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Abstract: Local region description of multi-sensor images remains a challenging task in remote
sensing image analysis and applications due to the non-linear radiation variations between images.
This paper presents a novel descriptor based on the combination of the magnitude and phase
congruency information of local regions to capture the common features of images with non-linear
radiation changes. We first propose oriented phase congruency maps (PCMs) and oriented magnitude
binary maps (MBMs) using the multi-oriented phase congruency and magnitude information of
log-Gabor filters. The two feature vectors are then quickly constructed based on the convolved PCMs
and MBMs. Finally, a dense descriptor named the histograms of oriented magnitude and phase
congruency (HOMPC) is developed by combining the histograms of oriented phase congruency (HPC)
and the histograms of oriented magnitude (HOM) to capture the structure and shape properties
of local regions. HOMPC was evaluated with three datasets composed of multi-sensor remote
sensing images obtained from unmanned ground vehicle, unmanned aerial vehicle, and satellite
platforms. The descriptor performance was evaluated by recall, precision, Fl-measure, and area
under the precision-recall curve. The experimental results showed the advantages of the HOM and
HPC combination and confirmed that HOMPC is far superior to the current state-of-the-art local
feature descriptors.

Keywords: multi-sensor images; log-Gabor filters; non-linear radiation variations; local feature
descriptor; phase congruency and magnitude

1. Introduction

With the rapid development of sensor technology and modern communications, we are now
entering a multi-sensor era. Different sensors capture different features, which are useful for a variety of
applications, including multi-sensor image registration and fusion [1-3] and pedestrian detection [4-6].
However, the non-linear radiation/intensity variations between multi-sensor images result in the local
feature description being a challenging task [7-10].

The traditional approaches based on histograms of oriented gradient descriptors such as
scale-invariant feature transform (SIFT) [11] and speeded-up robust features (SURF) [12] perform well
on single-sensor images, but generate only a few correct mappings when dealing with multi-sensor
images. To address this issue, researchers have proposed many techniques to adapt descriptors based
on SIFT/SURF to multi-sensor images. Approaches such as the partial intensity invariant feature
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descriptor (PIIFD) [13], R-SIFT [14] orientation-restricted SIFT (OR-SIFT) [15], and multimodal SURF
(MM-SUREF) [16] use gradient orientation modification to limit the gradient orientation to (0, pi) on the
basis of the intensity reversal in certain areas. Saleem et al. [17] proposed NG-SIFT, which employs a
normalized gradient to construct the feature vectors, and it was found that NG-SIFT outperformed
SIFT on visible and near-infrared images.

Even though these descriptors perform slightly better than the traditional descriptors, the number
of mismatches increases due to the orientation reversal, and the total number of matched points is still
low. This is because the description ability of these descriptors relies on a linear relationship between
images, and they are not appropriate for the significant non-linear intensity differences caused by the
radiometric variations between multi-sensor images.

Some descriptors have been designed based on the distribution of edge points, which can
be regarded as the common features of multi-sensor images. Aguilera et al. [18] proposed the
edge-oriented histogram (EOH) descriptor for multispectral images. Li et al. [19] assigned the
main orientation computed with PIIFD to EOH for increased robustness to rotational invariance.
Zhao et al. [20] used edge lines for a better matching precision. Shi et al. [21] combined shape context
with the DAISY descriptor in a structural descriptor for multispectral remote sensing image registration;
however, all the edge points are constrained by contrast and threshold values [22]. Other descriptors
have been proposed, based on local self-similarity (LSS) and its extension for multispectral remote
sensing images [5-7,23], but the size of the LSS region contributes much to the descriptor’s capability.
Furthermore, LSS and its extensions usually result in a low number of correctly matched points.

Due to the differences in multi-sensor imaging principles, the intensities among multi-sensor
images present non-linear radiation variations, resulting in the above descriptors relying on
gradient-based linear intensity variations, i.e., spatial domain information, not performing well for
multi-sensor images. In addition to the spatial domain, images can be decomposed into amplitude
and phase information by Fourier transform in the frequency domain. The ability of a descriptor
can be evaluated by “repeatability” and “distinctiveness”, and a trade-off is often made between
these measures [19]. To obtain as much useful information as possible from the images is the goal
of a descriptor. More information can be obtained by convolving the images using multi-scale and
multi-oriented Gabor-based filters, including the Gabor filter and log-Gabor filter.

The Gabor filter responses are invariant to illumination variations [24,25], and the multi-oriented
magnitudes transmit useful shape information [26,27]. Since the log-Gabor filters basically consist of a
logarithmic transformation of the Gabor domain, researchers have proposed descriptors based on the
amplitudes of log-Gabor coefficients. The phase congruency and edge-oriented histogram descriptor
(PCEHD) [28] combines spatial information (EOH) and frequency information (the amplitude of
the log-Gabor coefficients). The log-Gabor histogram descriptor (LGHD) [29] uses multi-scale and
multi-oriented log-Gabor filters instead of the multi-oriented Sobel descriptor, and it divides the region
around the point of interest into sub-regions (similar to SIFT with 4 x 4). LGHD has been used to match
images with non-linear intensity variations, including visible and thermal infrared images, and has
outperformed SIFT, GISIFT [30], EOH [18], and PCEHD. However, LGHD is time-consuming due to
its multi-scale computation. Cristiano et al. [31] proposed the multispectral feature descriptor (MFD),
which computes the descriptors using fewer log-Gabor filters and, as a result, has a computational
efficiency that is better than that of LGHD.

Oppenheim et al. [32] analyzed the function of the phase information, and discovered that phase
information is even more important than amplitude information for the preservation of image features.
The phase congruency detector is a feature detector based on the local phase information of images.
Kovesi et al. [33] proposed a measure of phase congruency that is independent of the overall magnitude
of the signal, making it invariant to variations in image illumination and/or contrast. Furthermore,
phase congruency is a dimensionless quantity. Therefore, a number of researchers have proposed
methods for feature description based on phase congruency, for applications such as template matching
for multi-sensor remote sensing images [34,35] and pedestrian detection [36,37].
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The distribution of the high-frequency components of log-Gabor filters has been verified to be
robust to non-linear intensity variations [29,31], and phase congruency has been successfully used
for multispectral image template matching [34-37]. This makes us think that a descriptor combining
phase congruency and the distribution of the high-frequency components would be more efficient to
capture the common information of multi-sensor images, which is the idea behind the proposed
approach. Figure 1 shows a comparison between phase congruency and the distribution of the
high-frequency components for a pair of visible and infrared remote sensing images. Vertically,
the phase congruency and the distribution of the high-frequency components are similar for the
visible and infrared images, even with the non-linear intensity changes existing between the visible
and infrared images. Horizontally, the phase congruency is more like the enhanced edges of an image,
and the distribution of the high-frequency components is more like the coarse texture of the image.

Original image ~ Phase congruency Distribution of the high-
frequency components
e .

Visible image

Infrared image

Figure 1. Comparison between phase congruency and the distribution of the high-frequency components.

