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Appendix A. Atmospheric Correction of ATCOR 4, MODTRAN 6, and ANN 

 

A1. ATCOR 4 

ATCOR 4 is based on the MODTRAN 4 code that calculates the radiative transfer function 

and provides the physical parameterization using in-situ reflectance and metrological data [1]. In 

this study, the ATCOR library for atmospheric conditions was used, and the Lambertian surface 

was set. The ATCOR 4 was then run to generate modeled reflectance using Eq. (S1), 

 ρsurf =
π(D2Lat−sensor − Lpath)

TFg

  (S1) 

where, ρsurf is the surface reflectance (sr-1), 𝐷2 is the sun-to-earth distance (astronomical unit), 

𝐿𝑎𝑡−𝑠𝑒𝑛𝑠𝑜𝑟  is the total radiance through the sensor (mW cm-2 sr-1 μm-1), Lpath is the atmospheric 

path radiance (mW cm-2 sr-1 μm-1), T is the atmospheric transmittance, and Fg is the global flux 

on the ground (mW cm-2 μm-1). 

 

A2. MODTRAN 6 

MODTRAN was developed by Spectral Science, Inc. and the Air Force Research Laboratory 

(AFRL) [2]. The MODTRAN code solves the radiative transfer function to generate physical 

parameters related to atmospheric correction such as transmittance and spherical albedo. 

MODTRAN version 6 has a graphical user interface (GUI), making this software user-friendly  

The MODTRAN 6 inputs were built to generate atmospheric correction parameters for the 

Baekje Weir (Table S1). The statistical band model and discrete ordinate radiative transfer were 

selected as the radiative transfer and multiple scattering algorithms, respectively. A mid-latitude 

summer atmospheric profile was used and the CO2 concentration was set to 400 ppmv. The rural 

boundary layer aerosol option was selected. The geometry was specified by selecting the solar 

zenith angle and solar azimuth angle according to the date the field data were collected (Table 

S2). This geometry was then used to set the solar geometry specification parameters for solar 

scattering. The zenith angle of the hyperspectral sensor was set to 180 degrees since the sensor 

was installed on an aircraft perpendicular to the ground. Information on monitoring time and 

geographic coordinates (i.e., latitude and longitude) for each sampling point were written in the 

geometry input section. Lambertian spectral reflectance was defined in the surface specification 

option. The spectral specification option set the spectral range of the MODTRAN output from 

400 nm to 800 nm. The MODTRAN 6 output provided atmospheric correction parameters such 

as atmospheric path radiance, total solar flux, direct transmittance, diffuse transmittance, and 

spherical albedo. Based on simulated atmospheric correction parameters, the radiometric 

calibration converting from digital number (DN) of the raw hyperspectral image to at-sensor 

radiance was done following [3]. ρsurf was calculated by inverting the radiometric calibration 

equation:  

 ρsurf =
π(Lat−sensor − Lpath)

π(Lat−sensor − Lpath)S + TF𝑇

 (S2) 

where ρsurf is the surface reflectance (sr-1), 𝐿𝑎𝑡−𝑠𝑒𝑛𝑠𝑜𝑟  is the total radiance through the sensor 

(Wcm-2sr-1cm-1), Lpath is the atmospheric path radiance (Wcm-2sr-1cm-1), S is the spherical albedo 

of the atmosphere, T is the atmospheric transmittance, and F𝑇 is the total solar flux at the ground 

(Wcm-2cm-1). The average value of calibrated radiative parameters was distributed on the 

hyperspectral image to calculate ρsurf pixel-by-pixel. 
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A3. ANN for Atmospheric Correction 

The ANN model was composed of an input layer, a hidden layer, and an output layer. Each 

layer has nodes, which were connected to the nodes in other layers by transfer functions and a 

backpropagation function. The input layer included the atmospheric correction parameters (i.e. 

atmospheric path radiance, total solar flux at the ground, direct transmittance, diffuse 

transmittance, and spherical albedo) obtained from the MODTRAN 6 simulation and image DN. 

The number of nodes in a hidden layer, the network parameters (i.e. learning rate and momentum 

constant), the transfer functions, and the backpropagation function were optimized using a 

pattern search algorithm ([4] Park et al 2017). The output layer consisted of in-situ reflectance. 

