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Abstract: The Operational Remote Sensing (ORS) program leverages Landsat and MODIS data
to detect forest disturbances across the conterminous United States (CONUS). The ORS program
was initiated in 2014 as a collaboration between the US Department of Agriculture Forest Service
Geospatial Technology and Applications Center (GTAC) and the Forest Health Assessment
and Applied Sciences Team (FHAAST). The goal of the ORS program is to supplement the
Insect and Disease Survey (IDS) and MODIS Real-Time Forest Disturbance (RTFD) programs
with imagery-derived forest disturbance data that can be used to augment traditional IDS data.
We developed three algorithms and produced ORS forest change products using both Landsat and
MODIS data. These were assessed over Southern New England and the Rio Grande National Forest.
Reference data were acquired using TimeSync to conduct an independent accuracy assessment of
IDS, RTFD, and ORS products. Overall accuracy for all products ranged from 71.63% to 92.55%
in the Southern New England study area and 63.48% to 79.13% in the Rio Grande National Forest
study area. While the accuracies attained from the assessed products are somewhat low, these
results are similar to comparable studies. Although many ORS products met or exceeded the overall
accuracy of IDS and RTFD products, the differences were largely statistically insignificant at the 95%
confidence interval. This demonstrates the current implementation of ORS is sufficient to provide
data to augment IDS data.

Keywords: Landsat; MODIS; change detection; forest disturbance; forest health

1. Introduction

The US Forest Service’s Forest Health Protection (FHP) program is tasked with protecting and
improving the health of America’s rural, wildland, and urban forests. The Operational Remote Sensing
(ORS) program was developed as a part of the Forest Health Assessment and Applied Sciences Team’s
(FHAAST) Insect and Disease Survey (IDS) analysis and decision support tools. These tools assist
FHP staff, state forestry agencies, and other forest managers to locate, monitor, and map forest health
issues. FHAAST supports a number of technology development programs, such as ORS, to assist their
partners, increase accuracy, and lower the cost of forest health protection.

1.1. Aerial Detection Survey

The ORS program was developed to address the data requirements of the IDS program. IDS is a
collection of geospatial data depicting the extent of insect, disease, and other forest disturbance types.
In the past, IDS data collection largely came from first-hand aerial observations and sketch mapping
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via the Aerial Detection Survey (ADS). Supplemental field surveys also contributed to the IDS database.
Aerial sketch mapping is now conducted using either Digital Aerial Sketch Mapping (DASM) or Digital
Mobile Sketch Mapping (DMSM) systems. These systems consist of tablet computers, GPS units, and
specialized software that assist observers in an aircraft to map forest health issues [1]. While system
improvements such as the more modern DMSM have increased the consistency and quality of the
IDS data, they have not significantly reduced the number of hours spent flying. Time spent flying is
an issue because conducting aerial surveys is both risky and costly. In 2010, an ADS pilot and two
aerial surveyors were killed in an aviation accident [2]. While the need for reporting and analysis of
ADS data remains, efforts are being made to integrate ground collection and satellite remote sensing to
improve safety and quality of IDS data.

1.2. Remote Sensing Augmentation to IDS

The Real-Time Forest Disturbance (RTFD) program was designed to detect and track rapid onset
forest change events (e.g., rapid defoliation and storm driven changes) as well as slow onset forest
change events (e.g., insect induced mortality) across the CONUS on a weekly basis during the growing
season [3]. The RTFD program serves as a near-real time alarm system to highlight forest disturbances
in support of ADS mission planning by state and local forestry personnel. Because of the spatial
coarseness of MODIS data and fixed parameters that are used to produce consistent RTFD products,
the RTFD program does not necessarily yield spatially refined results that are sufficient to produce
spatially explicit maps for the IDS database. In contrast, the goal of the ORS program is to augment
the annually produced IDS data with a novel source of forest disturbance map products. To that end,
satellite image data of higher spatial resolution relative to the MODIS-based RTFD program can be
used, and change detection parameters can be fine-tuned for specific forest disturbance events.

ORS products do not contain disturbance agent information found in IDS data. The spatial
resolution of the imagery used to generate data for ORS cannot compare to viewing forest disturbance
phenomena from an airplane. Furthermore, no automated algorithm is commensurate to the experience
accumulated over a career by an aerial detection surveyor observing the effects of pests and pathogens
on forests. On the other hand, analysis performed using remote sensing imagery provides a consistent
view of the landscape that is unobtainable by manually sketched maps by multiple interpreters.
There are advantages and disadvantages associated with both sources of forest health spatial data.
Therefore, the goal of the ORS program is to create forest change maps that provide a balance of spatial
completeness, timeliness, and safety.

ORS data are produced as needed in response to a field request or an RTFD detection. ORS data
may also be produced at the end of a growing season to supplement the annual IDS data stream.
Thematic information contained in ORS maps includes non-tree, tree no change and tree change.

1.3. Change Detection Methods

The ORS program targets intra-seasonal change associated with insect defoliation and disease,
as well as long-term decline in forest vigor associated with insects and pathogens. Prior to this
work, many studies developed methods to meet different land cover change mapping/monitoring
needs [4–9]. Early remote sensing change detection methods generally utilized two-date image pairs
in various techniques to detect change [5]. These methods proved cost effective and computationally
practical at the time.

After the Landsat archive became freely available to the general public in 2008, change detection
methods that required annual or biennial time series image stacks of Landsat data became cost effective.
Methods such as the Vegetation Change Tracker (VCT) [6] and Landsat-based detection of Trends in
Disturbance and Recovery (LandTrendr) [7] were designed to detect and track changes that persist for
more than a single growing season. Because VCT is designed to detect abrupt stand-clearing forest
change events, it struggles to detect long-term and partial tree cover change events [9]. Neither of
these methods is sensitive to intra-annual change.
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As computational power increased, methods that utilize all available data throughout the year
were developed. Breaks for Additive Seasonal and Trend (BFAST) [8] and Continuous Change
Detection and Classification (CCDC) [10] use harmonic regression to account for seasonal variation,
leaving the remaining variance to perform change analysis. The ability of these algorithms to detect
change is largely a function of the frequent availability of cloud/cloud shadow-free data. The frequency
must be sufficient to capture the typical seasonality of an area. The one-day revisit frequency of MODIS
is likely to provide the necessary temporal density. The 16-day revisit frequency of Landsat is likely
insufficient in areas frequently obscured by clouds.

While VCT, LandTrendr, BFAST, and CCDC excel at finding land cover changes across large
areas that persist for more than a single observation, finding subtle changes that often only persist
for a portion of a single growing season generally requires a more targeted approach. These methods
are often referred to as “near-real time” [3,11]. Near-real time change detection methods generally
compare analysis period observations to a stable baseline period. Because each observation in the
analysis period is being compared to many observations in the baseline period, the algorithm can
be more sensitive to the onset of subtle change. Some methods that utilize a baseline period and
analysis period include the Z-score approach used in the USFS RTFD program [3], BFAST-Monitor [11],
and Exponentially Weighted Moving Average Change Detection (EWMACD) [12]. The harmonic
regression approach used in the latter two of these methods underpin the harmonic Z-score approach
applied in this research.