In this paper, a novel descriptor named the histograms of oriented magnitude and phase
congruency (HOMPC) combining the histograms of oriented magnitude (HOM) and the histograms of
oriented phase congruency (HPC) is proposed. The HOM and HPC can be efficiently calculated in
a dense manner over the local regions of the images through a convolution operation. The HOMPC
descriptor reflects the structural and shape properties of local regions, which are relatively independent
of the particular intensity distribution pattern across two local regions. To the best of our knowledge,
we are the first to combine magnitude and phase congruency information to construct a local
feature descriptor to capture the common information of multi-sensor images with non-linear
radiation variations.

The main contributions of this paper are as follows:

e  We propose oriented phase congruency maps (PCMs) and oriented magnitude binary maps
(MBMs) based on log-Gabor filters;

e we have designed a fast method to construct feature vectors through a convolution operation
based on the PCMs and MBMs;

e we have developed a novel local feature descriptor based on the magnitude and phase congruency
information to capture more common structural and shape properties.

The rest of this paper is organized as follows: Section 2 proposes the HOMPC descriptor based on
the HOM and HPC. Section 3 introduces the experimental setup. Section 4 analyzes the parameter
sensitivity and the advantages of combining the HOM and HPC and describes the comparison of
the proposed HOMPC descriptor with the current state-of-art descriptors. Section 5 presents the
conclusions and recommendations for future work.
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2. Methodology

The proposed approach is based on the fact that multi-sensor images share similar global
appearances for the shape of the objects contained in the scenes, despite having different intensities
and textures. The phase congruency and the distribution of the high-frequency components have
both been proved suitable to capture the common features of multispectral images [29,31,35]. In this
section, a novel local feature descriptor based on the phase and magnitude information is proposed
to capture the common feature of multi-sensor images. The PCMs and MBMs are first constructed
based on log-Gabor filters, and then the two feature vectors are quickly constructed based on the
convolved PCMs and MBMs. Finally, the HOMPC descriptor is developed by combining the HPC
and HOM using the structural properties. The details of the proposed method are presented in the
following sections.

2.1. The Magnitudes Based on the Log-Gabor Filter

A 2-D log-Gabor filter [38,39] can be obtained using a Gaussian function in the angular direction
of the log-Gabor filter. Consequently, the 2-D log-Gabor function is defined as follows:

—(log(w/ws 2 —(0 —0s,

where (w, 0) represents the polar coordinates of image I(x, y); s and o are the scale and orientation
of the 2-D log-Gabor filters; (ws, 6s,) are the center frequency and center orientation, respectively,
for the frequency of the 2-D log-Gabor filters; k/ws is kept constant for various values of ws; and oy
the standard deviation of the Gaussian function in the angular direction.

As a frequency domain filter, the log-Gabor filter can be presented in the spatial domain by inverse
Fourier transform. In the spatial domain, the 2-D log-Gabor filter can be represented as:

LGso(x,y) = LG&™ (x,y) +i x LGI%(x, y), @
where the real part LGZ%"(x,y) and the imaginary part LG2% (x,y) mean the even-symmetric and
the odd-symmetric log-Gabor wavelets at scale s and orientation o, respectively. The symbol i is an
imaginary unit.

The response vector at scale s and orientation o is obtained by convolution of each quadrature
pair with the input signal image I(x,y), and is given by:

[Eso(x,y), Oso(x, )] = [1(x,y) * LGE™ (x,), 1(x,y) LG (x, )], ®)

" ”
*

where the symbol
The amplitude of the response A, ,(x, y) of image I(x, y) at scale s and orientation o are then given

indicates the convolution in the equation.

by:

Aso(,) = \/Eso(,9)% + Oso (3, 9)% @)

Hereafter, we define the amplitude of the response as the “magnitude”.

2.2. The Proposed Oriented Phase Congruency Maps (PCMs)

As a result of its invariance to illumination and contrast variation [33], phase congruency has
been used for local feature description [20,40] and template matching [34,35] for non-linear intensity
changes. Most of these methods use both the magnitudes of all the scales and the magnitudes of all
the orientations to calculate the phase congruency values. Thus, when computing the histograms of
local regions, Gaussian convolution and trilinear interpolation methods are needed, which increases
the computation time. In order to accelerate the computational efficiency of feature description based
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on phase congruency information, we propose the use of PCMs. We calculate the phase congruency of
each orientation through the magnitudes of all the scales corresponding to the orientation.
The phase congruency of each orientation is defined as follows:

s WX, y) (Aso(x, ) ADs o (x,y) — T)

PCD(X y) Y As,o(xfy) Te

, ©)

whereo =1,2,...,N,and s = 1,2, ..., N, stands for the number of orientations and scales; PC, is the
PCM of orientation o; {PC(x,y) }i\]“ represents all the orientation phase congruency values of point
(x,y); T is the estimated noise influence; and ¢ is a small constant to avoid division by zero. The symbol
() denotes that the enclosed quantity is equal to itself when its value is positive and is zero otherwise.
This means that only energy values that exceed the noise level T are taken into account in the results.
W(x,y) is a weighting function that weights the frequency spread. It devalues the phase congruency
values at locations where there is a narrow spread of filter response. The weighting function [41] is

expressed as:
1

Woy) = I oty

where 7 is a gain factor controlling the sharpness of the filter; c is the cut-off value below which the
phase congruency values are penalized; and p(x, y) defines the spread of filter responses. AQs o (x,y)
is a phase deviation function, whose definition is:

(6)

ADs,0(x,Y) = (Eso(%,¥)Deven (X, ¥) + Os,0(%, ¥)Boda (%, ¥)) —|Es,0 (%, Y)Doda (X, ) — Os,0(X, Y) Beven (X, y)|
(7)

where:
1

VEEY)? + (Hx )

(Deven (%, ¥), Doaa(x,y)) = (F(x,y), H(x,y)),

where:

=Y Eso(x,y), and H(x,y) = ) Oso(x,y).

To obtain the PCMs, we normalize the phase congruency of all the orientations {PC(x,y)};"
to [36,37] as follows:

PCM,(x,y) = ¥(PCy(x,y)) X 255,(0 =1,2,...,Np), (8)

where PCM, (x, y) is the PCM of orientation o; the operator ¥ (1) normalizes the value of / to [0-1].
Figure 2 shows the six-oriented PCMs based on the log-Gabor filters.

‘ log Gabor convolution and PCMs construction

[ I I I
0° 30" 60° 90°  120° 150°

PCM, PCM, PCM, PCM, PCM; PCM,

Figure 2. The calculated six-oriented PCMs based on the four-scale and six-oriented log-Gabor filters.
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2.3. The Proposed Oriented Magnitude Binary Maps (MBMs)

Aguilera et al. [29] proved that the distribution of the high-frequency components is robust to
non-linear intensity variations. The LGHD descriptor calculates the distribution histograms of each
sub-region’s 4 x 4 local patch for all scales. Therefore, the computational efficiency of LGHD is
very low.