This study selected the reflectance of 12 bands as input data since the reflectance is related to PC 

and Chl-a estimation by the bio-optical algorithms (Table S3). A total of 888 input data points was 

obtained from the four monitoring campaigns; 77% of the data (688 data points) were used to 

train the ANN model, and 23% of the data (200 data points) were used to validate the model. An 

ANN model was built to simulate surface reflectance using atmospheric correction parameters at 

specific wavelength bands (Table S3). The ANN model consisted of five layers: an input layer, 

three hidden layers, and an output layer. A pattern search algorithm was used to optimize the 

network parameters of the ANN model. The network parameters included the optimal number 

of nodes, the transfer function, the learning rate, and the momentum constant. A total of 10,000 

iterations were used. The optimized number of hidden nodes in the first, second, and final layers 

were five nodes, four nodes, and one node, respectively. The ANN model uses a tangent sigmoid 

function to transfer the signals between layers; the tangent sigmoid function was chosen over the 

linear and log sigmoid functions by trial and error. The backpropagation network training 

function was set to ‘trainlm’, which is a Levenberg-Marquardt backpropagation． The 

optimized learning rate and momentum constant were 0.13 and 0.97, respectively. The NSE 

values of the optimized ANN model were 0.80 for the training step and 0.76 for the validation 

step. 
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Table S1. MODTRAN input composition 

MODTRAN input Input parameter Description 

Radiative transfer input RT_MODTRAN MODTRAN statistical band model algorithm 

 RT_DISORT_OBS Discrete ordinate multiple scattering algorithm 

Atmosphere specific input ATM_MIDLAT_SUMMER Mid-latitude summer 

 CO2MX CO2 concentration as 400 ppmv 

Aerosol specific input AER_RURAL Rural boundary layer of aerosol 

Geometric specific input OBSZEN Zenith angle of sensor as 180° 

 SA Solar azimuth angle (see Table 3) 

 SZ Solar zenith angle (see Table 3) 

Surface specific input REFL_LAMBER_MODEL Lambertian spectral reflectance 

Spectral specific input Spectral bandpass(V1-V2) Spectral range as 400nm-800nm 
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Table S2. Solar angle for geometry specific input. 

 08.12.2016 08.24.2016 09.20.2016 10.14.2016 

Image section SZ* SA** SZ SA SZ SA SZ SA 

1 52.6 99.3 25.6 171.9 44.8 135.3 43.6 162.1 

2 54.7 97.0 41.8 117.8 45.8 133.2 44.6 159.9 

3 53.5 97.8 42.6 116.7 46.7 131.4 47.0 158.3 

* and ** indicate solar zenith angle and solar azimuth angle with unit as degree (°). 
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Table S3. Input information for the ANN. 

Parameter Band Algorithm 

Direct transmittance 439nm IOP algorithm 

443nm IOP algorithm 

Diffuse transmittance 534nm IOP algorithm 

599nm IOP algorithm 

Total solar flux 618nm IOP algorithm 

622nm IOP and AOP algorithm 

Atmospheric path radiance 627nm IOP algorithm 

660nm IOP algorithm 

Spherical albedo 674nm IOP algorithm 

708nm IOP and AOP algorithm 

Digital number 755nm AOP algorithm 

779nm IOP algorithm 
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Table S4. Atmospheric correction performances of MODTRAN 6 and ATCOR 4. NSE = Nash-

Sutcliffe Efficiency. 