While utilizing EWMACD and/or BFAST-Monitor to meet the needs of the ORS program would
be appropriate, ORS required algorithms that were operative within Google Earth Engine (GEE) by
spring 2015. At that time, neither of these algorithms was available within GEE, so we built on the
ideas from the RTFD Program, EWMACD, and BFAST-Monitor that were practical to implement
with GEE.

To compare ORS outputs and other existing FHP spatial products, we created ORS outputs in
two geographically disparate study areas from three targeted change detection algorithms that were
developed for the ORS project. These include the basic Z-score, harmonic Z-score, and linear trend
analysis change detection methods. We then used reference data acquired using TimeSync [13], a time
series visualization and data collection tool, to conduct an accuracy assessment to better understand
how accurate ORS outputs are compared to RTFD and IDS data products [14,15].

2. Materials and Methods

2.1. Study Areas

We chose two study areas to evaluate the ability of the ORS program’s methods to map and
monitor intra-seasonal and multi-year forest decline across different ecological settings (Table 1 and
Figure 1).

Table 1. Descriptions of the two study areas used in this work.

Name Primary Forest Change Agent Delineation Method Area

Rio Grande
National Forest

Mountain pine beetle (Dendroctonus ponderosae) and
spruce bark beetle (Dendroctonus rufipennis)

Rio Grande National Forest
boundary buffered by 10 km

1,712,261 ha
(4,231,089 acres)

Southern New
England Gypsy moth (Lymantria dispar dispar) Union of CT, RI, and MA 3,680,837 ha

(9,095,547 acres)

The Rio Grande National Forest study area captures a slow onset forest disturbance caused
by mountain pine beetle (Dendroctonus ponderosae) and spruce bark beetle (Dendroctonus rufipennis).
The Forest has been experiencing long-term gradual decline and mortality, with a total of 617,000 acres
being infested by spruce beetles since 1996 [16]. Inclusion of this study area presents an opportunity to
test the ability of the change algorithms to discern new areas of forest disturbance from areas affected
in previous years.
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The Rhode Island, Massachusetts, and Connecticut (Southern New England) study area
experienced extensive Gypsy Moth (Lymantria dispar dispar) defoliation events in 2016 and 2017.
This region typifies many challenges associated with detecting ephemeral forest disturbances using
remote sensing data. These challenges include the temporal variations in phenological conditions and
persistent nature of cloud cover in the region.

Within each study area, we analyzed pixels that had a NLCD 2011 Tree Canopy Cover [17] value
greater than 30 percent.
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Figure 1. Map of study areas included in this project.

2.2. IDS-Data

We acquired IDS polygon data [1] for each study area. Surveyors collected these data using
established aerial detection survey sketch mapping techniques by the USDA Forest Service. IDS data
are used to estimate the spatial extents of forested areas disturbed by insects and diseases, as well as
attribute the causal agents of these disturbances [1,18]. They are conducted using light aircraft, as well
as ground surveys.

IDS data originated from separate aerial and ground surveys performed in Massachusetts,
Connecticut, and Rhode Island during 7 June–25 August 2016 and 26 June–26 August 2017 for the
Southern New England study area. Rio Grande National Forest study area IDS data were created from
a wall-to-wall aerial survey of forested areas in Colorado conducted during 30 July–18 September 2013
and 24 June–3 September 2014.

2.3. RTFD-Data

RTFD persistence change data were incorporated into this study to compare with spatial data
created using ORS methods. RTFD data are created for the entire CONUS every 8 days from 18 February
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to 24 November using 16-day MODIS composites. The RTFD approach employs a combination of two
separate remote sensing change detection approaches to detect and track quick ephemeral changes in
forest health as well as gradually occurring disturbances [3]. The first uses a statistical (z-score) change
detection method for detecting quick intra-seasonal changes in forest conditions. The second approach
uses linear regression to identify areas where slower, multiyear changes are occurring in forested areas.
Disturbances were characterized using the RTFD z-score change detection method in Southern New
England while the linear trend method was employed over the Rio Grande National Forest. In all study
areas, the RTFD persistence output was used to spatially depict forest disturbances. The persistence
RTFD output combines the results of the last three 16-day compositing period RTFD change outputs.
This added processing step minimizes noise in individual compositing period outputs arising from
persistent cloud cover and other MODIS ephemera. The persistence output collapses continuous
RTFD z-score and linear trend outputs into three classes of disturbance magnitude by combining the
disturbance frequency over the last three compositing periods with disturbance intensity based on
departure from normal forest conditions [3]. The three disturbance magnitude classes were collapsed
into binary disturbance maps for use in this study.

RTFD data used in this study were produced during 10 June–27 July 2016 and 26 June–12 August
2017 for the Southern New England study area and during 28 July–28 August for both analysis years
for the Rio Grande National Forest study area.

2.4. ORS-Data

ORS methods were built using satellite image data that had been collected for at least 5 years
and would likely be regularly available into the future. This includes imagery from Landsat Thematic
Mapper (TM, 1984–2011), Enhanced Thematic Mapper (ETM+, 1999–Present), and Operational Land
Imager (OLI, 2013-Present). Each Landsat sensor has a revisit frequency of 16 days. Since Landsat
5 and 7 overlapped during 1999–2011 and Landsat 7 and 8 overlapped during 2013–present, these
periods have a revisit frequency of about 8 days. All Landsat-based analyses were conducted at 30 m
spatial resolution.

ORS methods were also applied to MODerate-resolution Imaging Spectroradiometer (MODIS)
imagery collected from the Terra (1999–present) and Aqua (2002–present) satellites, which is available
multiple times a day for most locations on Earth. MODIS imagery has a spectral resolution similar to
Landsat, but coarser spatial resolution than Landsat. All MODIS-based analyses were conducted at
250 m spatial resolution.

This project utilized Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
surface reflectance values from Landsat 5 and 7 [19], Landsat 8 Surface Reflectance Code (LaSRC)
values for Landsat 8 [20], and MODIS Terra and Aqua 8-day surface reflectance composites. All data
were accessed through Google Earth Engine, which acquires MODIS data from the NASA Land
Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and
Science (EROS) Center, Sioux Falls, South Dakota, and Landsat data from EROS Center, Sioux Falls,
South Dakota. LP DAAC MODIS collections used are found in Table 2.

Table 2. The MODIS image data collections used in this study, as well as the spatial resolutions of these
collections. Additionally, the bands used in this study are listed. The bandwidth of the SWIR1 band is
1230–1250 nm, and the bandwidth of the SWIR2 band is 1628–1652 nm.

Product Code Platform Spatial Resolution Bands Used

MYD09Q1 Aqua 250 m red, NIR
MOD09Q1 Terra 250 m red, NIR
MYD09A1 Aqua 500 m blue, green, SWIR1, SWIR2
MOD09A1 Terra 500 m blue, green, SWIR1, SWIR2
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2.5. Data Preparation

All data preparation and analysis were performed with Google Earth Engine (GEE). GEE provides
access to most freely available earth observation data and provides an application programming
interface (API) to analyze and visualize these data [21].

All Landsat images first underwent pixel-wise cloud and cloud shadow masking using the Google
cloudScore algorithm for cloud masking and Temporal Dark Outlier Mask (TDOM) for cloud shadows.
Since neither of these methods is currently documented in the peer-reviewed literature, they are briefly
described below, and are fully described and evaluated in a forthcoming paper [22]. MODIS 8-day
composites are intended to be cloud-free, so no pre-processing was conducted.