Differing from LGHD, we use the average magnitudes of the different scales to calculate the
distribution. In this way, the average magnitudes are more robust to noise. For each orientation o,
the average magnitudes of all the scales are calculated as:

(X y (Zs 1ASO X, ]/))/Ns/ (9)

whereo =1,2,...,N,and s = 1,2,..., N, stand for the number of orientations and scales, respectively.
A, is defined as the oriented magnitude map (MM) of orientation 0. We use {A(x,y) }i\]” to represent
all the orientation magnitudes of point (x, y). To obtain the MMs, we normalize the magnitudes of all
the orientations {A(x, y)}i\]” to [0-255] as follows:

MM, (x,y) = ¥(Ao(x,y)) x255,(0 =1,2,...,N,), (10)

where MM, (x, y) is the MM of orientation o; the operator ¥ (/) normalizes the value of 4 to [0-1].
Figure 3a shows the six-oriented MMs based on log-Gabor filters.

In order to accelerate the computational efficiency of the feature description based on MMs,
we propose the MBMs, which are consistent with the PCMs.

All the orientation magnitudes are compared through each pixel to find the maximum value,
and the value of the pixel in the orientation is assigned to 1 if MM, (x, y) is equal to the maximum of
{MM(x,y) }i\]" ; otherwise, it is assigned to 0. We express the calculation procedure using the following
formulation:
if MM, (x,y) == max({MM(x,y) }1")

(11)
else

1,
MBM,(x,y) = { 0

where MBM, (x, ) is the MBM of orientation o. Figure 3b shows the six-oriented MBMs based on MMs.

‘ log Gabor convolution and MOMs construction ‘

/'o"'\

120 150

_MOM, MOM, MOM, MOM, MOM; MOM;

3

find the maximum value and assign 1 to its corresponding layer,
otherwise assign zero and construct MBMs

MBM, MBM, MBM, MBM, MBM, MBM,

Figure 3. The six-oriented MMs (a) and the six-oriented MBMs (b) based on the log-Gabor filters.
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2.4. The Proposed HOMPC Descriptor Based on the PCMs and MBMs

In this subsection, the proposed HOMPC descriptor based on the PCMs and MBMs is described.
The proposed histograms of oriented phase congruency (HPC) and histograms of oriented magnitude
(HOM) are inspired by the HOG method [42] and the methods of Ye et al. [34,35], all of which calculate
the descriptors based on a dense grid of local histograms. To accelerate the computational efficiency
of the proposed HOMPC descriptor, Gaussian filters and mean filters are introduced to convolve the
oriented PCMs and MBMs, instead of the trilinear interpolation method used in the HOG method
and the methods of Ye et al. Following this, the HPC and HOM are calculated for a local region.
We combine the HPC and HOM to obtain the proposed HOMPC descriptor. Figure 4 presents the main
processing chain of the proposed HOMPC descriptor. The detailed steps of this process are as follows:

1. The first step is to apply the four-scale and six-oriented log-Gabor filters to the local region Rx
of each point of interest, and then compute the six-oriented PCMs and MBMs (Figures 2 and 3),
which provide the common feature information against non-linear intensity changes.

2. The second step is to apply Gaussian filters to the six-oriented PCMs to obtain the convolved
PCMs and mean filters to the six-oriented MBMs to obtain the convolved MBMs, based on the
same template size. The template size is equal to the patch size of a cell, and four cells combine to
form a block. The relationship between blocks and cells is shown in Figure 5.

3. The third step is to divide the local region of each point into p overlapping blocks based on the
number of interval, and then calculate the feature vector of each block. If the size of local region
ism x m, the cell size is n X n, and the number of interval is k, the number of overlapping blocks
is the square of the integer part (m — 2 x n)/k + 1).

e To calculate the feature vector of a block based on the convolved 6-oriented PCMs.
The convoluted values of the six-oriented PCMs in each pixel contribute to the orientation
bins of the pixel. We combine the histograms of the four pixels corresponding to the
center locations of the four connected cells (Figure 5), which combine to form a block.
Figure 6 shows the process of constructing the feature vector for the block based on PCMs.
The dimension of the feature vector is 24 bins. We normalize the feature vector by the L2
norm to achieve a better invariance to illumination and shadowing. The character X is used
to represent the normalized feature vector based on the PCMs.

e To calculate the feature vector of the block based on the convolved six-oriented MBMs.
The convoluted values of the six-oriented MBMs in each pixel contribute to the orientation
bins of the pixel. The process of constructing the feature vector for a block based on the
MBMs is similar to the process of constructing the feature vector for the block based on the
PCMs. The convolved six-oriented MBMs are used to replace the convolved six-oriented
PCMs (Figure 6), and the remaining operation is the same. The dimension of the feature
vector is also 24 bins. We also normalize the feature vector by the L2 norm. The character Y
is used to represent the normalized feature vector based on the MBMs.

4. We collect all the feature vectors based on the PCMs and MBMs of all the blocks within the dense
overlapping grid covering the local feature region into combined feature vectors, named the HPC
and HOM, respectively.

5.  Finally, we combine the HPC and HOM to obtain the proposed HOMPC descriptor,
which combines the phase congruency and magnitude information for the local
feature description.
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Figure 4. The main processing chain of the HOMPC descriptor. The black dotted line box and red
dotted line boxes respectively indicate the construction process of the histograms of oriented phase
consistency (HPC) and the histograms of magnitudes (HOM). The HOMPC is made up of them.

517\
’<—block—>’
pixel |- cell
cell | cell

Figure 5. The relationship between blocks and cells. The symbol B represents a block, which contains

four cells.
Pixel-wise feature vector
P(X.y) = [Va, Vo, V3, V4, Vs, Vel
@)

|-— bloc ; P(Xy) =V,

> Convolved PCM,

: C,— :

i cell :

§ ; — P(xy) =V,

§ ; Z = Convolved PCM,
{C3—— o —— C,i

; cell cell :

_ P(X,y) = Ve
~> Convolved PCM;

No

Feature vector for a block
=[C. C, C3, CJ]

Convolved 6-oriented PCMs

Figure 6. The process of constructing the feature vector for a block. (a) Compute the pixel-wise feature
vector using the convolved PCMs. P(x, y) means the feature vector of the pixel in location P(x, y),
and the vector size is 1 x 6; (b) obtain the central pixel’s feature vector of each cell. C;, Cy, C3, and
C4 are the corresponding centric pixel’s feature vectors of the four cells; (¢) Combine the four feature
vectors to obtain the conjoint feature vector for a block. The feature vector size of the block is 1 x 24.

