Supplementary Materials

Figure S 1 . The nine field plots containing a mixture of two vegetation types. The top figure shows the location of these mixed plots. Field sketches of the plots at the end of the growing season in September were used to assign classes to different homogeneous parts (referred to as polygons) within the plots.

Figure S2. Field impressions of the vegetation types in the Breemwaard study area. For the vegetation classes, photos taken during the field surveys in February (winter) and September (summer) show the change in greenness and vegetation height over these seasons. For the non-vegetation classes water, sealed road, rock/rubble and bare sand we provided only single images, because they are assumed to remain stable regarding height and spectral properties over a growing season.

Figure S3. Accuracy of the RF classification by decreasing number of time steps for different sampling of the training and validation sets from the reference data. RF maxnodes was set to 25 for all runs.

Table S1. Error matrices of classifications with 1) $\mathrm{RF}_{\operatorname{maxn}=25}$ and $\mathrm{RF}_{\text {default }}$ with structural and spectral data and $R_{m a x n}=25$ with only spectral data for segmentations with six $(\mathrm{n}=6)$ and one $(\mathrm{n}=1)$ time steps

Table S2: Classification accuracy with step-wise decrease in number of time steps with reversed training and validation set in the RandomForest classification, with training and validation set split based on X-coordinate. The * indicates the time step which adds least value. This time step is the group of 18 attributes collected for a specific and is not used in further analysis. OA = overall classification accuracy and $\kappa=$ Kappa coefficient. Subscript val indicates validation is based on validation dataset and train based on training dataset. Bold OAval show the accuracy of the RF with the same time steps used for the segmentation. The order of excluded timesteps was not adjusted to allow the use of the six existing segmentations, but timesteps marked with a red asterisk should have been excluded according to this training and validation set sampling method.

Time steps included in segmentation	Time step excluded from classification	$\begin{gathered} \mathrm{OA}_{\text {val }} \\ \% \end{gathered}$	$\begin{gathered} \kappa_{\text {val }} \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{OA}_{\text {train }} \\ \% \end{gathered}$	$\begin{gathered} \kappa_{\text {train }} \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{OA}_{\text {train }} \\ & -\mathrm{OA}_{\text {val }} \end{aligned}$
$\mathrm{n}=6$FEB APR JUN SEP NOV JAN	-	94.6	93.4	94.6	93.5	0.07
	FEB*	94.5	93.4	94.6	93.4	0.07
	APR	94.4	93.2	94.4	93.2	0.03
	JUN	92.2	90.5	92.1	90.4	-0.03
	SEP	93.7	92.4	93.5	92.2	-0.17
	NOV	94.6	93.5	94.6	93.4	0.00
	JAN*	94.6	93.5	94.5	93.4	-0.08
APR JUN SEP NOV JAN	-	93.7	92.3	94.6	93.3	0.86
	APR	93.6	92.1	94.6	93.3	1.01
	JUN	92.2	90.4	92.8	91.0	0.56
	SEP	93.2	91.6	93.8	92.3	0.55
	NOV*	93.8	92.3	94.5	93.2	0.76
	JAN*	93.7	92.3	94.5	93.2	0.72
$\mathrm{n}=4$ APR JUN SEP NOV	-	94.3	93.1	94.4	93.1	0.10
	APR	94.0	92.5	94.5	93.3	0.53
	JUN	93.2	91.7	93.2	91.6	0.03
	SEP	93.2	91.7	94.4	91.8	1.17
	NOV*	94.0	92.7	94.1	92.7	0.07
$\mathrm{n}=3$ APR JUN SEP	-	93.5	92.2	94.3	93.0	0.77
	APR*	93.7	92.4	94.5	93.3	0.76
	JUN	90.6	88.6	91.9	90.1	1.29
	SEP	92.1	90.4	92.9	91.3	0.76
$\begin{gathered} \mathrm{n}=2 \\ \text { JUN SEP } \end{gathered}$	-	93.6	92.0	94.5	93.3	0.92
	JUN	88.3	85.6	89.6	87.0	1.29
	SEP*	91.4	89.3	91.9	90.0	0.46
$\mathrm{n}=1 \mathrm{JUN}$	-	91.6	89.6	91.3	89.2	-0.29

Table S3: Classification accuracy with step-wise decrease in number of time steps with random sampling of training and validation set per class from reference data instead of split based on Xcoordinate. The * indicates the time step which adds least value. This time step is the group of 18 attributes collected for a specific and is not used in further analysis. OA = overall classification accuracy and $\kappa=$ Kappa coefficient. Subscript val indicates validation is based on validation dataset and train based on training dataset. Bold OAval show the accuracy of the RF with the same time steps used for the segmentation.

Time steps included in segmentation	Time step excluded from classification	$\begin{gathered} \mathrm{OA}_{\text {val }} \\ \% \end{gathered}$	$\kappa_{\text {val }}$ $\%$	$\begin{gathered} \mathrm{OA}_{\text {train }} \\ \% \end{gathered}$	$\begin{gathered} \kappa_{\text {train }} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{OA}_{\text {train }} \\ -\mathrm{OA}_{\text {val }} \\ \hline \end{gathered}$
$\mathrm{n}=6$ FEB APR JUN SEP NOV JAN	-	94.1	92.7	95.2	94.2	1.05
	FEB*	95.6	93.5	94.8	93.9	-0.77
	APR	94.5	93.4	94.9	93.8	0.40
	JUN	93.0	91.5	94.0	92.7	0.99
	SEP	93.9	92.7	91.2	93.0	-2.75
	NOV	94.2	93.0	94.8	93.7	0.61
	JAN	94.4	93.3	95.2	94.2	0.81
$\mathrm{n}=5$ APR JUN SEP NOV JAN	-	94.1	92.9	94.1	92.7	-0.02
	APR	93.9	92.6	93.9	92.4	-0.05
	JUN	93.5	92.0	93.4	91.8	-0.06
	SEP	93.9	92.5	93.7	92.2	-0.16
	NOV	94.0	92.6	94.1	92.7	0.14
	JAN*	94.4	93.1	94.3	92.9	-0.12
$\mathrm{n}=4$ APR JUN SEP NOV	-	94.7	93.5	94.5	93.2	-0.18
	APR	94.5	93.2	94.0	92.6	-0.43
	JUN	93.5	92.1	93.8	92.3	0.22
	SEP	93.6	92.1	93.6	92.1	0.03
	NOV*	94.6	93.5	94.4	93.1	-0.25
$\mathrm{n}=3$ APR JUN SEP	-	93.9	92.6	94.6	93.4	0.77
	APR*	94.1	92.9	94.7	93.6	0.64
	JUN	90.2	88.2	91.8	90.0	1.67
	SEP	92.5	91.0	93.1	91.6	0.64
$\mathrm{n}=2$ JUN SEP	-	94.5	93.2	94.8	93.6	0.31
	JUN	87.9	85.1	88.8	96.2	0.88
	SEP*	92.2	90.3	92.2	90.4	0.04
$\mathrm{n}=1 \mathrm{JUN}$	-	91.1	89.1	91.6	89.5	0.57

