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Abstract: Yunnan pine shoot beetles (PSB), Tomicus yunnanensis and Tomicus minor have spread
through southwestern China in the last five years, leading to millions of hectares of forest being
damaged. Thus, there is an urgent need to develop an effective approach for accurate early warning
and damage assessment of PSB outbreaks. Remote sensing is one of the most efficient methods for
this purpose. Despite many studies existing on the mountain pine beetle (MPB), very little work has
been undertaken on assessing PSB stress using remote sensing. The objective of this paper was to
develop a spectral linear mixing model aided by radiative transfer (RT) and a new Yellow Index (YI)
to simulate the reflectance of heterogeneous canopies containing damaged needles and quantitatively
inverse their PSB stress. The YI, the fraction of dead needles, is a physically-explicit stress indicator
that represents the plot shoots damage ratio (plot SDR). The major steps of this methods include:
(1) LIBERTY2 was developed to simulate the reflectance of damaged needles using YI to linearly
mix the green needle spectra with the dead needle spectra; (2) LIBERTY2 was coupled with the
INFORM model to scale the needle spectra to the canopy scale; and (3) a look-up table (LUT) was
created against Sentinel 2 (S2) imagery and inversed leaf chlorophyll content (LCC), green leaf area
index (LAI) and plot SDR. The results show that (1) LIBERTY2 effectively simulated the reflectance
spectral values on infested needles (mean relative error (MRE) = 1.4-18%), and the YI can indicate
the degrees of needles damage; (2) the coupled LIBERTY2-INFORM model is suitable to estimate
LAI (R? = 0.73, RMSE = 0.17 m m~2, NRMSE = 11.41% and the index of agreement (IOA) = 0.92) and
LCC (R? = 0.49, RMSE = 56.24 mg m 2, NRMSE = 25.22% and IOA = 0.72), and is better than the
original LIBERTY model (LAIL: R? = 0.38, RMSE = 0.43 m m 2, NRMSE = 28.85% and IOA = 0.68;
LCC: R? = 0.34, RMSE = 76.44 mg m~2, NRMSE = 34.23% and IOA = 0.57); and (3) the inversed Y1 is
positively correlated with the measured plot SDR (R? = 0.40, RMSE = 0.15). We conclude that the
LIBERTY2 model improved the reflectance simulation accuracy of both the needles and canopies,
making it suitable for assessing PSB stress. The YI has the potential to assess PSB damage.

Keywords: pine shoot beetles (PSB); LIBERTY; needles reflectance simulation; INFORM; green LAI;
LCC; plot shoots damage ratio (plot SDR)

1. Introduction

The forest ecosystem plays an important role in the global carbon cycle [1,2]. However, forest pests
can destroy the stability of forest ecosystems and increase their vulnerability to natural disturbance [3,4].
There are two major types of pests, each attacking different organs of trees: defoliators eat leaves or
needles and borers bore into the shoots, bark, or wood. These pests may cause a temporary physiological
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decline in trees (i.e., reduced moisture) or permanent damage to biochemical and biophysical parameters
like leaf chlorophyll content (LCC) and green leaf area index (LAI). These changes result in canopy
reflectance changes, making it possible to use Earth observation (EO) data to detect forest pests [5,6].
Remote sensing has become an effective technology for detecting forest damage (i.e., diseases and
insects) because of the richness of high temporal, spatial and spectral resolution images [7-13].

Defoliator damage is relatively easier to detect due to the visible symptoms of forest cover and
leaf discoloration. For example, using a time series approach, EO data can effectively characterize
defoliator impact [14,15]. However, borer (i.e., beetle) attacks are often hidden in the trunk or shoots.
The discoloration symptoms have a lag of several weeks, causing difficulties in detecting them. Despite
various remote sensing algorithms having been proposed to assess forest damage, prediction of
beetle attacks is still a challenge [16-18]. Most empirically-based algorithms link variations in spectral
reflectance to levels of pest damage or stages of decline [19]. Chen and Meentemeyer [19] categorized
them into four groups: (1) thresholding involves defining one or multiple thresholds to isolate the
infested trees from the entire forest using spectral indices (i.e., RGI [20], NDVI [21], NDMI [22,23],
DI [24], EWDI [25]); (2) classification involves classifying forest damage based on the distinct symptoms
of damaged trees; (3) statistical regression involves correlating image-derived explanatory variables
(i.e., spectral bands, spectral ratio indices, and spectral vegetation indices) to field-measured damage
indicators (i.e., LAI, LCC, canopy chlorophyll content, defoliation intensity) to assess or predict
forest vulnerability to pest attacks; and (4) change detection involves employing multi-temporal EO
data to identify the spatial patterns of forest disturbance through time. These empirical methods
may successfully detect forest damage under certain conditions; however, they do not explain the
mechanism of the spectral response to vegetation stress [26].

Theoretically, the canopy reflectance change as a result of damage is mainly caused by the
changes in leaf pigment content and canopy geometrical structure parameters in response to insect
attacks [18,26,27]. To increase the detection accuracy of beetle damage, the mechanistic link between
vegetation parameters and spectral features has to be clarified [28]. Instead of using empirical simple
equations or thresholds, canopy radiative transfer models (RTMs) quantitatively depict the whole
process of light transfer within and above the vegetation canopy. In RTMs, top-of canopy reflectance is
a function of canopy geometrical structure parameters (e.g., LAI), sun and viewing geometry, and leaf
and background soil optical properties. There are four types of canopy RTMs [29,30]: (1) RT models
(i.e., SAIL [31]) including plate models, N-flux models, and stochastic models, which are generally
applied in continuous and homogeneous vegetation canopies [29]; (2) geometrical optical (GO)
models (i.e., 5-SCALE [32]), applied to canopies with distinct architecture particularly sparse forest
canopies [33,34]; (3) hybrid GORT models (e.g., Invertible Forest Reflectance Model (INFORM) [35,36]),
which combine the advantages of GO models with the hotspot effect and RT models with multiple
scattering processes [37]; and (4) computer simulation models (i.e., DART [38]), which use computer
graphics to generate the realistic 3-dimensional (3D) structure of the vegetation scene and accurately
render the scene [39-41]. For these computer simulation models, Monte Carlo ray tracing and radiosity
are the most widely used theories. Leaf reflectance and transmittance can be user-defined or simulated
by a leaf RTM, which is a function of leaf structure and biochemical parameters (e.g., LCC). Therefore, the
coupled model (a canopy RTM and a leaf RTM) can be used to explore the canopy reflectance response
of the variation of leaf biochemical and partial canopy biophysical parameters (e.g., LCC and LAI) [42,43].
However, it is important to choose the suitable RTM for a specific forest canopy and application scenery.