3. Experimental Setup

The main contribution of this paper is that we proposed a new descriptor to solve the local
region feature description problem of multi-sensor images with non-linear radiation variations. In this
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section, the experimental setup is presented to test our proposed HOMPC descriptor. Figure 7 shows
the flowchart to evaluate the descriptor performance in our experiments. In order to evaluate the
performance of descriptors, some pair of multi-sensor images are chosen and the feature points
are detected firstly. Then, the local regions corresponding to the feature points are described using
descriptors, and the feature matching is completed with some similarity metric. Then, the correctly
matched points and falsely matched points are classified by using the homography and projection
error. The homography is calculated by using the manually identified corresponding points of the
pair of multi-sensor images. Since two important indicators for evaluating descriptor performance
are “repeatability” and “distinctiveness” [19], we finally selected precision and recall to verify the
“distinctiveness” and “repeatability” of descriptors, respectively. The F1-measure and area under
precision-recall curves (AUCPR) are used to verify the comprehensive performance of precision and
recall. A more detailed introduction of the feature detection method is presented in Section 3.1.
The details of the feature descriptors are supplied in Section 3.2, and the evaluation criteria and
datasets are provided in Section 3.3 and 3.4, respectively. The parameter settings in our experiments
are listed in Section 3.5.

Multi-Sensor Image Pairs

*

Feature Points Detection and Corresponding Local Regions
Extraction

v

Local Regions Description Using Descriptors

(i.e., SIFT, SURF, NG-SIFT, LSS, PIIFD, EOH, PCEHD, LGHD, MFD, HOMPC.)

v

Feature Matching Using Some Similarity Metric Strategy

v

Correctly Matched Points Discrimination Using Homography and
Projection Error Threshold

(Using the Manually Identified Corresponding Points to Compute the Homography.)

Descriptor Performance Comparison Using the Evaluation Criterion
of Recall, Precision, F1-measure and AUCPR.

Figure 7. The flowchart to evaluate the descriptor performance in our experiments.

3.1. Feature Detection

The feature detection is the preprocessing for local regions description. Saleem et al. [43] compared
different feature detectors and descriptors on four multi-sensor images, and the experimental results
showed that the corner feature detectors (e.g., Harris, FAST [44]) could obtain more correct matches
than blob detectors (e.g., SIFT, SURF) for multi-sensor images. The aim is to verify the performance of
descriptors, and the more the number of the initial corresponding correct matching points, the more
beneficial to verify the performance of descriptors.

In our experiment, we selected the phase congruency corner detector [33] to detect feature points.
Different from the gradient-based corner detectors (e.g., Harris, FAST), the phase congruency corner
detector is based on phase information, which is invariant to contrast and illumination changes.
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In addition, the non-maximum suppression method was used to extract local (3 x 3) significant
points. After then, we could obtain more initial corresponding correct matches to verify the descriptor
performance. We detected a total of 2500 points for each image of multi-sensor images. However,
image texture and scene complexity affect the final detected points.

3.2. Feature Descriptors

In addition to verifying the performance of our descriptors on multi-sensor images, we need to
compare our proposed descriptors with classic descriptors through multi-sensor images. We selected
some representative descriptors, e.g., SIFT [11], SURF [12], LSS [5], EOH [18], and five state-of-the-art
descriptors named NG-SIFT [17], PIIFD [13], PCEHD [28], LGHD [29], and MFD [31] to compare
with our proposed HOMPC descriptor. We programmatically implemented NG-SIFT and MFD
descriptors and tried to maximize their performance using MATLAB. Whereas the implementation of
the remaining algorithms is available online with MATLAB.

3.3. Evaluation Criteria

The ability of a descriptor can be evaluated by “repeatability” and “distinctiveness” [19].
The common evaluation criteria, including recall and precision from [45], F1-measure, and AUCPR
from [17], and projection error from [43,46] were chosen to measure the descriptor performance.

Projection error is a Euclidian distance between the reference and projected image feature points.
The projected image feature points are transformed by using a known homography H, which is
computed by manually selecting the corresponding points of reference and target images. If the
projection error of one pair of points is less than some threshold, we regard it as the correctly matched
points, otherwise, the falsely matched points.

Descriptor matching is carried out with MATLAB implementation of ‘matchFeatures’ function,
which uses Sum of absolute differences (SAD), sum of squared differences (55D) or Hamming distance,
between descriptor vectors. As introduced in the document of MATLAB, the default SSD metric
is suitable for non-binary feature descriptors, so the SSD was selected as the feature similar metric.
A reference point of interest is defined as being matched to a test interest point if:

D(d',d) < thresh x D(d',d"), (12)

where D(.,.) is the Euclidean distance; d' is the feature vector of the reference point of interest;
d/ and d* are the two feature vectors of points to be matched and d* is the second-closest neighbor to
di. The “thresh” is the threshold of the nearest neighbor distance ratio (NNDR). The smaller value of
“thresh” means tighter matching criterion. The “thresh” was set to 0.8-1.0 at an interval of 0.05 in our
experiments to test the matching results with different conditions.

Recall is the ratio of the number of correctly matched point pairs of the matching results and the
total number of existing correct-match point pairs of the initial match point sets. Recall assesses the
accuracy of the returning ground-truth image pairs.

Precision is the ratio of the number of correctly matched point pairs of the matching result and
the sum of the number of correctly and falsely matched point pairs of the matching results. Precision
calculates the ability to exclude false positives.

Fl-measure captures the fitness of the ground truth and detected points by jointly considering
the Recall and Precision. The Fl1-measure [31,47] is calculated as follows:

2 x Precison x Recall

Fl —measure = Precision + Recall (13

AUCPR is the area under the precision-recall curve [17], which was also computed for the
performance comparison.
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To better express the universality of the proposed HOMPC descriptor and the other descriptors,
the average precision and recall were calculated from the multi-sensor image pairs of each dataset
according to different NNDR thresholds. The F1-measure and AUCPR were calculated from the
average precision and recall values.

3.4. Datasets

The descriptor we designed was mainly to solve the problem of common feature description
between images with nonlinear radiation differences of multi-sensor images. The image datasets used
in our experiments should be acquired from different sensor devices. Three datasets (CVC dataset,
UAV dataset, and SAT dataset) were chosen based on the height of the remote sensing platform.
Samples from these datasets are shown in Figure 8.

e The CVC dataset includes 44 RGB/LWIR (longwave infrared) [29,48] outdoor image pairs and
100 VS/LWIR (visible and longwave infrared) [18,49] outdoor images of different urban scenarios.
These image pairs were captured using the color cameras and infrared camera. For a more detailed
description with the two cameras, please refer to [49].

e The UAV dataset includes 27 RGB/LWIR outdoor images specially acquired by ourselves from
an unmanned aerial vehicle (UAV) (DJI M100) using the optical and thermal infrared cameras.
The image resolution of the thermal infrared camera is 640 x 480, and the wavelength range is
8-14 um. The optical camera is industrial grade. Its pixels size is 5.0 pm x 5.2 um and image
resolution is 1280 x 720.

o  The SAT dataset contains six pairs of remote sensing satellite images. The image pairs cover a
variety of low-, medium-, and high-resolution remote sensing satellite images with a ground
sample distance (GSD) from 0.5 to 30 m. The supported images came from different satellites.
The multi-temporal satellite images were also included. For a more detailed description for the
six pairs of images, please refer to [7].