The Google cloudScore algorithm exploits the spectral and thermal properties of clouds to identify
and remove these artifacts from image data. To simplify the process, the cloudScore function uses a
min/max normalization function to rescale expected reflectance or temperature values between 0 and
1 (Equation (1)). The algorithm applies the normalization function to five cloud spectral properties.
The final cloudScore is the minimum of these normalized values (Equation (2)). The algorithm finds
pixels that are bright and cold, but do not share the spectral properties of snow. Specifically, it defines
the cloud score as:

normalize(b, xmin, xmax) =
b− xmin

xmax − xmin
(1)

cloudScorelandsat
= min{1.0, normalize(blue, 0.1, 0.3), normalize(blue + green
+ red, 0.2, 0.8), normalize(nir + swir1 + swir2, 0.3, 0.8),

normalize(temp, 300, 290), normalize
(

green − swir1
green + swir2 , 0.8, 0.6

)
}

(2)

Any pixel with a cloudScore value greater than 0.2 was identified as being a cloud. This value
was qualitatively evaluated through extensive use throughout the CONUS to provide the best balance
of detecting clouds, while not committing cold, bright surfaces. Any values inside the resulting mask
were removed from subsequent steps of the analysis.

After clouds were masked, cloud shadows were identified and masked. Since the Landsat archive
is extensive across time, cloud shadows generally appear as anomalously dark pixels. GEE provides
access to the entire archive of Landsat, enabling methods that require querying extensive time series of
data. The Temporal Dark Outlier Mask (TDOM) method was used to identify pixels that are dark in
relative and absolute terms. Generally, pixels will not always be obscured by a cloud shadow, making
this method effective. Specifically:

z(Mb) =
Mb −Mb

σb
(3)

darkness = Mswir1 + Mnir (4)

cloudShadow = All{z(Mswir1) < tZS, z(Mnir) < tZS, darkness < tIR } (5)

where Mb and σb are the mean and standard deviation, respectively, of a given band b across the time
series, M is the multispectral Landsat image, tZS is the threshold for the shadow z-score (−1 for this
study), and tIR is the threshold for the darkness (0.35 for this study).

The TDOM method first computes the mean (Mb) and standard deviation (σb) of the near-infrared
(NIR) and shortwave-infrared (SWIR1) bands across a collection of images. For each image, the
algorithm then computes the z-score of the NIR and SWIR1 bands (z(Mb)) (Equation (5)) (Figure 2).
Each image also has a darkness metric computed as the sum of the NIR and SWIR1 bands (darkness).
Cloud shadows are then identified if a pixel has a z-score of less than −1 for both the NIR and SWIR1
bands and a darkness value less than 0.35 (Equation (8)). These thresholds were chosen after extensive
qualitative evaluation of TDOM outputs from across the CONUS.
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Figure 2. Graph of SWIR1 band across time. Blue dots represent observed SWIR1 values. The green
line is the mean. The red line is −1 standard deviation. TDOM would identify any value below the
red line as a dark outlier in the SWIR1 band. This same analysis is then performed in the NIR band to
identify dark outliers.

This study used the normalized difference vegetation index (NDVI) (Equation (6)) [23] and the
normalized burn ratio (NBR) (Equation (7)) [24] as indices of forest greenness to detect forest changes.

NDVI =
NIR− red
NIR + red

, (6)

NBR =
NIR− SWIR2
NIR + SWIR2

, (7)

where NIR is the near infrared band of a multispectral image, red is the red band of a multispectral
image, and SWIR2 is the second shortwave infrared band of a multispectral image. Many additional
common indices are available for use when running ORS algorithms, but were omitted from this study.
These two indices are used since the bands necessary to create them are available for both MODIS
and Landsat, they are very similar to the indices used in the RTFD program, and they have proven
effective throughout the remote sensing change detection literature [6,7,11,23,24].

2.6. Change Detection Algorithms

Three algorithms were developed and tested in GEE using MODIS and Landsat data. Employing
GEE for this study enabled us to efficiently test various change detection approaches using Landsat
and MODIS image data archives, without downloading and storing the data locally.

ORS mapping needs fell into two categories: ephemeral change related to defoliation events and
long-term change related to tree mortality from insects and disease. The three algorithms used in
this study were selected to address the needs posed by these forest change types. We refer to these
algorithms as: basic z-score (Figure 3), harmonic z-score (Figure 4), and linear trend (Figure 5).
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The basic z-score method builds on ideas from RTFD, serving as a natural starting point for ORS
mapping methods. The harmonic z-score method combines ideas from harmonic regression-based
methods, such as EWMACD [12] and BFAST Monitor [11], with those from the basic z-score method
to leverage data from throughout the growing season. The linear trend method is built on ideas from
Image Trends from Regression Analysis (ITRA) [25] and the RTFD trend method [3]. It uses linear
regression to fit a line across a series of years.

Both the basic z-score and harmonic z-score method work by identifying pixels that differ from a
baseline period. The primary difference is what data are used to compute the z-score. Both methods
start by acquiring imagery for a baseline period (generally 3–5 years) and analysis years. The basic
z-score method uses the mean and standard deviation of the baseline period within a targeted date
range for a specified band or index, while the harmonic z-score method follows the EWMACD and
BFAST Monitor methods by first fitting a harmonic regression model to all available cloud/cloud
shadow-free Landsat or MODIS data.

The harmonic regression model is intended to mitigate the impact of seasonality on the spectral
response, leaving remaining variation to be related to change unrelated to phenology. The harmonic is
defined as:

yb = a0b + a1b t + a2b cos(2πt) + a3b sin(2πt) (8)

where b is the band or index of the image, anb are the coefficients being fit by the model, and t is the
sum of the date expressed as a year and the proportion of a year.
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Figure 3. Illustration of the basic z-score approach. First observations are limited to a specified
date period (1 July–31 August in this example). The mean and standard deviation of the baseline
observations (2011–2015 in this example) are then computed. These statistics are then applied to the
analysis year (2016 in this example) to find departures from the baseline.
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Figure 4. Illustration of the harmonic z-score change detection approach. To capture the seasonality
of a pixel, this approach uses data from the entire year. A harmonic regression model is first fit to
the baseline data (2011–2015 in this example). That same harmonic model is then applied to both the
baseline and analysis (2016 in this example) data. The mean and standard deviation of the residual
error from the baseline observations within the specified date range are then computed. These statistics
are then applied to the residual error of the analysis data to find departures from expected seasonality.
Finally, residual z-score values for the analysis data within the specified date range is summarized and
thresholded to classify change.

The harmonic regression model is fitted on a pixel-wise basis to the baseline data and then applied
to both the baseline and the analysis data. Next, the residual error is computed for both the baseline
and analysis data. Up to this point, the harmonic z-score method, EWMACD, and BFAST Monitor
methods are largely the same. The primary difference with these three methods is how change is
classified. While EWMACD and BFAST Monitor use exponentially weighted moving average (EWMA)
charting and moving sum (MOSUM) of the residuals, respectively [11,12], the harmonic z-score method
uses the mean and standard deviation of the targeted date period baseline residuals to compute the
z-score of the targeted analysis period residuals. The date range and specific years used to define the
baseline can be tailored to optimize the discernment of specific disturbances within the analysis years.