For Yunnan pine, INFORM was chosen as the canopy RTM and the LIBERTY [44] (Leaf
Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yields) model as the leaf RTM.
Because the leaf of Yunnan pine has a long needle shape, the LIBERTY model was better than the
PROSPECT [45] model. Due to the dry climate and Karst rocky desertification, Yunnan pine trees grow
poorly in this area, with large canopy gaps, low canopy height, and a sparse distribution of forest.
Therefore, GORT and computer models were best suited. Considering the low time cost, GORT models
were chosen. GORT has two types of input parameters: (1) GO parameters, which include sunlit or
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shaded view fractions of soil or crowns; and (2) RT parameters, which include the brightness of sunlit
or shaded soil or crowns. The Yunnan pine crown diameter, density, and tree height were used to
estimate the GO parameters. LIBERTY coupled with a canopy RTM was used to simulate the optical
properties of sunlit or shaded components (soil and crown). INFORM was a GORT model combining
the forest light interaction model (FLIM [46]), SAILH [31], and a suitable leaf model (e.g., PROSPECT
or LIBERTY). The INFORM model was suitable to simulate sparse forest because, firstly, it accounts
for the effects of shadowing, canopy geometric structure, crown transmittance, the hotspot and the
clumping of leaves in crowns on the forest reflectance. Previous studies [36,47] have indicated that the
INFORM model achieves a good performance in medium-dense and dense managed conifer stands
with low a variation in tree height and open canopy. Secondly, the FLIM model considered the canopy
geometrical structure and the SAILH model combined with PROSPECT or LIBERTY implemented a
full multiple scattering scheme to simulate discontinuous canopy optical properties. Due to its good
documentation and mature software framework for inversion, as well as the embedded LIBERTY [44]
model, INFORM was the best choice for our study.

Although the LIBERTY-INFORM model was suitable for Yunnan pine, it still cannot describe
the non-uniform distribution of needle chlorophyll, which produces the significant symptoms of
heterogeneous discoloring, and red dieback damage of shoots. Pine shoot beetles (PSB) bore into
the shoots and block water and nutrient delivery to the needles. This leads to the color of needles
above the wormhole of the shoot changing from green to red during the infestation stages, while
the color of the needles below the wormhole of the shoot remain green until the whole shoot
undergoes a significant physiological decline. PSB thereby cause heterogeneous needles with patchy
chlorosis which strongly influences the whole leaf and canopy reflectance due to the non-uniform
distribution of chlorophyll [48]. The non-uniform distribution of chlorophyll may impact RTM
modeling leaf/canopy reflectance accuracy and the ability to deduce LCC and LAI. However, previous
studies have ignored the effect of the non-uniform distribution of chlorophyll on canopy model
reflectance for the estimation of biochemical and biophysical parameters in vegetation stress [49-51].
In addition, pigment composition such as the ratio between chlorophylls a and b and the relative
amount of carotenoids can change in response to certain forms of stress. Many studies [27,52] have
indicated that the chlorophyll a/b ratio becomes higher with deeper damage and that the ratio of total
chlorophyll (a + b) to total carotenoids in highly damaged leaves was significantly lower than in healthy
or slightly damaged leaves. Furthermore, stress pigments such as carotenoids and anthocyanins are
strongly responsible for controlling the color of the leaves in response to change in environmental
conditions. Leaf optical properties are directly impacted by the composition and distribution of
pigments. Therefore, the LIBERTY model should be extended to include the non-uniform distribution
of chlorophyll and the changed pigment components for modeling heterogeneous needles. Efficient
inversion approaches like look-up-table (LUT [53]) should be tested, adapted, and used to estimate
these vegetation parameters from measured spectral data.

In this paper, instead of attempting to quantify the concentration of pigments such as carotenoids
and anthocyanins, we aimed to develop an extended LIBERTY-INFORM simulation method (named
LIBERTY2-INFORM) to deal with heterogeneous needles and sparse spatial distribution so as to
improve the detection accuracy of PSB stress in Yunnan pine forests. Section 2 gives the material and
methods. Then, the results and discussion are presented in Sections 3 and 4, respectively. The conclusions
are in the final section.

2. Material and Methods

2.1. Study Site

The study site (25°14'-25°29'N, 100°48’-101°3'E), is located in the Tianfeng Mountains, Yunnan
Province, in the southwest of China (Figure 1). The forest is dominated by air-sowing stands of Yunnan
pine (Pinus yunnanensis Franch) with an area of about 1000 ha. Since 2010, PSB (Tomicus yunnanensis
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and Tomicus minor), which bore into both shoots and trunks, have been damaging the Yunnan pines,
which causes serious forest dieback (approximately 50% of the forest area to date).

China

Figure 1. The location of the study site in the Tianfeng Mountains, in the southwest of China.

The field campaign was carried out from October to November in 2016. In order to cover different
degrees of the damaged forest, 34 plots (30 m by 30 m), representing different levels of damage
(11 healthy plots and 23 stressed plots), were set in the study area. The central GPS coordination of
each plot was measured using a differential GPS device (GeoExplorer 6000, Trimble Inc., Sunnyvale,
CA, USA) with an accuracy of about £0.75 m. To quantify the tree damage, the shoots damage ratio
(SDR) has been defined and measured [54]. The SDR (shown in Table 1) is the ratio of damaged shoots
to total shoots of a single tree. For each tree, all damaged and healthy shoots were counted to estimate
the SDR of a single tree. At each plot, we measured all trees with a diameter at breast height (DBH)
greater than 4 cm. By averaging the SDR of the total of all eligible trees in a plot, the plot SDR (shown

in Table 1) was calculated by: Nirees
plot SDR = ) SDR; 1)

trees j—1

where Nirees is the number of trees in a plot with a DBH greater than 4 cm.

2.2. Measurements of Forest Structural Parameters

The forest structural variables were measured in each plot, including green LAI, canopy closure
(CO), stem density (SD), stand average height (H), and stand average crown diameter (CD). CO was
sampled in two cross-line of each plot. SD was obtained by counting the number of trees in a plot.
H and CD were calculated from the average of all trees (DBH > 4 cm) within each plot. Plot green LAI
was averaged using 25 evenly-spaced measurements. Each LAl measurement was conducted by a
Li-Cor LAI-2200 plant canopy analyzer with a 270-degree view restrictor. Clumping is simultaneously
estimated by the LAI-2200 [55,56]. In the winter season, there is a low density of understory. Summary
statistics for the forest plot variables are given in Table 1.

Table 1. The parameter statistics for the forest plot variables (n = 34).