(e) (f)

Figure 8. Samples of multi-sensor image pairs in the three datasets. (a,b) are two image pairs from the
CVC dataset using optical camera and infrared camera devices [48,49]; (c,d) are two image pairs from the
UAV dataset using optical and thermal camera devices by ourselves; and (e f) are two multi-sensor and
multi-temporal image pairs from the SAT dataset using different satellites. Referring to [7], the details of
the (left vs. right) images in (e) include: satellite type (IRS-1C vs. ASTER), spectral mode (Pan vs. Band3),
and acquisition date (1998 vs. 2006); the details of the (left vs. right) images in (f) include: satellite type
(SPLOT5 vs. LANDSAT ETM+), spectral mode (Band2 vs. Band3), and acquisition date (2006 vs. 1999).
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Similar to LGHD and MFD, it should be noted that the proposed HOMPC descriptor is designed
for non-linear radiation variations between multi-sensor images, and we do not consider the geometric
changes of rotation and scale variations. Therefore, the multi-sensor remote sensing image pairs should
be rectified without significant rotation or scaling transformation. In fact, the image pairs of the CVC
dataset were rectified and aligned so that matches should be found in horizontal lines. The image pairs
of the UAV dataset included small projective changes, in addition to small rotation transformation.
The image pairs of the SAT dataset had been rectified to the same scale size based on GSD values.

3.5. Parameter Settings

The patch size of the proposed HOMPC descriptor was assigned to 80 x 80, the same as EOH,
LGHD, and MFD. The patch sizes of other descriptors were set by default. We use Ng = 4 and
No = 6 to express the number of convolution scales and orientations of the log-Gabor filter in the
proposed method. The projection error threshold was assigned to 5 for all three datasets. The larger the
projection error threshold, the more correctly matched points for the recall and precision calculations.
The threshold of NNDR was assigned to the range 0.8-1.0 with an interval of 0.05 in our experiments,
where a smaller value means a tighter matching criterion.

4. Experimental Results and Discussion

The parameters of the proposed method are discussed in Section 4.1. The advantages of combining
the phase information and magnitude information are evaluated and discussed in Section 4.2.
The superiority of the proposed HOMPC descriptor over the current state-of-the-art local feature
descriptors is evaluated and discussed in Sections 4.3 and 4.4.

4.1. Parameter Study

The proposed HOMPC method contains four main parameters, namely, Ns, No, Cr, and I1.
As mentioned Ng =4 and N = 6 are used to express the number of convolution scales and orientations
of the log-Gabor filter in the proposed method. Parameter C; is the size of the local cell patch (cell
size) used for the cell description. If the cell size is too small, it will contain insufficient information
with which it is difficult to reflect the distinctiveness of the feature. In contrast, if the cell size is too
large, it is easily affected by the local geometric distortion. Parameter I, is the number of intervals
between blocks. In general, the smaller the number of intervals, the richer the information of the
constructed HOM and HPC, and the poorer the robustness and the higher the dimension of the feature
vectors. In contrast, if the number of intervals is too large, the HOMPC descriptor will contain less
information, which will also affect the distinctiveness of the feature. Therefore, suitable parameters
are very important. In this section, we describe the parameter study and sensitivity analysis based
on the 44RGB/LWIR dataset. We designed two independent experiments to learn parameters C;, and
I1, where each experiment had only one parameter as a variable, with the other parameters as fixed
values. The experimental setup details are summarized in Table 1. For each parameter, we use the
average precision and recall, F1-measure, and AUCPR as the evaluation metric. The experimental
results are reported in Figures 9 and 10; Tables 2 and 3.

From the experimental results, we can infer that: (1) Larger values of C; mean that the cell
size information is richer, and thus more AUCPR values and Fl-measure scores can be obtained;
however, due to the effect of local geometric distortion, the AUCPR values and F1-measure scores
will decrease as the value of Cr, increases. As shown in Table 2 and Figure 9, the HOMPC descriptor
achieves the best performance when C; = 20. Therefore, we set C; = 20; (2) From Table 2 and Figure 9,
we can see that large values of I, result in a poor performance, while small values mean richer
information of the constructed HOM and HPC feature vectors; however, smaller values of I} also
mean that the distinctiveness of the proposed HOMPC feature vector increases, which will decrease
the robustness and increase the dimension of the proposed feature vectors. As shown in Table 3 and
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Figure 10, when I} = 8, HOMPC achieves the best performance. Therefore, we set I} = 8. Based on the
experimental results and analysis, these parameters were fixed to C =20 and I}, = 8 in the experiments.

Table 1. Details of the parameter settings.

Variable Fixed Parameters
Parameter Cj, Cr =16,8,10,12, 16, 20, 24} I} =8,Ns=4,Np=6
Parameter I, I} =16, 8,10, 12, 16, 20} Cr =20,Ng =4, Np =6

Table 2. The AUCPR (%) results of parameter CL.

Cr,Ir =8,Ns=4,Np=6
6 8 10 12 16 20 24
AUCPR 38.43 38.01 40.96 42.99 41.08 46.40 45.00

Metric

Table 3. The AUCPR (%) results of parameter IL.

It,Cr=20,Ng=4,Np=6

Metric
6 8 10 12 16 20
AUCPR 4473 46.40 41.12 41.01 34.97 29.55
1 0.5
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Figure 9. The average PR curve and F1-measure curve results of parameter Cy (I = 8).
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Figure 10. The average PR curve and F1-measure curve results of parameter I} (Cp, = 20).
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4.2. The Advantages of the Magnitude and Phase Congruency Information Combination

To verify the advantages of combining the magnitude and phase congruency information,
the HOMPC descriptor was compared with HPC and HOM based on the 44RGB/LWIR dataset.
The variable parameters were set as suggested in Section 4.1. The average precision and recall results,
as well as the F1-measure and AUCPR results of HOMPC, HOM, and HPC are given in Figures 11 and 12.

0.9 04r
J —P—Hom
R

HPC

0.8 =©—HomMPC
03r

0.7

0.2

Precision
Recall

0.6

O.‘Ii
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Figure 11. The average precision and recall curve results with different thresholds for HOMPC, HPC, and HOM.

Since the larger the NNDR threshold, the looser the matching metric for the point matching,
the average curves of the recall values of HOMPC, HOM, and HPC are raised while the average
curves of the precision values are decreased as the NNDR threshold increases, as shown in Figure 11.
This indicates that the average curve of the recall values of the HOMPC descriptor is much better than
the curves of HOM and HPC, and the average curve of the precision values of HOMPC is similar to that
of HPC, but is much better than that of HOM. As it is known that the phase information contributes
more to the preservation of image features than amplitude information, the precision values of HPC
are much better than those of HOM. However, the distribution of the high-frequency component
information also contributes to the shape of the objects, and we can see that the recall values of HOM
are similar to those of HPC. After combining HOM and HPC, HOMPC keeps the distinctiveness of
HPC, but also increases the repeatability by adding HOM.