Since an analysis period may have more than a single observation, a method for summarizing
these values is specified for both the basic and harmonic z-score methods to constrain the final z-score
value. For this study, the mean of values was used. Change is then identified by thresholding the
summary z-score value. For this project, summarized z-score values less than −0.8 were identified
as change. This threshold was chosen based on analyst expertise obtained from iterative qualitative
comparison of z-score results with post-disturbance image data.

The linear trend method makes use of the median of the cloud and cloud shadow-free observations
available within a specified target date period. This is done for a specified number of years prior to the
analysis year, referred to as an epoch. For an epoch, an ordinary least square linear regression model is
fit on a pixel-wise basis as follows:

yb = a0b + a1b tb (9)
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where b is the band or index of image, a0 is the intercept, a1 is the slope, t is the date, and y is the
predicted value.

Change is identified where the slope (a1) is less than a specified threshold. The threshold used for
this study was −0.03. This was chosen based on analyst expertise similar to the identification of the
threshold used for the z-score methods. This method differs from ITRA [25] since it does not use a
t-test to classify change.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 21 

 

 
Figure 5. Illustration of the trend change detection algorithm. First observations are limited to the 
median of a specified date period (1 July–31 August in this example). Then, for a given epoch (2012–
2016 in this example), an ordinary least squares linear regression model is fit to the annual median 
pixel value. The slope of this line is then thresholded to find change areas. 

ORS methods differ from existing RTFD methods in several key areas. Firstly, RTFD products 
are created in a near-real time environment that GEE cannot currently provide. The composites that 
are used are therefore slightly different than those used in ORS. Secondly, all baseline statistics are 
computed on a pixel-wise basis for ORS methods, while they are computed on a zone-wise basis for 
RTFD methods—where the zones are defined by the combination of USGS mapping zone, forest type, 
and MODIS look angle strata [3]. The most pronounced difference, however, is that all model input 
parameters for RTFD are fixed, while ORS parameters can be tailored to a specific forest disturbance 
event by an expert user. 

We tested all three methods in both study areas. Analysts chose targeted date ranges based on 
expert knowledge of when each event was most visible. For the Southern New England study area, 
ORS analyses were conducted between 25 May and 9 July for both 2016 and 2017. Baseline years 
spanned 2011–2015 for harmonic z-score and regular z-score methods while a three-year epoch length 
was used for the linear trend method. For the Rio Grande National Forest study area, ORS analyses 
were conducted from 9 July to 15 October for 2013 and 2014. Baseline years spanned 2007–2011 for 
harmonic z-score and regular z-score methods while a five-year epoch length was used for the linear 
trend method. 

2.7. Accuracy Assessment Methods 

We performed an independent accuracy assessment to understand how well ORS products 
performed relative to existing FHP disturbance mapping programs. We followed best practices for 
sample design, response design, and analysis as outlined by Olofsson et al. (2014) [26] and Pontius 
and Millones (2011) [27]. We drew a simple random sample across all 30 m × 30 m pixels that were 
within each study area’s tree mask. Since all change detection for this study was performed 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 Jan 2012 1 Jan 2013 1 Jan 2014 1 Jan 2015 1 Jan 2016 1 Jan 2017

N
D

VI

OLS Linear Fit

1 July–31 August Date 
Range

All cloud/cloud
shadow-free NDVI

Data used in analysis 
(1 July–31 August)

1 July–31 August 
Annual Median

Figure 5. Illustration of the trend change detection algorithm. First observations are limited to the
median of a specified date period (1 July–31 August in this example). Then, for a given epoch (2012–2016
in this example), an ordinary least squares linear regression model is fit to the annual median pixel
value. The slope of this line is then thresholded to find change areas.

ORS methods differ from existing RTFD methods in several key areas. Firstly, RTFD products
are created in a near-real time environment that GEE cannot currently provide. The composites that
are used are therefore slightly different than those used in ORS. Secondly, all baseline statistics are
computed on a pixel-wise basis for ORS methods, while they are computed on a zone-wise basis for
RTFD methods—where the zones are defined by the combination of USGS mapping zone, forest type,
and MODIS look angle strata [3]. The most pronounced difference, however, is that all model input
parameters for RTFD are fixed, while ORS parameters can be tailored to a specific forest disturbance
event by an expert user.

We tested all three methods in both study areas. Analysts chose targeted date ranges based on
expert knowledge of when each event was most visible. For the Southern New England study area,
ORS analyses were conducted between 25 May and 9 July for both 2016 and 2017. Baseline years
spanned 2011–2015 for harmonic z-score and regular z-score methods while a three-year epoch length
was used for the linear trend method. For the Rio Grande National Forest study area, ORS analyses
were conducted from 9 July to 15 October for 2013 and 2014. Baseline years spanned 2007–2011 for
harmonic z-score and regular z-score methods while a five-year epoch length was used for the linear
trend method.
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2.7. Accuracy Assessment Methods

We performed an independent accuracy assessment to understand how well ORS products
performed relative to existing FHP disturbance mapping programs. We followed best practices for
sample design, response design, and analysis as outlined by Olofsson et al. (2014) [26] and Pontius and
Millones (2011) [27]. We drew a simple random sample across all 30 m × 30 m pixels that were within
each study area’s tree mask. Since all change detection for this study was performed retrospectively,
timely field reference data could not be collected. Instead, we collected independent reference data
using TimeSync [13]. TimeSync is a tool that enables a consistent manual inspection of the Landsat
time series along with high resolution imagery found within Google Earth. Single Landsat pixel-size
(30 m × 30 m) plots were analyzed throughout the baseline and analysis periods. The response design
was created for the US Forest Service Landscape Change Monitoring System (LCMS) [28] and USGS
Landscape Change Monitoring Assessment and Projection (LCMAP) [29] projects to provide consistent
depictions of land cover, land use, and change process. Rigorous analyst training and calibration was
used to overcome the subjective nature of analyzing data in this manner. We analyzed 230 plots across
the Rio Grande National Forest and 416 plots across the Southern New England study area. We then
cross-walked all responses for each year to change and no change. For consistency, all ORS, IDS, and
RTFD outputs had the same 30 m spatial resolution tree mask used for drawing the reference sample
applied to them. All MODIS-based ORS and RTFD outputs were resampled from 250 m to 30 m spatial
resolution using nearest neighbor resampling. The reference data was then compared to each of the
ORS outputs along with the IDS and RTFD products for each analysis year. Accuracy metrics follow
suggestions by Pontius and Millones (2011) [27]. They include those related to allocation disagreement
(overall accuracy, and class-wise omission and commission error rates) and quantity disagreement
(reference and predicted prevalence). The 5th and 95th percentile confidence interval was calculated
using the overall accuracy of 500 bootstrap random samples for each assessed output. While these
methods provide a depiction of the accuracy of the assessed change detection methods within the tree
mask, it completely omits any areas outside of this mask from all analyses.

3. Results

The reference dataset produced using TimeSync for each analysis year was compared to each of
the 12 ORS outputs, as well as the RTFD and IDS outputs. The 12 ORS outputs reflect the combination
of basic z-score, harmonic z-score, and trend analysis methods, calculated using either NDVI or NBR
greenness indices, and derived from either Landsat or MODIS data.