Mean SD Max Min Range
Type of Plots

HP SP HP SP HP SpP HP SP HP SpP

CD [m] 2.5 2.3 0.27 0.22 55 5.3 0.5 0.5 5 4.8

H [m] 4.68 5.07 1.5 1 11 12 1 1 10 11
CO [%] 28 32 8.9 6.8 42 44 15 20 27 24
SD [ha~1] 990 1342 404 556 2022 2644 500 556 1522 2088
LAI [m® m~2] 0.78 0.83 0.37 0.29 1.86 1.61 0.43 0.37 1.43 1.24
LCCpor [mg m~2] 422 342 28.21 61.14 428 389 372 205 56 184

SDR 0.03 0.37 0.06 0.31 0.23 1 0 0 0.23 1
Plot SDR 0.00 0.34 0.03 0.13 0.02 0.65 0 0.1 0.02 0.55

Note: SD = Standard deviation, Max = Maximum, Min = Minimum, HP = Healthy Plots, and SP = Stressed Plots.
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2.3. Measurements of Needle Reflectance and Chlorophyll Content

The feeding behaviors of T. yunnanensis and T. minor are divided into two stages: (1) boring into
the shoot; and (2) moving to the trunk. During the first stage, damaged shoots block the water and
nutrient transfer to the needles, resulting in localized regions of chlorosis across the needle surface.
In one needle, the color may vary from green to yellow. During the second stage, the “red-attack” stage,
the needle color turns entirely to red. Therefore, it is interesting to measure the needle reflectance with
different color combinations.

According to the common color changing sequence (green, light green, yellow, red) of pine
needles, four degrees of needle damage were defined, including healthy (green), slight damage (light
green), moderate damage (green-yellow, yellow), and severe damage (yellow-red, red). For each level,
50 samples were collected, sealed, and brought to an indoor laboratory. Two Avantes spectroradiometers,
AvaSpec-EDU-VIS (350-850 nm), and AvaSpec-NIR1.7 (900-1700 nm) were combined to measure the
needle reflectance indoors from visible (VIS) to near-infrared (NIR) bands. The spectrum resolutions
were 1 nm in VIS and 3 nm in NIR, respectively. Reflectance was normalized by the sample spectrum
from a white reference panel (98% diffuse reflectance). The process of the spectral measurement was
conducted in a dark room. In each sample with the same degree of needle damage, about 30 to 40
number needles were tightly arranged in a grooving device with a clip because one needle is too slim
to fully fill the field of view (FOV) of the optical fiber probe. For both the reflectance and transmittance
measurements, the AVANTES Halogen light source (AvaLight-DHc) was used, which has a wavelength
range from 400 nm to 2500 nm. Reflectance fiber with a wavelength ranging from 200 nm to 2500 nm
was used, which was contacted with the needles. Transmission Dip Probes (TDP, 2 m length) were
mounted on the light source and used to measure the needle transmittance. To avoid external light
interference, the optical fiber probe with a FOV of 25° was installed in a reflection probe holder (RPH-1,
https:/ /www.avantes.com/products/ fiber-optics/item /260-reflection-probe-holders). The fiber probe
holder was attached to the sample grooving device to measure the needle spectra. Each sample (from
the tip to base of the needles) was measured five times and averaged to minimize instrument noise.

Correspondingly, the LCC of the needles were measured using the Chlorophyll Content Meter
(CCM-300, Opti-Science, Inc., Hudson, NH, USA) based on the fluorescence ratio of red emissions
measured at 700 nm and 735 nm. The chlorophyll (Chl) content was calculated using the equation [Chl]
= 634F735/F700 + 391 [57]. There was a linear response to Chl content ranging from 41-675 mg m 2,
with a determination coefficient of R? greater than 0.95. The CCM-300 was capable of conducting
nondestructive measurement of the chlorophyll of tiny leaves (such as needles) with a leaf clip holder.
The CCM-300 was calibrated (R? = 0.94) using 28 independent samples measured by a standard
UV-2600 Spectrophotometer and using 95% anhydrous ethanol as dissolving reagent [58].

For each sample, three sections of the tip, center, and base of the needles were measured to
calculate the average LCC. The results of the LCC are shown in Table 2.

Table 2. The statistics of LCC (unit: mg m~2) for different degrees of damaged needles and shoots.
(50 samples for each class of needles or shoots).

Statistics Healthy Slight Moderate Severe
Max 495 406 303 60
Needles Min 385 216 29 0
Mean 433 328 138 19
Max 485 398 262 98
Shoots Min 400 256 102 0
Mean 428 334 174 40

Similar to the needle scale, the infested shoots are also divided into healthy, slight, moderate and
severe levels of damage (Figure 2). The severity of damage to individual shoots was visually estimated:
(a) healthy, for shoots with green needles and no insect attack; (b) light, for shoots with a boring attack
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and consisting of light or yellowish needles; (c) moderate, with half yellow needles; and (d) severe, for
shoots with almost completely red needles. The mean LCC of the four classes of needles was used to
determine the LCC of a single shoot. For each class of shoots, 50 shoot samples with varied needle
density and length were chosen to calculate the mean LCC of the shoots, which was then defined as
the shoot LCC (LCCgppot)- The statistics of LCCgp o0t are shown in Table 2.

@) (b) (©) (d)

Figure 2. The examples with different degrees of shoot damage. (a) Healthy; (b) Slight; (c) Moderate; (d) Severe.

It is difficult to determine the average LCC for a stressed tree or plot. Traditionally, the total plot
LCC is a multiplied value of a mean LCC and LAI [59,60]. This method is easy and quick for estimating
the total plot LCC when the canopy leaves are relatively homogenous. However, our key question is
around how to determine the mean LCC for a heterogeneous canopy. For Yunnan pines, the trees may
have different degrees and numbers of needles or shoots. The heterogeneous crowns lead to difficulty
in determining the mean LCC through random sampling of needles or shoots. In this paper, the LCC of
a single tree (LCClree) is calculated with a weighted average method:

LCCshoot,healthynshoot,healty + LCCshoot,slightnshoot,slight + LCCshaot,moderatenshoot,moderate + LCCshoot,severenshoot,severe 2
LCClree = N (2)
shoots
where Lccshoot,healthyr Lccshoot,slight/ Lccshoot,moderater and Lccshoot,severe are the mean ChlorOPhYu
content of the healthy, slight, moderate, and severely damaged shoots, respectively. Ngpoots is the total
number of shoots of a single tree.