A comprehensive analysis of the average recall and precision is provided in Table 4 and Figure 12.
The average PR curves, F1-measure curves, and AUCPR values also indicate that HOMPC outperforms
HOM and HPC.

Table 4. AUCPR (%) results for HOM, HPC, and HOMPC.

Feature Vector HOM HPC HOMPC
AUCPR 29.27 42.15 46.40
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Figure 12. The average PR curves and Fl-measure curves of HOMPC, HPC, and HOM.

It is found that the advantages of combining the magnitude and phase congruency information are
significant. More particularly, it is the phase congruency information that makes a greater contribution
to the distinctiveness of HOMPC, and the magnitude information adds to the repeatability of HOMPC.

4.3. Descriptor Comparison

We used the three datasets introduced in Section 3.4, i.e., CVC dataset, UAV dataset and SAT
dataset to compare the proposed HOMPC descriptor with the current state-of-the-art local feature
descriptors of SIFT [11], SURF [12], NG-SIFT [17], LSS [5], PIIFD [13], EOH [18], PCEHD [28],
LGHD [29], and MFD [31] in terms of the average precision and recall, as well as Fl-measure
and AUCPR.

4.3.1. Results Obtained with the CVC Dataset

Figure 13 shows the average precision and average recall curve results obtained with the 144 pairs
of visible/longwave infrared images for all the descriptors. As can be seen, on the whole, the average
precision curves descend while the average recall curves ascend as the NNDR threshold increases,
and the range of the precision values is much larger than that of the recall values. The average precision
and recall curves of the proposed HOMPC descriptor show superior results when compared to the
other descriptors. Among the other descriptors, the LGHD descriptor performs much better than
the remaining descriptors, and PIIFD, EOH, PCEHD, and MFD perform better than LSS, SURF, LSS,
and NG-SIFT, all of which present similar results.



Remote Sens. 2018, 10, 1234 16 of 28

1 ism 04
SURF

NG-SIFT
- Lss
=3—PIIFD
0.8 EOH 0.32
«%¢+ PCEHD
=3€=LGHD
=SF~MFD

HOMPC
061 0.24

Precision
o
Recall

0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1
NNDR Threshold NNDR Threshold

Figure 13. The average precision and recall curve results with different NNDR thresholds for all the
descriptors. The HOMPC is our descriptor.

The average PR curves based on the average precision and recall values and the F1-measure
curves based on the precision and recall values of the 144 pairs of images for all the descriptors are
provided in Figure 14. The AUCPR results based on the average PR curves for all the descriptors are
presented in Table 5. We can clearly see that the AUCPR value of HOMPC is much greater than that of
the other descriptors. Furthermore, we can see that the shape of the F1-measure curve is much more
similar to that of the recall curve than the precision curve. This is because the recall and precision
contribute the same weight to the F1-measure score, and the smaller recall values have more impact
on the Fl-measure scores. Therefore, when the NNDR threshold increases, the F1-measure curve
increases at first as the recall curve also increases. Considering the comprehensive evaluation of the
descriptor performance, the larger the F1-measure score, the better the performance. It is shown that
the F1-measure values are the best for all the descriptors when the NNDR threshold = 1. Figure 15
shows the correctly matched points (green lines) and falsely matched points (red lines) of two typical
descriptors (SURF and LGHD) and the proposed HOMPC descriptor of sample image pair (Figure 8a)
when the NNDR threshold = 1. The correctly matched points, precision, and recall values are also
displayed. Overall, we can see that the proposed HOMPC performs the best of all the descriptors.

Table 5. AUCPR (%) results for all the descriptors.

Descriptor SIFT  SURF NG-SIFT LSS PIIFD EOH PCEHD LGHD MFD HOMPC
AUCPR  13.82 9.78 11.56 9.58 17.27 18.77 19.93 28.25 18.40 41.35
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(c) Descriptor = HOMPC, precision = 0.7621, recall = 0.3022, and correct matches = 175.

Figure 15. The correctly matched (green lines) and falsely matched (red lines) results for SURF (a),
LGHD (b), and our HOMPC (c) descriptors. The displayed green and red lines are used to visually
compare the descriptor performance. The greater number of the green lines, the better. The higher the
ratio of the green lines, the better. The quantitative results are also listed below each pair of images.

4.3.2. Results Obtained with the UAV Dataset

Figures 16 and 17, Table 6 show the average precision and recall results, as well as F1-measure
and AUCPR results obtained with the 27 pairs of RGB/thermal infrared images. As can be seen in
Figure 16, the precision curves of HOMPC are again the best, but the average precision values and
recall values are much lower than the average precision and recall results, as well as the F1-measure
and AUCPR results for the CVC dataset, especially for the recall values. The AUCPR results of all the
descriptors also indicate that the biggest value of HOMPC is just 14.95, which is much lower than
most of the results for the CVC dataset. This is because the CVC dataset has been vertically rectified.
In contrast, when using the low-resolution thermal infrared camera, the thermal infrared images in
the UAV dataset have a lower resolution and there is noise generated in the images. Furthermore,
the UAV dataset also has a slight projective transformation caused by the UAV platform. However,
we can still clearly see that the proposed HOMPC descriptor is more robust than the other descriptors.
Nevertheless, the AUCPR values are very low (below 15%), even if the precision of HOMPC is good
when the recall is low. This means that the distances between the feature vectors for local feature
regions for true or false matchings are very close but are discriminant enough when there is a need to
retrieve only one region. Therefore, the threshold should be large enough to obtain more matching
points. Figure 18 shows the correctly matched points (green lines) and false matches (red lines) of
two typical descriptors (SURF and LGHD) and the proposed HOMPC descriptor for a pair of images
(Figure 8d) when the NNDR threshold = 1. The results of precision and recall, as well as correct
matches are also given in Figure 18a—c. It is shown that all three descriptors performed poor, but our
proposed HOMPC descriptor also performed best.

Table 6. AUCPR (%) results for all the descriptors.

Descriptor SIFT SURF NG-SIFTLSS PIIFD EOH PCEHD LGHD MFD HOMPC
AUCPR 11.76 7.92 8.22 4.96 7.07 8.60 7.55 10.97 6.49 14.95
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Figure 16. The average precision and recall curve results with different NNDR thresholds for all the
descriptors. The HOMPC is our descriptor.
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Figure 17. The average PR curves and F1-measure curve results for all the descriptors.

(a) Descriptor = SUREF, precision = 0.2138, recall = 0.0655, and correct matches = 65.
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Figure 18. The correctly matched (green lines) and falsely matched (red lines) results for SURF (a),
LGHD (b), and our HOMPC (c) descriptors. The displayed green and red lines are used to visually
compare the descriptor performance. The greater number of the green lines, the better. The higher the
ratio of the green lines, the better. The quantitative results are also listed below each pair of images.