3.1. Southern New England

The overall accuracy of all outputs ranges from 84.86% to 92.55% in 2016 and 71.63% to 87.02%
in 2017 (Tables 3 and 4). The overall accuracies are largely insignificantly different from one another
with respect to the 5th and 95th percentile confidence intervals. The proportion of plots the reference
data indicates has changed is sometimes similar to the map outputs while others are different in
relative and absolute terms. This result can be found in the tree change prevalence columns in Tables 3
and 4. The highest overall accuracy and lowest commission, omission, and prevalence error rates
are highlighted in each table. The ORS trend algorithm has the highest overall accuracy and lowest
change prevalence error for both 2016 and 2017. Omission and commission error rates are quite varied
and inconsistent across different combinations of algorithm, platform, and index. Many ORS outputs
perform as well or better than IDS and RTFD outputs for both years.

The patterns of spatial agreement are evident in Figure 6, where a heat map of the number of ORS
outputs that found a pixel as change are displayed with the corresponding IDS and RTFD (z-score)
maps. Overall spatial patterns are similar between each product. There is a notable similarity between
the RTFD maps and MODIS-based ORS maps. This reflects the similarities between the source data
and methods used to derive these maps.
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Table 3. Southern New England overall accuracy with 5% and 95% confidence intervals, omission/commission error rates, and prevalence error for each ORS method
tested as well as existing FHP program outputs (IDS and RTFD) for 2016. The highest overall accuracy and lowest commission, omission, and prevalence error rates
are highlighted in bold.

ORS
Method Platform Index Overall

Accuracy 5% CI 95% CI
Tree No Change

Commission
Error Rate

Tree No Change
Omission Error

Rate

Tree Change
Commission

Error Rate

Tree Change
Omission Error

Rate

Tree Change
Reference
Prevalence

Tree Change
Predicted

Prevalence

Harmonic Landsat NBR 89.18% 86.78% 91.36% 2.29% 9.76% 56.06% 21.62% 8.89% 15.87%
Harmonic Landsat NDVI 89.66% 86.78% 92.07% 4.59% 6.86% 56.52% 45.95% 8.89% 11.06%
Harmonic MODIS NBR 88.70% 86.06% 91.35% 4.14% 8.44% 59.26% 40.54% 8.89% 12.98%
Harmonic MODIS NDVI 91.59% 89.42% 93.75% 7.43% 1.32% 41.67% 81.08% 8.89% 2.88%

Basic Landsat NBR 86.06% 83.17% 88.70% 0.62% 14.78% 61.54% 5.41% 8.89% 21.88%
Basic Landsat NDVI 91.83% 89.42% 94.23% 4.00% 5.01% 46.34% 40.54% 8.89% 9.86%
Basic MODIS NBR 92.07% 90.14% 94.23% 3.99% 4.75% 45.00% 40.54% 8.89% 9.62%
Basic MODIS NDVI 91.35% 89.17% 93.51% 7.23% 1.85% 46.67% 78.38% 8.89% 3.61%
Trend Landsat NBR 91.35% 89.18% 93.51% 1.96% 7.65% 49.15% 18.92% 8.89% 14.18%
Trend Landsat NDVI 92.55% 90.63% 94.47% 3.97% 4.22% 42.11% 40.54% 8.89% 9.13%
Trend MODIS NBR 91.35% 88.94% 93.51% 2.75% 6.86% 49.06% 27.03% 8.89% 12.74%
Trend MODIS NDVI 91.83% 89.66% 93.75% 5.66% 3.17% 44.44% 59.46% 8.89% 6.49%
RTFD MODIS NDMI 84.86% 82.21% 87.75% 5.11% 11.87% 70.31% 48.65% 8.89% 15.38%
IDS – – 89.18% 87.01% 91.83% 6.05% 5.80% 61.11% 62.16% 8.89% 8.65%

Table 4. Southern New England overall accuracy with 5% and 95% confidence intervals, omission/commission error rates, and prevalence error for each ORS method
tested as well as existing FHP program outputs (IDS and RTFD) for 2017. The highest overall accuracy and lowest commission, omission, and prevalence error rates
are highlighted in bold.

ORS
Method Platform Index Overall

Accuracy 5% CI 95% CI
Tree No Change

Commission
Error Rate

Tree No Change
Omission Error

Rate

Tree Change
Commission

Error Rate

Tree Change
Omission Error

Rate

Tree Change
Reference
Prevalence

Tree Change
Predicted

Prevalence

Harmonic Landsat NBR 78.61% 75.24% 81.73% 5.96% 21.18% 54.96% 22.37% 18.27% 31.49%
Harmonic Landsat NDVI 73.80% 69.71% 77.40% 9.19% 24.41% 62.41% 34.21% 18.27% 31.97%
Harmonic MODIS NBR 71.63% 68.03% 75.00% 8.58% 27.94% 64.19% 30.26% 18.27% 35.58%
Harmonic MODIS NDVI 80.77% 77.64% 83.89% 16.67% 4.41% 57.69% 85.53% 18.27% 6.25%

Basic Landsat NBR 80.29% 77.40% 83.17% 3.93% 20.88% 52.21% 14.47% 18.27% 32.69%
Basic Landsat NDVI 77.88% 74.76% 81.01% 10.26% 17.65% 57.69% 42.11% 18.27% 25.00%
Basic MODIS NBR 80.05% 76.91% 83.65% 11.18% 13.53% 54.12% 48.68% 18.27% 20.43%
Basic MODIS NDVI 81.49% 78.37% 84.38% 14.56% 6.76% 51.11% 71.05% 18.27% 10.82%
Trend Landsat NBR 86.30% 83.65% 88.94% 4.21% 12.94% 41.12% 17.11% 18.27% 25.72%
Trend Landsat NDVI 81.49% 78.37% 84.39% 7.44% 15.88% 50.47% 30.26% 18.27% 25.72%
Trend MODIS NBR 87.02% 84.13% 89.66% 7.94% 7.94% 35.53% 35.53% 18.27% 18.27%
Trend MODIS NDVI 85.82% 82.93% 88.46% 12.73% 3.24% 28.21% 63.16% 18.27% 9.38%
RTFD MODIS NDMI 84.38% 81.25% 87.26% 11.27% 7.35% 40.98% 52.63% 18.27% 14.66%
IDS – – 79.81% 76.68% 82.93% 8.97% 16.47% 53.85% 36.84% 18.27% 25.00%
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Figure 6. Map panels showing the extent of gypsy moth defoliation within the Southern New England
study area in 2016 and 2017 as depicted by the RTFD analytical output, the IDS database, and ORS
MODIS and Landsat analyses. ORS outputs are presented as heat maps of the number of outputs that
found the area as change (1–6).
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3.2. Rio Grande National Forest

The southwestern United States, including the Rio Grande National Forest study area, has been
impacted for the last 20 years by prolonged drought conditions, contributing to slow-onset insect
infestations including mountain pine beetle and spruce bark beetle [24,28]. This study focused on the
change that occurred in 2013 and 2014.

The overall accuracy of products obtained for the Rio Grande study area are lower than the
Southern New England study area—ranging from 63.48% to 79.13% in 2013 and 66.09% to 76.09% in
2014 (Tables 5 and 6). Similar to the results from Southern New England, the overall accuracies are
largely insignificantly different. The tree change prevalence error is a bit higher for most outputs in
the Rio Grande study area: it is underestimated by as much as 26.09% (88.23% quantity error) and
overestimated by as much as 22.61%. In general, the linear trend ORS method performed the best for
both the 2013 and 2014 outputs. This is not surprising due to the gradual nature of tree decline and
mortality caused by the bark beetle activity that has been occurring in this study area.