Then, the average LCC of a plot with Nirees trees, the LCCpo; (see Table 1), is as follows:

1 Nirees
LCCplot = Z Lcctree,i 3)
trees ;—1

2.4. Sentinel 2A Images and Processing

The Sentinel-2 (S2) satellite features a Multi-Spectral Instrument (MSI) with a 290 km field
of view (FOV). This MSI provides 13 spectral bands, ranging from the visible and near-infrared
(VNIR) to the short-wave infrared (SWIR), with four bands (B2-B4, B8) at 10 m spatial resolution,
six bands (B5-B7, B8a, B11, B12) at 20 m spatial resolution, and three bands (B1, B9, B10) at 60 m
spatial resolution [61]. The high spatial resolution, wide FOV, and broad spectral coverage of S2 are
designed to map land use and land cover (LULC), as well as change detection, geophysical variables
(i.e., LCC, LAI) mapping, and risk, such as forest insect detection. S2 imagery has a high quality
of geometry and radiation [62]. The Level 1C product is geo-coded with a sub-pixel registration
accuracy for users and provides the top of the atmosphere (TOA) reflectance [62]. Images collected
on 31 December 2016 (Relative Orbit number: R104) were used in this paper, taken at a time that was
almost cloud-free (cloud cover less 1%). The atmosphere correction was conducted using the SEN2COR
(http:/ /step.esa.int/main/third-party-plu-gins-2/sen2cor/) tools. We used the bands from B2 to B8a,
which are highly sensitive to chlorophyll and LAI variations. The bands at a spatial resolution of 10 m
were aggregated to 20 m, resulting in eight bands in VNIR at 20 m.
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2.5. The Needle-Reflectance Model LIBERTY

The LIBERTY model was developed to describe the spectral properties of conifer needles [44].
The model employs nine biophysical /biochemical parameters (Table 3) to simulate needle reflectance
and transmittance in the VNIR and SWIR wavelengths (400-2500 nm) at 5 nm intervals. The model
linearly sums in vivo specific absorption coefficients, scaled by their respective concentrations,
to calculate a global absorption coefficient [63]. The global absorption coefficient, in conjunction
with the structural parameters of average cell diameter (d), intercellular air gap (xu), and needle
thickness (), were used to calculate needle reflectance and transmittance.

2.5.1. Calibration of Pigment Absorption Coefficients

The LIBERTY model in vivo specific absorption coefficients were measured from jack pine
needles during the Boreal Ecosystem Atmosphere Study (BOREAS) campaign [44]. The leaf model
(e.g., PROSPECT/LIBERTY) physically describes the relationship between biochemical/structure
parameters and spectral reflectance; thus, it is expected to be independent of species and site
conditions. However, the specific absorption coefficients of pigment in different species are not
completely consistent. Many studies indicated that better accuracy of leaf /needle optical properties and
biochemical parameters were estimated after being validated and calibrated with real measurement of
leaf /needle reflectance [44,45,63—-68]. Yunnan pine is a different species to jack pine, thus, the LIBERTY
model needs to be calibrated before it can accurately simulate vegetation reflectance spectra at the local
scale and inversed to estimate leaf biochemical parameters [64,65]. In order to accurately model needle
reflectance, calibration of pigment absorption coefficients should be considered. The Newton-Raphson
iterative method was applied to calibrate the LIBERTY model [63] using a randomly selected 40%
of healthy needles from field measurements for model calibration. The remainder were used for
model validation. The validation accuracy was assessed by the mean relative error (MRE) between the
modeled and measured needle reflectance.

2.5.2. Simulation of Heterogeneous Leaf Reflectance

Insect damage can cause heterogeneous leaves with patchy chlorosis which strongly influences
the whole leaf reflectance because of the non-uniform distribution of chlorophyll [48]. According to
the BARTON study [48], a heterogeneous leaf area was split into two regions with distinct chlorophyll
concentrations: (1) the damaged region with the fraction of leaf (f) and chlorophyll concentration
Cq; and (2) the healthy region (1 — f) with chlorophyll concentration Cg. The mean leaf chlorophyll
concentration Cpean i

Cmean = f Co + (1 - f)cﬁ (4)

Assuming that C, = 0 for the chlorophyll content of the dead leaf area, and f is the dead leaf area
fraction, Equation (4) is simplified as

Cmean = (1 - f)cﬁ (5)

Because f represents the degree of needle damage, we use it as a damage indicator called the
“Yellow Index” (YI) [69]. Therefore, Equation (5) can be converted into a new form (Cmean = (1 —
YI)Cp), in which Cg refers to the chlorophyll content of the healthy region for a heterogeneous needle.

Assuming that two regions of a heterogeneous leaf are scattered or absorbed without interaction,
the reflectance R) cmean is linearly mixed [48] between the dead region reflectance R) ¢, and the
healthy region reflectance R, cg:

R) Crean = YI R\ =0 + (L = YI)R) ¢, (6)

Similarly, the mixed transmittance of a heterogeneous leaf T) cmean is as follows:

Tr Crean = YI T co=0 + (1 = YD Ty @)
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where T) c,=0 and T) cp are the transmittance of the dead region and healthy region, respectively.
The healthy needle spectra (R) cp, Tx,cp) can be effectively simulated by the LIBERTY model following
calibration with healthy needles. However, under stress conditions, the LIBERTY model performs
bad and should be modified to achieve better accuracy [69]. The reason for this is that the LIBERTY
model only considers a single pigment absorption coefficient for chlorophyll and carotenoid instead
of separating them into individual pigments [44,70]. In fact, chlorosis results from the interaction of
multiple pigments of the leaf. Pigments such as carotenoid, brown, and anthocyanins, in particular,
cause a yellow or red leaf [71]. To overcome this limitation of LIBERTY, YI was used as a corrected
fraction to describe the effect of the mixture of multiple pigments correlated with chlorosis on needle
reflectance. In the process of the needle reflectance simulation, YI was independent of the radiative
transfer modeling equation of LIBERTY. The measured spectra of red needles (LCC = 0 mg m~?2) of
Yunnan pine was used as the prior-knowledge of the dead needle spectra (R, cy=0, Ta,ca=0); it can be
replaced by a generally dead or senescent leaf spectra.

For convenience, the original, calibrated (including the calibrated pigment absorption coefficient),
and modified (includes the calibrated pigment absorption coefficient and YI) LIBERTY models are
named LIBERTYO0, LIBERTY1, and LIBERTY?2, respectively. The performance of the infested needle
reflectance simulation was evaluated using the mean relative error (MRE) based on measured and
simulated needle reflectance.

As described above, there are four levels of LCC: needle, shoot, single tree, and plot. SDR is this
concept at the tree level. At the plot scale, the mean SDR of all trees is used to represent the degree of
damage. Therefore, the plot LCC is a combined value of three scales (tree, shoot, and needle):

N trees

Lccplot = Nioo Z (LCCShoot,healthy(1 - SDRi) + LCCshoot,damagedSDRi> 8
trees ;—1
1 Nirees Nshoots
LCChiot = ——— LCC 1-YL) 4+ LCC YL 9
plot Nirees Nehoots = ]; ( needle,healthy( ]) needle,damaged ]) 9)

where LCCshoot,healthyr LCCshoot,damaged/ LCCneedle,healthy/ and LCCneedle,damaged are the mean LCC of
the healthy and damaged shoots or needles.