MODTRAN 6 

 08.12.2016 08.24.2016 09.20.2016 10.14.2016 

Point NSE RMSE* NSE RMSE NSE RMSE NSE RMSE 

1 0.48 0.0025 1.00 0.00013 0.96 0.00052 0.95 0.00058 

2 0.43 0.0020 0.95 0.00072 0.98 0.00035 0.13 0.0015 

3 0.92 0.0015 0.94 0.00072 0.97 0.00041 -0.13 0.0018 

4 0.98 0.00035 0.72 0.0016 0.97 0.00035 0.88 0.00069 

5 1.00 0.00016 0.92 0.00083 0.98 0.00031 0.47 0.0012 

6 0.98 0.00026 0.89 0.0010 0.99 0.00026 0.87 0.00067 

7 0.41 0.0015 0.86 0.0011 0.97 0.00049 0.91 0.00080 

8 0.86 0.00081 0.89 0.0011 0.98 0.00029 0.89 0.00058 

9 0.81 0.00072 0.99 0.00024 0.93 0.00058 0.87 0.00057 

10 0.83 0.00077 0.97 0.00049 0.97 0.00036 0.84 0.00067 

11 0.82 0.00090 0.98 0.00039 0.84 0.00076 0.16 0.0012 

12 0.93 0.00056 1.00 0.00016 0.87 0.00075 0.40 0.0017 

13 0.84 0.00078 0.67 0.0015 0.97 0.00039 -1.67 0.0023 

14 0.92 0.00075 0.86 0.0012 0.96 0.00049 -0.50 0.0019 

15 0.92 0.00063 0.98 0.00043 0.96 0.00043 0.01 0.0017 

16 1.00 0.000090 0.75 0.0012 0.93 0.00059 0.81 0.0012 

17 0.99 0.00019 0.81 0.0012 0.92 0.00069 -1.38 0.0022 

18 0.99 0.00014 0.94 0.00081 - - 0.66 0.0012 

19 - - 0.96 0.00055 - - -1.95 0.0025 

20 - - - - - - -1.09 0.0034 

ATCOR 4 

Point NSE RMSE NSE RMSE NSE RMSE NSE RMSE 

1 -5.27 0.0086 -13.71 0.010 10.70 0.0088 -3.75 0.0057 

2 -4.97 0.0064 -16.91 0.013 -5.10 0.0060 -6.61 0.0045 

3 -6.15 0.015 -11.80 0.011 -4.59 0.0055 -14.59 0.0068 

4 -14.20 0.0086 -19.45 0.013 10.11 0.0065 -5.19 0.0050 

5 -9.85 0.0080 -10.98 0.0099 -3.27 0.0049 -3.17 0.0034 

6 -11.50 0.0064 -8.15 0.0094 -5.68 0.0059 -8.47 0.0058 

7 -8.66 0.0059 -6.97 0.0084 -4.68 0.0070 -6.32 0.0074 

8 -9.13 0.0070 -9.33 0.010 -4.91 0.0052 -8.60 0.0055 

9 -10.12 0.0055 -8.91 0.0078 -4.71 0.0053 -8.28 0.0049 

10 -7.70 0.0055 -9.64 0.0091 -7.15 0.0061 -14.69 0.0067 

11 -13.49 0.0080 -9.88 0.0092 -6.76 0.0052 -9.30 0.0044 

12 -7.01 0.0062 -10.06 0.0090 -7.89 0.0062 -10.66 0.0076 

13 -13.76 0.0076 -13.32 0.0099 -7.99 0.0062 -22.36 0.0067 

14 -9.50 0.0086 -13.82 0.012 -6.35 0.0064 -1.38 0.0024 

15 -11.86 0.0080 -14.66 0.012 -8.16 0.0068 -8.68 0.0054 

16 -10.39 0.0069 -20.28 0.011 -5.73 0.0058 -10.48 0.0091 

17 -8.59 0.0063 -24.82 0.013 -6.70 0.0068 -1.71 0.0024 

18 -8.12 0.0056 -14.72 0.014 - - -8.71 0.0065 

19 - - -17.77 0.012 - - -2.96 0.0029 
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20 - - - - - - -10.84 0.0080 

*Unit of RMSE is sr-1
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Fig. S1 Atmospheric correction results using ATCOR 4. Panels a-d show the average in-situ 

and corrected surface reflectance ρsurf. Panels e–h show the correlation between the observed 

and corrected results at different wavelengths for each sampling point. 
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Fig. S2 ANN simulation of atmospheric correction results for overall wavelengths. 
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Fig. S3 Reflectance error (%) of the atmospheric correction. Panels a–d show the MODTRAN 6 

correction error and panels e–h show the ATCOR 4 correction error.  
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Fig. S4 Optimized absorption coefficient results of the PC algorithm with respect to in-situ and 

atmospheric corrected reflectance. Panels a–c show Li algorithm results. Panels d–f show Simis 

algorithm results. abs indicates absorption coefficient at 622nm. 
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Fig. S5 Optimized absorption coefficient results of the Chl-a algorithm with respect to in-situ and 

atmospheric corrected reflectance. Panels a–c show Li algorithm results. Panels d–f show Simis 

algorithm results. abs indicates absorption coefficient at 660nm.
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Fig. S6 Phycocyanin concentration images on 20 September 2016 in section 1. Panels a–d show the PC distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the PC distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN 

atmospheric correction. 
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Fig. S7 Phycocyanin concentration images on 20 September 2016 in section 2. Panels a–d show the PC distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the PC distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN 

atmospheric correction. 
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Fig. S8 Phycocyanin concentration images on 14 October 2016 in section 1. Panels a–d show the PC distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the PC distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN 

atmospheric correction. 
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Fig. S9 Phycocyanin concentration images on 14 October 2016 in section 2. Panels a–d show the PC distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the PC distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN 

atmospheric correction. 
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Fig. S10 Chlorophyll-a concentration images on 20 September 2016 in section 1. Panels a–d show the Chl-a distribution driven by the MODTRAN 6 

atmospheric correction. Panels e–h show the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven 

by the ANN atmospheric correction. 



Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 24 

 

19 

 

 

 

Fig. S11 Chlorophyll-a concentration images on 20 September 2016 in section 2. Panels a–d show the Chl-a distribution driven by the MODTRAN 6 

atmospheric correction. Panels e–h show the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven 

by the ANN atmospheric correction. 
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Fig. S12 Chlorophyll-a concentration images on 14 October 2016 in section 1. Panels a–d show the Chl-a distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven by the ANN 

atmospheric correction. 
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Fig. S13 Chlorophyll-a concentration images on 14 October 2016 in section 2. Panels a–d show the Chl-a distribution driven by the MODTRAN 6 atmospheric 

correction. Panels e–h show the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven by the ANN 

atmospheric correction.
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Fig. S14 Influence of atmospheric correction with MODTRAN 6 and ATCOR 4 on (a) the PC algorithm and (b) the Chl-a algorithm.* indicates the band ratio 

algorithm, ** indicates the Li algorithm, and *** indicates the Simis algorithm. 
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Fig S15. PC:Chl-a map estimated by Li algorithm from reflectance data corrected by MODTRAN 6 on 12 and 24 August 2016. 
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