4.3.3. Results Obtained with the SAT Dataset

Figures 19 and 20, Table 7 illustrate the average precision and recall results, as well as F1-measure
and AUCPR results obtained with the six pairs of multi-sensor images from the SAT dataset. Compared
with the results obtained with the CVC dataset and UAV datasets, it can be seen that the average
precision and recall curves for the SAT dataset are much better, as are the F1-measure curves and
AUCPR values. This is because the spectral ranges of the SAT dataset are much closer than the visible
and thermal infrared images of the CVC dataset and UAV dataset. The greater the spectral range,
the greater the difference between two local feature regions and, hence, the less efficient the usual
descriptors become. However, the proposed HOMPC descriptor performs much better than the other
descriptors, and LGHD, SIFT, NG-SIFT and MFD perform better than the remaining descriptors.
The results of SURF, PIIFD, EOH and PCEHD are similar, and they are much better than the results of
the LSS descriptor. Figure 21 shows the correctly matched points (green lines) and falsely matched
points (red lines) of two typical descriptors (SURF and LGHD) and the proposed HOMPC descriptor
of the sample image pair (Figure 8e) when the NNDR threshold = 1. The correctly matched points,
precision, and recall values are also listed. It is shown that our proposed HOMPC descriptor is suitable
for the feature description of multi-temporal, multi-sensor image pairs.
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Figure 19. The average precision and recall curve results with different NNDR thresholds for all the
descriptors. The HOMPC is our descriptor.
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Figure 20. The average PR curves and F1-measure curve results for all the descriptors.

(a) Descriptor = SUREF, precision = 0.1408, Recall = 0.0875, and correct matches = 49.

Figure 21. Cont.
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(c) Descriptor = HOMPC, precision = 0.5635, recall = 0.4196, and correct matches = 235.

Figure 21. The correctly matched (green lines) and falsely matched (red lines) results for SURF (a),
LGHD (b), and our HOMPC (c) descriptors. The displayed green and red lines are used to visually
compare the descriptor performance. The greater number of the green lines, the better. The higher the
ratio of the green lines, the better. The quantitative results are also listed below each pair of images.

Table 7. AUCPR (%) results for all the descriptors.

Descriptor SIFT SURF NG-SIFTLSS PIIFD EOH PCEHD LGHD MFD HOMPC
AUCPR 5716 3205 48.07  22.85 3293 3462 3787 6333 4434 77.01

4.3.4. Descriptor Computational Efficiency

Based on the experimental results obtained using a PC with an Intel Core i3 CPU @ 2.5 GHz and
8 GB RAM, the average computation times of the descriptors for each feature point of all three datasets
are shown in Figure 22. The LGHD descriptor is associated with a high computation time. This is
because the LGHD descriptor use the multi-scale and multi-oriented magnitudes of the log-Gabor
filters to calculate the feature vectors of all the scales. The MFD and EOH are much faster than
LGHD because they use fewer scales and filters. The PIIFD and SIFT use trilinear interpolation in
the algorithm and it is, therefore, much slower than SURF, which uses Haar wavelets and integral
images for image convolution to obtain a fast feature descriptor. Instead of trilinear interpolation
before constructing descriptors, the NG-SIFT uses a uniform feature weighting scheme, and LSS uses
the maximum self-similarity values contributes the histograms of LSS. Similarly, the proposed HOMPC
uses the values of convolved PCMs and MBMs to directly contribute to the bins of each cell. In this
way, it much faster to construct the HOMPC descriptor. The calculations of PCMs and MBMs based on
log-Gabor filters made it slightly slower than SURF, NG-SIFT, and LSS. However, the average precision
and recall results, as well as the F1-measure and AUCPR results of SURF, NG-SIFT, and LSS for the
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datasets performed poorly. The average computation time of the proposed HOMPC descriptor is far
lower than that of the other log-Gabor-based descriptors (LGHD and MFD).

Average computing time (ms)

SIFT SURF NG-SIFT LSS PIIFD EOH PCEHD LGHD MFD  HOMPC
Descriptor algorithm

Figure 22. The average computation time per a feature point using different descriptor. The HOMPC is
our descriptor.

4.3.5. Influence of Rotation and Scale Variations to our Descriptor

The previous experiments have proved that the proposed HOMPC descriptor is robust to
non-linear radiation variations between multi-sensor images, and the proposed HOMPC descriptor
outperformed the state-of-the-art descriptors. In this part, the descriptor robustness to rotation and
scale variations is evaluated, although the HOMPC descriptor is not designed to be rotationally
invariant. We selected one pair of multi-temporal, multi-sensor images (Figure 8e) as the test data.

We firstly tested the descriptor performance with rotation changes. While the left image of
Figure 8e remains unchanged, the right image of Figure 8e is rotated from —20 to 20 degrees with
an interval of five degrees. The precision, recall, and correct matches of different rotation angles are
presented in Table 8. It is shown that the rotation changes that can be tolerated are between —10 and
10 degrees. Subsequently, we tested the descriptor performance with scale variations. The left image of
Figure 8e remains unchanged, and the right image of Figure 8e is resized from 0.5 to 1.8. It is revealed
that the scale variations that can be tolerated are between 0.8 and 1.2, shown in Table 9.

Table 8. The precision, recall, and correct matches of different rotation angles (degree).

Rotation Angle (°) -20 —-15 —10 —5 0 5 10 15 20
Precision (%) 2.3 6.17 31.15 53.88 56.35 51.04 30.05 4.5 3.94
Recall (%) 0.36 0.89 6.79 24.82 41.96 26.25 10.36 0.89 0.89

Correct Matches 2 3 38 139 235 147 58 5 5

Table 9. The precision, recall, and correct matches of different scales.

Scales 0.5 0.6 0.7 0.8 0.9 1 1.2 15 1.8

Precision (%) 7.06 11.04 17.5 30.2 48.97 56.35 34.5 17.76 7.38

Recall (%) 2.14 3.21 6.25 13.21 29.64 41.96 15.89 4.82 1.61
Correct Matches 12 18 35 74 166 235 89 27 9

It can be observed from the results that HOMPC can tolerate rotations between images less
than 10 degrees, which could be enough for multi-sensor remote sensing images, because the
geometry of remote sensing images can be roughly calibrated by geographical calibration. Additionally,
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when dealing with the multi-sensor remote sensing images, the ground sample distance is usually
known, and the images can be assigned to the same scale by resampling. Therefore, our HOMPC
descriptor can tolerate scales between images from 0.8 to 1.2, which could be enough for multi-sensor
remote sensing images.