Assuming that all trees in a plot have the same degree of damage and needles or shoots are
randomly distributed in the tree crowns with either healthy or dead properties, Equations (8)—(9) can
be derived as

LCCplot = I—‘Ccshoot,heal’chy(1 - PlOt SDR) (10)

LCCplot = LCCneedle,healthy(1 - YI) (11)

Based on the assumption above, LCCgpoot healthy 1S €qual to LCCreedle healthy- Although Y1 is defined at
the needle scale, by assuming that needles are randomly distributed, YI is numerically equal to the plot SDR.

2.6. INFORM Model

The INFORM model [36], coupled with LIBERTYO, LIBERTY1, and LIBERTY?2, is used to simulate
the bidirectional reflectance (BRF) of forest stands between 400 and 2500 nm. The main input parameters
of the INFORM model are shown in Table 3.

2.7. Look-Up-Table (LUT) Inversion

LUT is a simple but effective strategy for remote sensing inversion, which can help to alleviate
the drawback of the ill-posed problem [72]. The LUT inversion can be divided into two steps:
(1) The generation of LUT by RTM; and (2) the selection of the solution corresponding to the given
measurement. LUT consists of input parameter combinations and the associated output simulation
of canopy reflectance. For the generation of LUT, the range and distribution of the LIBERTY and
INFORM model parameters should be defined. Table 3 shows the ranges (minimum, maximum,
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and a step) of the leaf and canopy variables. The minimum and maximum of single tree LAIs
(LAIs = LAI/CO), understory LAI (LAIL,), LCC, H, CD, SD, thee hotspot parameter (hot), and the
diffuse light fraction (skly) are defined based on prior knowledge from field measurements and other
similar studies [47]. According to the sensitivity analysis of LIBERTY [44,63,64], water, lignin/cellulose,
and protein contribute mostly in NIR with wavelengths greater than 1000 nm [44,63]. Therefore,
the water content (Cy), lignin and cellulose content (Cy ), and nitrogen content (Cp) were held constant.
Sun and viewing conditions correspond to the situation of the satellite overpass. A LUT length of
100,000 cases of parameter combinations was chosen using uniform random sampling in accordance
with previous research [73,74]. This LUT size proved to be feasible and a larger LUT size may not
influence the estimation accuracy according to similar research [55,56,72]. Subsequently, the coupled
models LIBERTYO-INFORM, LIBERTY1-INFORM, and LIBERTY2-INFORM were applied to simulate
canopy reflectance (ocanopy) using the 100,000 cases of parameter combinations. The simulated canopy
reflectance with 5 nm intervals was re-sampled to the eight bands of S2A using S2 MSI spectral
response functions (SRF) (https:/ /earth.esa.int/web/sentinel /document-library/content/- /article/
sentinel-2a-spectral-responses) with the following form [75]:

/\)\nn;i Peanopy (Ao) f(Ao) dAo
max £(15) dAo

pimage()‘) = (12)

where pimage (1) refers to the broadband reflectance of S2A for given band A, f(A,) refers to the SRF
of the corresponding wavelength, and Amax and Ay, refer to the upper and lower limit of each band
interval, respectively. Finally, the input parameter combinations and associated output simulation of
canopy reflectance were stored in LUT.

In the S2A imagery, we used the average reflectance of 3 x 3 pixels around the plot location to
reduce the uncertainty of location error due to the inconsistency between plot dimensions (30 m) and
the S2A pixel resolution (20 m). The relative error (RE) (see Table 4) between the average reflectance of
3 x 3 pixel reflectance and plot location pixel reflectance was used to explore pixel variation. Table 4
shows that the difference between the plot location pixel and 3 x 3 pixels was small, at 4.49% of the
mean RE. The average reflectance of 3 x 3 pixels can represent the measured reflectance of each plot.

Table 3. The ranges and distribution of input parameters to generate LUT.

Type of Variable Input Parameters Designation Unit Range and Step Distribution
L Cell diameter d m° 40-60, 5 Uniform
L Intercellular airspace Xu arbitrary 0.03-0.06, 0.005 Uniform
L Leaf thickness t arbitrary 1-10,1 Uniform
L Baseline absorption b arbitrary 0.0005 -

L Albino absorption a arbitrary 2-4,0.5 Uniform
L Leaf Chlorophyll content LCC mg m 2 200450, 5 Uniform
L Water content Cw g m—2 100 -

L Lignin and cellulose content CpL g m~2 40

L Nitrogen content Cp gm~2 1 -

I Yellow index YI arbitrary 0-0.5,0.05 Uniform
C Single tree of leaf area index LAIs m?2 m—2 0.1-4.5, 0.5 Uniform
C LAI of understory LAILy m2 m~2 0-1,0.2 Uniform
C Stem density SD ha™! 500-2500, 50 Uniform
C Average leaf angle ALA deg 30-70,5 Uniform
C Tree height H m 1-12,1 Uniform
C Crown diameter CD m 0.5-5.5,0.5 Uniform
C Hot spot parameter hot mm~! 0.02 -

E Sun zenith angle 0s deg 52.50

E Observation zenith angle 6o deg 7

E Relative Azimuth phi deg 0

E Fraction of diffuse radiation skly fraction 0.1

Type of variable: E = External, C = Canopy parameters, L = Leaf parameters of LIBERTY, and I = Introduced.

Table 4. The statistic of RE (%) between 3 x 3 pixels and the plot location pixel for 34 plots.

Mean Max Min SD
RE 4.49 13.40 0.08 3.06
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Table 5 shows the 12 different potentially promising cost functions (CFs) for LUT inversion from
three broad families (information measures, M-estimates, and the minimum contrast method) [76].
As demonstrated by Rivera [55], these CFs should be competed with one another to find the best
inversion solution. The competition is based on D [P, Q], the distance between two functions, where
P = (p(A1),...,p(Ay)) is the reflectance of satellite data; Q = (q(A1),...,q(Ay)) is the LUT simulated
reflectance; and A4, ..., A, represent the n spectral bands.

Table 5. The twelve cost functions used in LUT-inversion.