The heat map in Figure 7 shows different patterns of spatial agreement and disagreement than
we observed in the Southern New England study area. The first notable difference is that both RTFD
and ORS methods continue to capture areas that changed in both 2013 and 2014, while IDS maps only
show new areas of change in 2014. This difference is inherent in the underlying methods, as IDS will
often not remap previously existing long-term change. The second notable difference is that the area of
new tree change in 2014 in the northeast portion of the study area was largely missed by RTFD, but
was captured by both IDS and many ORS methods.
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Table 5. Rio Grande study area overall accuracy with 5% and 95% confidence intervals, omission/commission error rates, and prevalence error for each ORS method
tested as well as existing FHP program outputs (IDS and RTFD) for 2013. The highest overall accuracy and lowest commission, omission, and prevalence error rates
are highlighted in bold.

ORS
Method Platform Index Overall

Accuracy 5% CI 95% CI
Tree No Change

Commission
Error Rate

Tree No Change
Omission Error

Rate

Tree Change
Commission

Error Rate

Tree Change
Omission Error

Rate

Tree Change
Reference
Prevalence

Tree Change
Predicted

Prevalence

Harmonic Landsat NBR 63.48% 58.70% 69.13% 17.29% 35.67% 62.89% 38.98% 25.65% 42.17%
Harmonic Landsat NDVI 69.57% 64.78% 73.91% 25.37% 10.53% 72.00% 88.14% 25.65% 10.87%
Harmonic MODIS NBR 75.65% 71.30% 80.43% 14.29% 19.30% 47.83% 38.98% 25.65% 30.00%
Harmonic MODIS NDVI 75.22% 70.87% 79.57% 22.86% 5.26% 45.00% 81.36% 25.65% 8.70%

Basic Landsat NBR 71.74% 66.96% 76.09% 10.45% 29.82% 53.13% 23.73% 25.65% 41.74%
Basic Landsat NDVI 74.35% 69.57% 79.13% 24.31% 3.51% 50.00% 89.83% 25.65% 5.22%
Basic MODIS NBR 76.09% 71.30% 81.30% 16.28% 15.79% 46.55% 47.46% 25.65% 25.22%
Basic MODIS NDVI 77.83% 73.48% 82.61% 21.43% 3.51% 30.00% 76.27% 25.65% 8.70%
Trend Landsat NBR 75.65% 71.30% 80.00% 15.98% 16.96% 47.54% 45.76% 25.65% 26.52%
Trend Landsat NDVI 79.13% 74.78% 83.48% 20.29% 3.51% 26.09% 71.19% 25.65% 10.00%
Trend MODIS NBR 76.52% 71.74% 80.87% 18.03% 12.28% 44.68% 55.93% 25.65% 20.43%
Trend MODIS NDVI 78.26% 73.91% 82.61% 20.77% 4.09% 30.43% 72.88% 25.65% 10.00%
RTFD MODIS NDMI 71.30% 66.52% 75.67% 23.35% 11.70% 60.61% 77.97% 25.65% 14.35%
IDS – – 75.65% 71.30% 80.43% 19.58% 11.11% 46.34% 62.71% 25.65% 17.83%

Table 6. Rio Grande study area overall accuracy with 5% and 95% confidence intervals, omission/commission error rates, and prevalence error for each ORS method
tested as well as existing FHP program outputs (IDS and RTFD) for 2014. The highest overall accuracy and lowest commission, omission, and prevalence error rates
are highlighted in bold.

ORS
Method Platform Index Overall

Accuracy 5% CI 95% CI
Tree No Change

Commission
Error Rate

Tree No Change
Omission Error

Rate

Tree Change
Commission

Error Rate

Tree Change
Omission Error

Rate

Tree Change
Reference
Prevalence

Tree Change
Predicted

Prevalence

Harmonic Landsat NBR 66.09% 60.87% 71.30% 16.67% 35.19% 54.81% 30.88% 29.57% 45.22%
Harmonic Landsat NDVI 68.70% 63.48% 73.91% 28.77% 6.79% 61.11% 89.71% 29.57% 7.83%
Harmonic MODIS NBR 68.70% 63.48% 73.91% 19.59% 26.54% 52.44% 42.65% 29.57% 35.65%
Harmonic MODIS NDVI 67.83% 62.61% 73.04% 28.64% 9.26% 62.50% 86.76% 29.57% 10.43%

Basic Landsat NBR 67.83% 63.46% 72.61% 10.00% 38.89% 52.50% 16.18% 29.57% 52.17%
Basic Landsat NDVI 71.30% 66.09% 76.09% 28.38% 1.85% 37.50% 92.65% 29.57% 3.48%
Basic MODIS NBR 76.09% 71.72% 80.00% 19.08% 13.58% 38.60% 48.53% 29.57% 24.78%
Basic MODIS NDVI 70.87% 66.07% 75.65% 26.83% 7.41% 48.00% 80.88% 29.57% 10.87%
Trend Landsat NBR 75.22% 70.87% 79.57% 15.23% 20.99% 43.04% 33.82% 29.57% 34.35%
Trend Landsat NDVI 75.65% 70.87% 80.43% 25.23% 1.23% 12.50% 79.41% 29.57% 6.96%
Trend MODIS NBR 75.22% 70.41% 80.00% 20.34% 12.96% 39.62% 52.94% 29.57% 23.04%
Trend MODIS NDVI 76.09% 71.30% 80.87% 23.65% 4.32% 25.93% 70.59% 29.57% 11.74%
RTFD MODIS NDMI 71.74% 66.96% 76.54% 27.01% 4.94% 42.11% 83.82% 29.57% 8.26%
IDS – – 67.83% 63.04% 72.61% 26.09% 16.05% 56.52% 70.59% 29.57% 20.00%
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Figure 7. Map panels showing the extent of mountain pine beetle and spruce budworm damage within
the Rio Grande National Forest study area in Colorado in 2013 and 2014 as depicted by the RTFD
analytical output, the IDS database, and ORS MODIS and Landsat analyses. ORS outputs are presented
as heat maps of the number of outputs that found the area as change (1–6).
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4. Discussion

This study improves our understanding of how well ORS algorithms perform compared to
existing FHP mapping programs and provides an idea of how well these algorithms perform relative
to other similar algorithms.

All methods have similar overall accuracies and highly variable omission and commission error
rates. Placing this study in the context of recent forest change detection research, some similarity in
results can be found. Cohen et al. (2017) [15] provided an accuracy assessment of several change
algorithms, while Brooks et al. (2017) [30] examined EWMACD and a newer adaptation of EWMACD
called dynamic EWMACD (Edyn). Both studies use TimeSync to gather reference data. Cohen et al.
(2017) found omission and commission error rates for EWMACD (similar to ORS harmonic z-score
method) and ITRA (similar to ORS trend method) are greater than 70%. This is a higher error rate than
most results in this study. Brooks et al. (2017) find EWMACD has a 65.2% omission error rate and
39.9% commission error rate [30].