4.4. Discussion

Comparing the average precision and recall results, as well as F1-measure and AUCPR results
of the multi-sensor image pairs among the three datasets, we found that the results for the SAT
dataset are better than for the CVC dataset and UAV dataset for all the descriptors, on the whole.
This is because that the distance of the spectral range of multi-sensor devices influences the descriptor
performance. In detail, the spectral modes of the SAT dataset (i.e., Band2/Band3, Pan/Pan, Pan/Band3,
Band2/Band4) and the CVC dataset correspond to visible/longwave infrared, while the UAV dataset
corresponds to visible/thermal infrared. Although all of the image pairs are selected from different
sensors, the greater the spectral ranges of the sensors, the greater the differences between the two
local feature regions are and, hence, the less efficient the local feature descriptors become. The results
for the UAV dataset performed worst of all three datasets because the texture difference and the size
of overlap regions affect the number of existing correct-match point pairs of the initial match point
sets. The great spectral range between the visible and longwave infrared images made their texture
difference become large, while the low pixel resolution of the thermal infrared camera and some
geometry and perspective transformation between the visible and thermal images made the overlap
regions of the reference and target images smaller. The number of existing correct-match point pairs of
the initial match point sets of the UAV dataset is very limited, resulting in its low average precision
and recall results, as well as the low F1-measure and AUCPR results of all descriptors.

We also found that the gradient-based descriptors, i.e., SIFT, SURF, NG-SIFT, LSS, and PIIFD
are more sensitive to spectral differences than sensor differences. Meanwhile, the proposed HOMPC
descriptor is more robust when dealing with greater spectral ranges, as well as different sensors.
The average descriptor performance of the EOH, PCEHD, MFD, and LGHD descriptors lie between
the gradient-based descriptors and the proposed HOMPC descriptor when dealing with visible and
longwave infrared images. This is because the gradient-based descriptors rely on a linear relationship
between images, and they are not appropriate for the significant non-linear intensity differences caused
by radiometric variations.

The reason that the LGHD descriptor performs better than the gradient-based descriptors is that
the LGHD descriptor use the four-scale and six-oriented log-Gabor filters (24 filters in total) to capture
the multi-scale and multi-oriented magnitude feature information. The LGHD descriptor uses the
distribution of the high-frequency components to express the shape and structure information of the
objects and is robust to non-linear intensity variations. Since the LGHD descriptor needs to compute
the feature vector at four scales, the computational efficiency is poor.

The MFD descriptor attempts to decrease the computation time of LGHD by using fewer
log-Gabor filters (10 filters in total), and it shows a descriptor performance that is slightly better
than LGHD when the NNDR threshold is 0.80. However, if the NNDR threshold is varied from 0.80
to 1.0 in intervals of 0.05, the descriptor performance of MFD is poorer than that of LGHD. MFD
is efficient when the distances of the feature vectors between local regions of multispectral images
for true or false matchings are not close, such as visible/near-infrared images. However, when the
distances of the feature vectors between local regions are very close to each other, the feature vectors
of local regions should be discriminant enough, as with visible/longwave infrared images. The LGHD
descriptor using more log-Gabor filters than MFD can capture more feature information and is more
discriminative when dealing with feature vectors between local regions that are close to each other.
The average precision and recall results, as well as the F1-measure and AUCPR results obtained with
the three datasets, also verify the above inference.
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When using all the image pairs of the three datasets, the average results of the proposed HOMPC
descriptor are much better than the other descriptors. This is because the proposed descriptor is
based on the phase congruency and the distribution of the magnitude information and is robust to
non-linear radiation variations of multi-sensor images. In addition, the phase congruency information
ensures the precision, and the distribution of the magnitude information adds to the correct number of
matched points, which is evaluated and discussed in Section 4.2. In fact, the significant performance
improvement of HOMPC over the other descriptors demonstrates the effectiveness and advantages
of the proposed strategies, including the PCMs and MBMs, the novel measure for calculating the
feature vector of each cell based on a convolution operation, and the dense description by overlapping
blocks. We have to mention that, in order to make the proposed HOMPC descriptor more efficient, the
structure and shape of the common features are captured using the overlapping blocks, in addition
to the combination of magnitude and phase congruency information. It is for this reason that our
descriptors are more sensitive to rotation transformations.

In addition to the advantages of average precision and recall, as well as the F1-measure and
AUCPR, the computational efficiency of the proposed HOMPC descriptor is far better than that
of LGHD, which can be considered the second-best descriptor when comparing the results of the
multi-sensor image pairs of the three datasets. Details of the computational efficiency are provided in
Section 4.3.4. Additionally, the influences of rotation and scale variations to the proposed HOMPC
descriptor is discussed in Section 4.3.5 in detail.

Summarizing the quantitative experimental results described in Sections 4.3 and 4.4, we can draw
the following summaries:

e  The proposed HOMPC descriptor is designed for the description problem of multi-sensor images
with non-linear radiation variations.

e In the experiments undertaken in this study, HOMPC achieved very good average precision and
recall on the three datasets.

e  The descriptor performance of HOMPC is far superior to that of the classical local feature
descriptors to describe the local regions of multi-sensor images.

e  The time consumption of HOMPC is far lower than that of the other log-Gabor-based descriptors
(LGHD and MFD).

e  The proposed HOMPC descriptor can tolerate small amounts of rotation and scale variations.

5. Conclusions

In this paper, we proposed a novel descriptor (named HOMPC) based on the combination of
magnitude and phase congruency information to capture the common information of multi-sensor
images with non-linear radiation variations. We first introduce the concept of magnitudes of
log-Gabor filters, and we then propose the PCMs and MBMs, preparing for the convolution operation.
To accelerate the computational efficiency of each feature vector, we apply Gaussian filters and mean
filters to the PCMs and MBMs, respectively. To capture the structure and shape properties of local
regions, we describe the local regions using the HPC and HOM based on a dense grid of local
histograms. Finally, we combine the HOM and HPC to obtain the proposed HOMPC descriptor,
which can capture more common features of multi-sensor images from the combination of magnitude
and phase congruency information.

To make a fair comparison between the local feature descriptors, we used the same feature
detection method and the same similarity metric to uniformly test the descriptor performance in
the experiments. In the experiments, we first studied the parameters and tested the advantages of
integrating the HOM and HPC. The HOMPC descriptor was then evaluated using three datasets (CVC
dataset, UAV dataset, and SAT dataset) and compared to the state-of-the-art local feature descriptors
of SIFT, SURF, NG-SIFT, LSS, PIIFD, EOH, PCEHD, LGHD, and MFD. The experimental results
confirmed that HOMPC outperforms the other local feature descriptors. Moreover, by designing a fast
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method of constructing the feature vectors for each block, HOMPC has a much lower run time than
LGHD, which achieved the second-highest F1-measure and AUCPR values in the experiments. Finally,
the rotation and scale variations to the proposed HOMPC descriptor are evaluated and the results
show that our HOMPC descriptor tolerates small amounts of rotation and scale variations, although
the purpose is to address the non-linear radiation variations between multi-sensor images.

The HOMPC descriptor can be applied to change detection, target recognition, image analysis,
image registration, and fusion of multi-sensor images. In our future work, we will test our HOMPC
descriptor on more multi-sensor images with non-linear radiation variations, such as optical and SAR
images, and optical and LiDAR images.
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