Cost Function Algorithm
A A An
Shannon (1948) DIP,Q] = - ¥ (ML) log( BRI 4 (X p(h)log(p(An) + X q(M)log(a(M)))
A
L-divergence lin DIP,QJ= X p(An)In(p(h) +4(A1)) In(a() — (p(N) + (A))) In M54
M=
A
— _ ¥ 9(A1) 9(A;) _
K(x) = log(x) + 1/x D[P,Q] = /\12:1 (log(pM[')) + p(,\/)) 1
Au a(r )
K9 =-log(x) +x DIP.Q = X (~leg(ff55) + ) 1
A
K(x) = x(log(x)) — x D[P,Q] =1+ A.)::l ZEQI,; (IOg(ZEQIr;) B 1)
Jeffreys-Kullback-Leibler DIP,Ql = ¥ (p(A) —g(A))(In(p(A) — 4(A)))
M=1
. 3 (M) —q(A)
Exponential D[P,Ql= ¥ q(A)(exp(—EozE) —1)
M=1
RMSE 3 (p() g2
D[P,Q =\ ——
A
Normal distribution-LSE D[P,Ql= ¥ (p(A) —q(M))?
M=1
A
Least absolute error D[P,Ql = ¥ |p(A1) —q(Ar)]
=1
An
Neyman chi-square D[P,Ql= L M
e (A1)
Y 5
Generalised Hellinger DIP,Ql= ¥ (VP-4
M=1

Other than the optimization of cost functions, two regularization options are also applied in
LUT-based inversion strategies to further optimize the robustness of the estimates [55,56]. First, a series
of Gaussian white noise, from 0-20% with a step 1%, was added to LUT simulate canopy reflectance to
account for uncertainties attached to the models and measurements [55,56,73,77]. Second, multiple
best solutions were used instead of a single best solution to calculate the estimated values [55,56,73,78].
Several studies have demonstrated that the single best parameter combination corresponding to the
smallest distance calculated by a cost function (e.g., RMSE) does not necessarily lead to the best
accuracies [43,78]. Different optimization numbers and the mutual effect on these regularization
options have been systematically assessed in previous studies [55,56].

The inversed LCC and LAI values were validated using field measurements. The accuracy was
assessed by R?, the index of agreement (IOA) [79] (IOA is a standardized measure of the degree
of model prediction error and varies between 0 and 1), root mean square error (RMSE) and the
normalized RMSE (NRMSE) [72]. The inversion performance of INFORM using three versions of
LIBERTY models was evaluated by calculating the deviations between the retrieved values and
measured values through RMSE and NRMSE. The NRMSE was used to determine the best CFs and
optimal regularization options.
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3. Results

3.1. Pigment Absorption Coefficient Calibration and Needle Reflectance Simulation

Figure 3 shows the pigment absorption coefficient of the original and calibrated LIBERTY models
using the measured needle spectral. It is clear that the values of the calibrated pigment absorption
coefficient are lower than the original values in most of the wavelengths. By increasing the YI from
0 to 1 with a fixed chlorophyll content of the healthy region (Cg) of 400 mg m~2, the corresponding
heterogeneous needle reflectance (Figure 4a) was simulated by LIBERTY2. The first derivative is
also presented in Figure 4b. From Figure 4, we can see the effect of the chlorotic area fraction on
needle reflectance:

(@) The needle reflectance decreases significantly in green and NIR bands but increases in the red
band in response to the increase of the YI (Figure 4a).

(b) In the first derivative of the heterogeneity of needle reflectance, the red shift in the green peak
and blue shift in the red valley are visible due to the damage of pest stress (Figure 4b).

(c) A slight change in the red edge position (710 nm) is found (Figure 4b).

0.00016 —o—origin

3 —o— calibration
0.00012
0.00008

0.00004

Pigment absorption coefficient

0.00000 ‘ ‘ ‘ 2
400 500 600 700 800

Wavelength (nm)

Figure 3. The pigment absorption coefficient curve: origin (black) and calibration (red).

—VI= - 2 g 0012
0.6 YI=0 ,(C,,, =400 mgm?) 8 Blue shift
—YI=0.1 £ 0010 -
057 vi=02 =
ST © 0.008
8 04f 1 ¢ =
g —YI=09 ; 0.006
2 03r——VYI=1(C,, =0 mgm?) g 0.004
‘S Green peak~p 2
© o02r £ 0002
b7}
01 L £ 0000
0.0 ‘ Red vglley -0.002 ‘ ‘ ‘
"400 500 600 700 800 400 500 600 700 800

Wavelength (nm) Wavelength (nm)
(a) (b)

Figure 4. (a) The modeled reflectance as a fraction of YI varies from 0 to 1 for a heterogeneous needle
with Cg =400 mg m~2; and (b) its first derivative; the curve in two rectangular boxes was amplified
in the figure. The black line (YI = 0) shows the reflectance spectrum for a homogeneous leaf with a
chlorophyll concentration of 400 mg m 2.

Figure 5 shows the reflectance simulations using LIBERTYO, LIBERTY1, and LIBERTY2 for different
severities of damaged needles. The LIBERTY1 model performs better than the LIBERTY0 model when
simulating healthy, slightly, and moderately damaged needle reflectance within 400-800 nm. The better
performance of LIBERTY1 over LIBERTY0 in modeling needle reflectance indicates that calibration of
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the pigment absorption coefficient improved the accuracy. Both the LIBERTYO0 and LIBERTY1 models
failed in reflectance simulation of severely damage needles; while LIBERTY2 effectively simulated
needles with all levels of damage. The result of validation data shows that the accuracy of reflectance
simulation has an MRE between 18.1% and 72% for LIBERTYO0, between 2.88% and 71.8% for LIBERTY?2,
and between 1.4% and 18% for LIBERTY2. This result indicates that the linear mixing method is robust
in damaged needle reflectance simulation. Furthermore, for each sample of needles, we can obtain the
best-simulated reflectance and corresponding YI when inverting LIBERTY2. The result shows that the
derived YI (healthy: 0 < YI < 0.1, slight: 0.05 < YI < 0.15, moderate: 0.15 < YI < 0.5, severe: 0.5 < YI < 1)
can be used to separate the different degrees of needle damage from the leaf reflectance spectra. If
using YI values, the moderate to severe degrees of damage can be distinctly separated from healthy
needles or those with a slight degree of damage. However, using the Y], it is still difficult to detect
the difference between healthy and slight degrees of damage in the range of 0.05 < YI < 0.1, when the
needle damage is too weak.