While the omission and commission error rates seem to generally be high when using reference
data from TimeSync, Cohen et al. (2017) [15] assert that the level of disagreement between the
TimeSync-based reference data and outputs from automated algorithms can occur for many reasons.
They acknowledge that change detection methods are now trying to detect more subtle changes and
therefore TimeSync-based response designs (such as the one used in this study) now include lower
magnitude disturbances. TimeSync’s strength is that it relies on utilizing more than just Landsat
data, and leverages a human interpreter’s ability to discern subtle changes. They recognize this
leads to higher commission/omission error rates than earlier change detection accuracy assessments.
This is not to say TimeSync reference data over-estimate change, but rather highlights that individual
automated change detection algorithms can only attain a finite level of sensitivity to change.

While the results obtained in this study are comparable to those obtained in other change detection
studies, we must also evaluate the accuracy of these map outputs relative to each other. Various
accuracy measures demonstrate that ORS outputs often perform comparably or better than IDS or
RTFD products. Since there are several ORS outputs that were out-performed by IDS and/or RTFD
outputs, the importance of choosing the best ORS method and parameters for a given mapping task
is evident. Future work to quantitatively optimize the parameters used in ORS algorithms will be
conducted to address this need.

In the meantime, ORS outputs will continue to be qualitatively calibrated. This may call into
question the utility of the ORS program in its current form. While the importance of quantitative
calibration cannot be understated, the ORS program has been qualitatively calibrating these algorithms
for three growing seasons. Our experience indicates that the harmonic z-score algorithm is very
difficult to qualitatively calibrate and produces highly inconsistent results. Both the trend and regular
z-score methods have consistently produced satisfactory results. These findings largely agree with the
results of this study.

Despite having coarser spatial resolution, MODIS-based outputs often out-performed equivalent
Landsat-based outputs. This likely is related to the differences between their temporal resolution.
The limited availability of cloud/cloud shadow-free Landsat images hinders its utility to consistently
detect ephemeral forest disturbances that must be captured within narrow time windows. The frequent
observations from MODIS permit a much greater opportunity to detect such disturbances.

While largely unapparent in the accuracy assessment results, IDS data exhibit unique
characteristics not found in RTFD or ORS outputs. Firstly, whereas the ORS and RTFD change
data are derived from space-borne satellite imagery from Landsat and MODIS platforms, the IDS data
are derived from observations made by state and local forestry personnel from ground surveys or an
aerial vehicle (e.g., fixed-wing aircraft or helicopter). Secondly, there is a range of methods used to
compile IDS data on a state-by-state basis. The inconsistent methods employed to produce IDS data
on a local level are evident in the Southern New England study area, where large polygons are favored
in Massachusetts, smaller polygons are more common in Connecticut, and grid cells are the primary
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spatial unit in Rhode Island (Figure 8). In contrast, the results obtained from forest change detection
algorithms using satellite imagery do not vary from place to place, but rather maintain an objective
quality over space and time. This is likely why varying levels of agreement were seen between IDS
data and the ORS and RTFD spatial results within the two study areas.
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This study did not use Sentinel-2 Multispectral Instrument data, as their availability remains
sparse over North America [31]. These data are also freely available, regularly collected, and have
similar spatial resolution and spectral response functions to those of Landsat [32]. The spatial and
spectral similarity of Sentinel-2 and Landsat suggests that these image data could be combined for
hybrid analyses. Such hybrid approaches would increase the revisit frequency from every eight days
with Landsat 7 and 8 to a range of everyday to every five days. Future work that incorporates these
data to create ORS products will likely improve the quality of non-MODIS-based outputs by providing
more temporally dense data to detect and track ephemeral forest disturbances.

5. Conclusions

This study tested three algorithms developed to map forest change for the USDA Forest Service’s
FHP. Utilizing GEE as a platform to create these spatial data products was efficient and effective. ORS,
IDS, and RTFD forest change products exhibited similar overall accuracy, and omission and commission
error rates to other studies that used TimeSync to assess forest change products. The ORS spatial
data often had similar or higher accuracy than existing FHP mapping program outputs. A unique
strength of ORS spatial data lies in the adaptive nature of the algorithms employed. In contrast to
the standardized method employed to create data for the RTFD program, the ability to adjust model
parameters based on the characteristics of specific disturbance events permits the tuning of ORS spatial
products. Additionally, the flexibility to use either Landsat scale or MODIS satellite image data in ORS
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algorithms permits the collection of timely synoptic observations regardless of the ephemeral nature
of intra-seasonal forest disturbances.

While this study highlights that assessed FHP products have high error rates, real-world use has
demonstrated their utility for spatially characterizing ephemeral and long term forest disturbances.
ORS data have been used to augment the 2017 annual IDS database in the Southern New England
study area for disturbances that occurred after the annual ADS had concluded [33]. In future years,
data from ORS models will also be used to respond to local disturbance reports from counties, states,
and forest units.

Author Contributions: Conceptualization, I.W.H., R.A.C., and M.V.F.; Methodology, I.W.H., R.A.C., and M.V.F.;
Software, I.W.H.; Validation, I.W.H. and R.A.C.; Formal Analysis, I.W.H.; Investigation, I.W.H. and R.A.C.;
Resources, M.V.F.; Data Curation, I.W.H.; Writing-Original Draft Preparation, I.W.H., R.A.C., and M.V.F.;
Writing-Review & Editing, I.W.H., R.A.C., and M.V.F.; Visualization, I.W.H.; Project Administration, I.W.H.
and M.V.F.; Funding Acquisition, M.V.F.

Funding: This research was funded by the US Forest Service, Geospatial Technology and Applications Center
(GTAC) in support of applications being developed for the Forest Health Assessment and Applied Sciences Team
(FHAAST).

Acknowledgments: The authors would like to acknowledge the assistance of members of the Google Earth
Engine team—specifically Noel Gorelick and Matthew Hancher—in the design, execution, and analysis using
Earth Engine. Lastly, we wish to acknowledge the many useful contributions of other RedCastle Resources
and Forest Service technical personnel. Three anonymous reviewers also offered helpful critique and valuable
recommendations for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. United States Department of Agriculture. Detection Surveys Overview. Available online: https://www.fs.
fed.us/foresthealth/technology/detection_surveys.shtml (accessed on 19 September 2017).

2. United States Department of Agriculture. FY10 Mishap Review. Available online: https://www.fs.fed.us/
fire/av_safety/assurance/mishaps/FY10_Mishap_Review.pdf (accessed on 21 September 2017).

3. Chastain, R.A.; Fisk, H.; Ellenwood, J.R.; Sapio, F.J.; Ruefenacht, B.; Finco, M.V.; Thomas, V. Near-real time
delivery of MODIS-based information on forest disturbances. In Time Sensitive Remote Sensing; Lippitt, C.D.,
Stow, D.A., Coulter, L.L., Eds.; Springer: New York, NY, USA, 2015; pp. 147–164. ISBN 978-1-4939-2601-5.

