between rknown and rre is 0.05 at night and
0.03 during the day, indicating that the reconstructed data can accurately maintain temporal consistency
with the ground validation data. In addition to the reconstruction accuracy, the reconstruction rate is an
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important index of the performance of the reconstruction algorithm. The average missing percentages
of time series at the pixels where the six stations are located are 47.7% at night and 76.4% during the
day, which corresponds to Figure 2. The average reconstruction rates of MODIS Aqua at these six
pixels exceed 73.0%, and the average reconstruction rate of nighttime data exceeds 90%.
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4.5. Comparisons among Reconstruction Results Based on Different Predictor Data

To demonstrate the influence of different predictor data on reconstruction accuracy, five cases
are designed using different data sources as predictor variables: the available MODIS LST data
at the reconstructed time (case A), the optimal combination of multi-temporal MODIS LST data
analyzed in Section 4.1 (case B), the combination of all temporal MODIS LST data (case C), TB
data (case D), and the combination of NDVI and Terrain data (case E). Each case is performed
by replacing temporal data vectors in matrix Tm,tk

n(d,tk)
of Equation (6) using its own predictor data

except in the NDVI-terrain-based case, which is implemented by establishing the matrix composed
of spatial data vectors at the reconstructed time. The evaluation indices of the five cases are shown
in Figure 11. For case D, adopting TB data, only the accuracies of the temporal changes and spatial
structure of the reconstructed daytime data are acceptable. Other indices are not ideal because the
high correlation proven by previous research between LST and TB is not shown in this study area,
which may be caused by the complex terrain. For case E, the correlation coefficient is high depending
on the temporal consistency between NDVI and LST, but the combination of NDVI and terrain data
cannot accurately represent the spatial heterogeneity of LST leading to a large modeling error and
Moran’s I values far from the reference values. In addition, the reconstruction rates in case E are also
unsatisfactory. For cases employing MODIS LST data as predictor variables, the differences in the
correlation coefficient and spatial structure among reconstruction results are slight. Case A, adopting
the known MODIS LST data at the reconstructed time as the predictor data, has the lowest modeling
errors due to this case having the highest temporal correlation and lowest temporal bias between the
predictor and reconstructed data (see Figures 4 and 5), but it has low reconstruction rates. To improve
the reconstruction rate, cases B and C introduce multi-temporal LST data. For case B, in addition to
the known data at the reconstructed time, the predictor data at the nearest time to reconstructed data
are adopted without seriously increasing the modeling error, and the accuracies on the correlation
coefficient and spatial structure are consistent with those of case A. Case C employs all temporal
LST data, increasing the reconstruction rate. However, relative to cases A and B, the reconstruction
accuracies decrease, especially for the reconstructed daytime data. Overall, case B advocated in this
paper provides a favorable balance between reconstruction accuracy and reconstruction rate.
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5. Conclusions

MODIS LST products are one of the most important remote sensing LST observations. However,
due to clouds, remotely sensed LST data contain a large number of missing values. It is very important
to reconstruct MODIS LST data to perform large-scale and long-term LST application studies.

In this paper, the reconstruction goal is to obtain cloud-free LST values, and the recovery accuracy
is decided by the correlation between predictor and reconstructed data. Relative to other predictor
data, e.g., BT, NDVI and terrain data, the available MODIS LST data that are not affected by clouds
have a higher correlation with the reconstructed data due to the autocorrelation characteristics of
the land surface variable. Thus, using the available MODIS LST data as predictor data is the most
reliable approach.

Considering the high correlation between time series MODIS LST data at different spatial pixels
and times, a spatio-temporal algorithm employing multi-temporal MODIS LST data is adopted to
reconstruct MODIS LST data. When the available LST data at the reconstructed time are taken as the
predictor data, the algorithm shows satisfactory performance except for the reconstruction rate. When
the extra LST data that are nearest in time to the reconstructed data are introduced, the reconstruction
rate increases without a severe decrease in reconstruction accuracy; this approach is thus advocated as
the optimal case. Although the reconstruction rate can be further improved by adopting all temporal
LST data, the overall reconstruction accuracies significantly decrease due to the low correlation and
high bias of the time series between nighttime and daytime data.

Although the real LST under clouds cannot be recovered based on the reconstruction algorithm,
the differences between the cloudy and cloud-free LST can be estimated by the error decomposition
as long as the modeling accuracy is high enough, which can provide important evidence to further
estimate ground truth values. However, the differences between the LST under clouds and clear sky
show stronger spatial heterogeneity during the day than at night, which increases the challenge of
estimating real LST data under clouds.

BT data have the potential to obtain cloudy LST values due to microwaves penetrating through
cloud cover and the strong correlation between LST and BT. In this paper, however, the high correlation
does not appear, which may be caused by the complex terrain in the study area. In future work, we plan
to use the reconstruction algorithm to obtain cloudy LST data by merging multiple sources of remotely
sensed microwave data in flat areas.
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