0.7 0.7
—— Measure (C,, =432 mg m?) —— Measure (C_,, =328 mg m?)
0.6 - Original LIBERTY 06 Original LIBERTY [
051 Calibrated LIBERTY 05| Calibrated LIBERTY y g
8 T e Modified LIBERTY (f=0.01) g T e Modified LIBERTY (f=10.08) /
§ 04 MRE,, =18.10%; MRE_ = 2.88% § 04 MRE, =19.41%; MRE,,=11.72% /
|5} |5 K
£ (3| MRE,= 145% % 03 | MRE,= 991% !
@ @
02
0.1
00 1 1 1 OO 1 1 1
400 500 600 700 800 400 500 600 700 800
Wavelength (nm) Wavelength (nm)
(a) Healthy degree: green needle (b) Slight degree: light green needle
0.7 5 0.7
—— Measure (C,, =138 mgm™) —— Measure (C__ =0mgm?)
06 - Original LIBERTY 06 Original LIBERTY
05 L Calibrated LIBERTY e 05 L Calibrated LIBERTY
g | Modified LIBERTY (f=0.27) ’ g e Modified LIBERTY (f=0.85)
£ 04 MRE,,,=3573%; MRE_=12.20% /; S 04 MRE_, =67.92%; MRE,,= 71.81% g
2 _ g 2 - -
© 3 [ MRE, = 11.87% ,- S 03 [ MRE,,= 1382%
4 o4
02 s 0.2
01 b=z 01 b=
OO 1 1 1 OO 1 1 1
400 500 600 700 800 400 500 600 700 800
Wavelength (nm) Wavelength (nm)
(c) Moderate degree: yellow needle (d) Severe degree: red needle

Figure 5. The simulation of needle reflectance using the LIBERTY0, LIBERTY1, and LIBERTY2 model
for different degrees of needle damage: (a) healthy with green needles; (b) slight degree with light
green needles; (c) moderate degree with yellow needles; and (d) severe degree with red needles.

3.2. Leaf Chlorophyll Content (LCC) and Leaf Area Index (LAI) Retrieval

Based on the LUT strategy and two regularization options, the performances of LCC and LAI
retrieval are presented in Figure 6 using the INFORM model coupled with LIBERTY0, LIBERTY1, and
LIBERTY2, respectively. Figure 6 shows the accuracies of LCC and LAI retrieval using different CFs and
regularization options. It can be seen that different models may achieve the best retrieval with different
CFs, which can be explained by different CFs dealing with different types of error distributions [56]. For
example, the best CFs are L-divergence for LIBERTYO-INFORM (at 8% multiple solutions and 6% noise),
normal distribution-LSE for LIBERTY1-INFORM (at 3% multiple solutions and 5% noise) and least
absolute error for LIBERTY2-INFORM (at 1% multiple solutions and 2% noise). The accuracy of LCC
retrieval by LIBERTY1-INFORM (R? = 0.44, RMSE = 58.87 mg m~2, NRMSE = 26.40% and IOA = 0.65)
is higher than that of LIBERTYO-INFORM (R? = 0.34, RMSE = 76.44 mg m~2, NRMSE = 34.23% and
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IOA = 0.57). The better performance of LIBERTY1-INFORM on LCC retrieval confirms that calibration
improved the estimation accuracy. LIBERTY2-INFORM has the highest accuracy (R? = 0.49, RMSE
= 56.24 mg m~2, NRMSE = 25.22% and IOA = 0.72) in LCC retrieval. However, inversed LCC was
systematically underestimated above 300 mg m~2, while being overestimated below 300 mg m~2.

Similar to LCC retrieval performance, LIBERTY2-INFORM produced better accuracy of LAI
(R? = 0.73, RMSE = 0.17 m m 2, NRMSE = 11.41% and IOA = 0.91) than LIBERTY0-INFORM
(R? = 0.38, RMSE = 0.43 m m 2, NRMSE = 28.85% and IOA = 0.68) and LIBERTY1-INFORM (R? = 0.63,
RMSE = 0.23 m m~2, NRMSE = 15.44% and IOA = 0.86). However, the NRMSE of LAI retrieval is
lower than that of LCC.
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< 400 - RMSE = 76.44 mg m* < 400 - RMSE =58.87 mgm? b0 | T 400 - RMSE=56.24mgm? /¢
= NRMSE = 34.23% E NRMSE = 26.40% S| E NRMSE = 25.22% K0
2 350 - 2 2 350 | ° g 2 350 - ° o
£ I0A = 0.57 & | E IOA=0.65 © £ I0A =0.72 600
0 o O o ©o o° O ./ 8 o
8 300 o © 08 Q °9 & 3 300 - 1) 0 3 300 - &9 8o o
k=l kel - ° °
£ 250 £ 250 g 250
£ £ E
@ @ @
d 200 d 200 - 4 200 F
150 L L L L L 150 L L L L L 150 L L L L L
150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450
Measured LCC (mg m?) Measured LCC (mg m?) Measured LCC (mg m?)
20 — 2.0 - 2.0
R*=0.38 s, ° R?=0.63 R*=0.73
&~ 16 RMSE=043m'm 16| RMSE=023m?m? « 16| RMSE=0.17 m*m?
E NRMSE = 28.85% E NRMSE =15.44% © E NRMSE = 11.41% °
S o £ = £ =
= 12 S 08, ° S 12| 10A=086 o°0 S 1o l0A=082
< © 500 < <
3 ° 3 g % o 3 e o o
g o8 %55 10A=068 Bosr  “guE o Bos ©896
E E 0 %L E 3
& 04 ¢ & o4l ° & o4l o°
00 L L L L 00 L L L L 00 L L L L
00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20
Measured LAI (m? m?) Measured LAl (m? m?) Measured LAI (m? m?)
(@ (b) (c)

Figure 6. The measured versus estimated LCC and LAI values along the 1:1 line of the best performing
different versions of the LIBERTY model of INFORM: (a) using the LIBERTYO0 model; (b) using the
LIBERTY1 model; and (c) using the LIBERTY2 model. (Upper): leaf chlorophyll content; (lower): leaf
area index.

3.3. Estimation of Plot Shoots Damage Ratio (SDR)

Based on the above results, the LIBERTY2-INFORM model was used to create LUT and inverse
LCC, LAI, plot SDR and YI over the 34 plots. The inversed Yl is positively related to plot SDR (Figure 7),
and the R? was 0.40 and the RMSE was 0.15.
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Figure 7. The relationship between YI and plot SDR.
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4. Discussion

4.1. The Contribution of Heterogeneous Leaf Reflectance Simulation

In this paper, three different versions of LIBERTY (LIBERTYO0, LIBERTY1, and LIBERTY2) were
used to model the reflectance of heterogeneous needles. LIBERTY1 performed better than LIBERTY0
(shown in Figure 5) in simulating needle reflectance for needles were healthy to moderately degree
damaged. This result confirmed that calibration of the pigment absorption coefficient could help
improve the accuracy of modeling needle reflectance, which was consistent with previous research [64].
However, both LIBERTY0 and LIBERTY1 were out-performed for modeling the reflectance of severely
damaged needles. There were two major reasons for this: (1) the absorption coefficient was constant
in this study, whereas, in reality, the mix of light-absorbing pigments might change in response to
declining LCC or localized chlorosis [48]; and (2) a single pigment did not quantify individual pigments,
which provide specific services (such as giving leaves their yellow or red color) to leaves and absorb
different amounts of radiation [65,70]. Depending on the cause of chlorosis, there may be concurrent
change to multiple pigments such as carotenoids and anthocyanin that would alter reflectance.
However, the LIBERTY model only considers a total single pigment instead of separating it into
specific individual pigments. Additionally, LIBERTY did not consider the anthocyanins, which were
closely associated with the color of the needles [71]. Therefore, LIBERTY0 and LIBERTY1 could not
accurately model the reflectance of yellow or red needles.