4. Coppin, P.R.; Bauer, M.E. Change detection in forest ecosystems with remote sensing digital imagery. Remote
Sens. Rev. 1996, 13, 207–234. [CrossRef]

5. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25,
2365–2407. [CrossRef]

6. Huang, C.; Goward, S.; Masek, J.; Thomas, N.; Zhu, Z.; Vogelmann, J. An automated approach for
reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ.
2010, 114, 183–198. [CrossRef]

7. Kennedy, R.; Yang, Z.; Cohen, W. Detecting trends in forest disturbance and recovery using Landsat time
series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910.
[CrossRef]

8. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite
image time series. Remote Sens. Environ. 2010, 114, 106–115. [CrossRef]

9. Stueve, K.M.; Housman, I.W.; Zimmerman, P.L.; Nelson, M.D.; Webb, J.B.; Perry, C.H.; Chastain, R.A.;
Gormanson, D.D.; Huang, C.; Healey, S.P.; et al. Snow-covered Landsat time series stacks improve automated
disturbance mapping accuracy in forested landscapes. Remote Sens. Environ. 2011, 115, 3203–3219. [CrossRef]

10. Zhu, Z.; Woodcock, C. Continuous change detection and classification of land cover using all available
Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [CrossRef]

11. Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series.
Remote Sens. Environ. 2012, 123, 98–108. [CrossRef]

https://www.fs.fed.us/foresthealth/technology/detection_surveys.shtml
https://www.fs.fed.us/foresthealth/technology/detection_surveys.shtml
https://www.fs.fed.us/fire/av_safety/assurance/mishaps/FY10_Mishap_Review.pdf
https://www.fs.fed.us/fire/av_safety/assurance/mishaps/FY10_Mishap_Review.pdf
http://dx.doi.org/10.1080/02757259609532305
http://dx.doi.org/10.1080/0143116031000139863
http://dx.doi.org/10.1016/j.rse.2009.08.017
http://dx.doi.org/10.1016/j.rse.2010.07.008
http://dx.doi.org/10.1016/j.rse.2009.08.014
http://dx.doi.org/10.1016/j.rse.2011.07.005
http://dx.doi.org/10.1016/j.rse.2014.01.011
http://dx.doi.org/10.1016/j.rse.2012.02.022


Remote Sens. 2018, 10, 1184 20 of 21

12. Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-Fly massively multitemporal
change detection using statistical quality control charts and Landsat data. IEEE Trans. Geosci. Remote Sens.
2014, 52, 3316–3332. [CrossRef]

13. Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat
time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924.
[CrossRef]

14. Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series
of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ.
2012, 118, 199–214. [CrossRef]

15. Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.;
Hughes, M.J.; Kennedy, R.E.; et al. How similar are forest disturbance maps derived from different Landsat
time series algorithms? Forests 2017, 8, 98. [CrossRef]

16. United States Forest Service. Available online: https://www.fs.usda.gov/detailfull/riogrande/home/?cid=
stelprdb5409285&width=full (accessed on 15 May 2018).

17. Ruefenacht, B.; Benton, R.; Johnson, V.; Biswas, T.; Baker, C.; Finco, M.; Megown, K.; Coulston, J.;
Winterberger, K.; Riley, M. Forest service contributions to the national land cover database (NLCD): Tree
Canopy Cover Production. In Pushing Boundaries: New Directions in Inventory Techniques and Applications:
Forest Inventory and Analysis (FIA) Symposium 2015, Portland, OR, USA, 8–10 December 2015; Stanton, S.M.,
Christensen, G.A., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station:
Portland, OR, USA, 2015; pp. 241–243.

18. Johnson, E.W.; Wittwer, D. Aerial Detection Surveys in the United States. In Monitoring Science and Technology
Symposium: Unifying Knowledge for Sustainability in the Western Hemisphere Proceedings RMRS-P-42CD;
Aguirre-Bravo, C., Pellicane, P.J., Burns, D.P., Draggan, S., Eds.; U.S. Department of Agriculture, Forest
Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 809–811.

19. Department of the Interior U.S. Geological Survey. Product Guide. Landsat 4–7 Surface Reflectance (LEDAPS)
Product. Available online: https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.
pdf (accessed on 20 June 2018).

20. Department of the Interior U.S. Geological Survey. Product Guide. Landsat 8 Surface Reflectance
Code (LaSRC) Product. Available online: https://landsat.usgs.gov/sites/default/files/documents/lasrc_
product_guide.pdf (accessed on 20 June 2018).

21. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

22. Housman, I.; Hancher, M.; Stam, C. A quantitative evaluation of cloud and cloud shadow masking algorithms
available in Google Earth Engine. Manuscript in preparation.

23. Rouse, J.W.; Haas, R.H., Jr.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with
ERTS; Third ERTS-1 Symposium; NASA: Washington, DC, USA, 1974; pp. 309–317.

24. Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote
Sensing of Severity, the Normalized Burn Ratio; RMRS-GTR-164-CD: LA 1-51; USDA Forest Service, Rocky
Mountain Research Station: Ogden, UT, USA, 2006.

25. Vogelmann, J.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series
analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 12, 92–105.
[CrossRef]

26. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.; Woodcock, C.E.; Wulder, M.A. Good practices for
estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

27. Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for
accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [CrossRef]

28. Healey, S.P.; Cohen, W.B.; Yang, Z.; Brewer, K.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.;
Hughes, M.J.; Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble
approach. Remote Sens. Environ. 2018, 204, 717–728. [CrossRef]

29. Pengra, B.; Gallant, A.L.; Zhu, Z.; Dahal, D. Evaluation of the initial thematic output from a continuous
change-detection algorithm for use in automated operational land-change mapping by the U.S. Geological
Survey. Remote Sens. 2016, 8, 811. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2013.2272545
http://dx.doi.org/10.1016/j.rse.2010.07.010
http://dx.doi.org/10.1016/j.rse.2011.11.006
http://dx.doi.org/10.3390/f8040098
https://www.fs.usda.gov/detailfull/riogrande/home/?cid=stelprdb5409285&width=full
https://www.fs.usda.gov/detailfull/riogrande/home/?cid=stelprdb5409285&width=full
https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf
https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.rse.2011.06.027
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.1080/01431161.2011.552923
http://dx.doi.org/10.1016/j.rse.2017.09.029
http://dx.doi.org/10.3390/rs8100811


Remote Sens. 2018, 10, 1184 21 of 21

30. Brooks, E.B.; Yang, Z.; Thomas, V.A.; Wynne, R.H. Edyn: Dynamic signaling of changes to forests using
exponentially weighted moving average charts. Forests 2017, 8, 304. [CrossRef]

31. COPE-SERCO-RP-17-0186: Sentinel Data Access Annual Report 2017. Available online:
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2017/COPE-SERCO-
RP-17-0186_-_Sentinel_Data_Access_Annual_Report_2017-Final_v1.4.1.pdf (accessed on 8 June 2018).

32. United States Geological Survey. Available online: https://landsat.usgs.gov/using-usgs-spectral-viewer
(accessed on 5 August 2017).

33. Thomas, V.; (Forest Health Assessment and Applications Sciences Team, Fort Collins, CO, USA). Personal
communication, 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/f8090304
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2017/COPE-SERCO-RP-17-0186_-_Sentinel_Data_Access_Annual_Report_2017-Final_v1.4.1.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2017/COPE-SERCO-RP-17-0186_-_Sentinel_Data_Access_Annual_Report_2017-Final_v1.4.1.pdf
https://landsat.usgs.gov/using-usgs-spectral-viewer
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Aerial Detection Survey 
	Remote Sensing Augmentation to IDS 
	Change Detection Methods 

	Materials and Methods 
	Study Areas 
	IDS-Data 
	RTFD-Data 
	ORS-Data 
	Data Preparation 
	Change Detection Algorithms 
	Accuracy Assessment Methods 

	Results 
	Southern New England 
	Rio Grande National Forest 

	Discussion 
	Conclusions 
	References