In this study, the spectral linear mixing method was used to describe the effect of other pigments
which were correlated with chlorosis on needle reflectance. Thus, LIBERTY2 improved the simulation
of reflectance accuracy for damaged needles. The spectral linear method was a semi-empirical method,
it cannot depict the mix of light-absorbing multiple pigments in response to certain forms of stress from
a radiative transfer modeling equation. Further, cell structure parameters such as cell diameter (D)
and intercellular airspace (xu) would decrease during the beetle attack [27,80]. Because the LIBERTY
model requires prior knowledge of D and xu to invert reflectance values [63], accurate cell structure
values might improve the accuracy of modeling the reflectance of damaged needles.

4.2. LCC, LAl and Plot Shoots Damage Ratio Estimation (SDR) Performance

The inversion accuracies of LCC, LAI, and plot SDR were used to compare the capabilities
of INFORM coupled with three versions of the LIBERTY model. The LIBERTY2-INFORM has the
best accuracy. These results indicate that accurate leaf-scale RT can improve the parameter retrieval
performance of the canopy model [64]. The good performance of LAI retrieval is because INFORM
effectively considers the sparse canopy structure, understory vegetation, and shadow components [81].
However, the performance of LCC retrieval was worse, although the non-uniform distribution of the
chlorophyll impact canopy reflectance has been considered. At the plot scale, LAI can be measured
using a suitable optical instrument (e.g., LAI-2000/2200). However, there are no direct approaches
or instruments to measure the LCC of a forest plot. Instead, the random sampling method is used
to estimate the average value and represent the mean LCC of the plot. The sampling error led to
uncertainty in the LCC inversion. In this study, the accuracy of the LCC of the plot depended on the
correct classification of the shoot damage class. A more exhaustive classification of shoot damage may
improve LCC inversion accuracy.

As for the RT model, 1-dimensional (1D) models are commonly suited to a relatively uniform canopy
with a vertical variation of structure but very limited in depicting the complex variation of chlorophyll
content in the horizontal structure. INFORM is an extended 1D model, which uses the crown diameter
and stem density to describe the horizontal variation of the forest canopy. However, the canopy reflectance
simulation was very sensitive to the variations of crown diameter according to the sensitivity analysis
of FLIM [82], which added to the inversion error. Hence, the inversion accuracy of LCC is difficult to
improve in 1D models. In the future, we will consider using a 3-dimensional (3D) canopy model which
can rapidly simulate (e.g., RAPID [83]), to allow the defined 3D scene to invert LCC in PSB stress.
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A new index, the Y1, can be inversed simultaneously with LCC and LAI. This index theoretically
equals plot SDR, which is also evaluated in Figure 7 (R? = 0.40). An unexpected result is the systematic
underestimation of YI in damaged plots (plot SDR > 0.2). This may be caused by two major factors:
(1) the effect of the clumping of needles or shoots on canopy reflectance; and (2) the overestimation
of field SDR because the shoot counting is empirical. As long as a shoot has several yellow needles,
it will be counted as a damaged shoot. Conversely, YI is non-zero in healthy plots (plot SDR = 0).
This can be explained by the underestimation of LCC (LCC > 300 mg m~2) by LIBERTY2-INFORM,
influenced by the green understory. The green understory will strongly impact YI effectiveness in the
accuracy of predicting plot SDR because of the contribution of the understory to the forest reflectance
in a sparse canopy. Therefore, the YI will be more effective in a dense canopy with at least slight
damage. Furthermore, the spatial arrangement of damaged needles is another important impact factor.
For Yunnan pine, the stressed canopy reflectance is distinctly different from that of a healthy canopy
when the damaged needles are at the top part of the crown. In that case, plot SDR can be effectively
estimated by the YI. However, when the damaged needles are on the bottom (understory) part of
the crown, stressed canopy reflectance is similar with healthy (or slight damage) canopy reflectance
because the damaged needles are blocked by healthy needles in a given observation direction. The plot
SDR will, therefore, be seriously underestimated when damaged needles are on the bottom (understory)
of the crown. A 3D canopy model will be considered in the future to simulate the spatial arrangement
of the damaged needles/shoots.

4.3. Role of LUT Setting

In this paper, we used a uniform distribution and fixed ranges to create LUT for both LCC and LAL
However, this setting influences the accuracy of LCC, LAI and the plot SDR estimation. For example,
it may cause an error in the variable estimation if the definition of the parameters is too broad compared
to the measurements [84]. Because of the external disturbance factors (e.g., pest and pollution), there
are difficulties in determining the suitable distribution of parameters. LCC and LAI have different
effects on different wavelength regions. LCC takes the dominant role in the visible region; while LAI
variations cause spectral variation over the whole VNIR [85,86]. As a result, the band from B2 to B5 are
enough to achieve a good LCC retrieval performance; and adding bands may introduce errors. As for
LAI, adding bands logically improved the inversion performance [55,56].

5. Conclusions

In this study, the spectral linear mixing method was used in LIBERTY2 which improved the
accuracy of modeling heterogeneous needle reflectance. The coupled model LIBERTY2-INFORM was
used to quantitatively assess PSB stress in Yunnan pine forests. The YI was introduced in the RT to
predict plot SDR representing PSB stress. The YI was used to model the non-uniform distribution
of chlorophyll within the needles. The results show significant improvement of needle reflectance
simulation under severe damage conditions. Inversion of INFORM-LIBERTY?2 using the LUT inversion
method leads to the best LAI (R? = 0.73, RMSE = 0.17 m m~2, NRMSE = 11.41% and IOA = 0.92) and
LCC (R2 =0.49, RMSE = 56.24 mg m~2, NRMSE = 25.22% and IOA = 0.72) retrieval performance for
Yunnan pine forests under PSB stress.

Our study implies that a more accurate simulation of leaf optical properties can help enhance
the performance of biophysical parameters inversion. The YI is a simple and potential indicator to
estimate plot SDR in order to assess PSB outbreaks. To improve the inversion accuracy of the YI, LCC,
and LAI, a 3D RT model will be used in the next study.
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