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Abstract: Forests in the Southwestern United States are becoming increasingly susceptible to large
wildfires. As a result, forest managers are conducting forest fuel reduction treatments for which spatial
fuels and structure information are necessary. However, this information currently has coarse spatial
resolution and variable accuracy. This study tested the feasibility of using unmanned aerial vehicle
(UAV) imagery to estimate forest canopy fuels and structure in a southwestern ponderosa pine stand.
UAV-based multispectral images and Structure-from-Motion point clouds were used to estimate
canopy cover, canopy height, tree density, canopy base height, and canopy bulk density. Estimates
were validated with field data from 57 plots and aerial photography from the U.S. Department
of Agriculture National Agriculture Imaging Program. Results indicate that UAV imagery can be
used to accurately estimate forest canopy cover (correlation coefficient (R2) = 0.82, root mean square
error (RMSE) = 8.9%). Tree density estimates correctly detected 74% of field-mapped trees with
a 16% commission error rate. Individual tree height estimates were strongly correlated with field
measurements (R2 = 0.71, RMSE = 1.83 m), whereas canopy base height estimates had a weaker
correlation (R2 = 0.34, RMSE = 2.52 m). Estimates of canopy bulk density were not correlated to field
measurements. UAV-derived inputs resulted in drastically different estimates of potential crown fire
behavior when compared with coarse resolution LANDFIRE data. Methods from this study provide
additional data to supplement, or potentially substitute, traditional estimates of canopy fuel.

Keywords: unmanned aerial vehicle (UAV); drone; wildfire; fire behavior; structure-from-motion;
SfM; lidar; base height; bulk density; cover

1. Introduction

The Southwestern United States is home to the largest contiguous ponderosa pine (Pinus ponderosa)
forest in the world [1,2]. The southwestern ponderosa pine forests serve an ecologically important
role by providing biodiversity, wildlife habitat, carbon storage, and sequestration functions, as well as
ecosystem services for the surrounding communities. In these forests, fire suppression, heavy grazing,
logging, and climate change have created increased susceptibility to high-intensity crown fires, putting
the forest ecosystems and neighboring communities at risk [1,3–5]. Historically, southwestern forests
experienced frequent low-intensity fires that consumed forest fuels and effectively thinned younger
trees to maintain a low tree density. Euro-American settlement brought changes in land use and
introduced fire suppression, which removed this natural balancing mechanism [6,7]. The forests that
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were naturally maintained by frequent low-intensity fires are now characterized by an overabundance
of forest fuel [8–11].

The U.S. Forest Service is implementing large-scale forest fuel reduction treatments across the
state of Arizona to reduce the risks of catastrophic fires. Such forest fuel reduction treatments often
include a combination of mechanical thinning followed by the reintroduction of periodic low-intensity
fire. Forest thinning is designed to manipulate forest structure, such as canopy cover, canopy height,
crown base height, and crown bulk density, to produce forest conditions within the natural range
of variability [12–15]. Reintroduction of low-intensity fire is used to restore the natural fire regime
and maintain a balance of forest fuels [16,17]. These techniques can decrease the risk of wildfire,
reduce the impacts of wildfire, reduce outbreaks of insects and disease, and help mitigate the effects of
a changing climate [4,5,18–21].

Land managers often use detailed spatial forest structure information when planning,
implementing, and monitoring forest fuels treatments. Currently, most fuels treatment efforts use
spatial fuel information from the Landscape Fire and Resource Management Planning Tools Project
(LANDFIRE) database, which is an interagency partnership primarily between the United States
Department of Agriculture (USDA) Forest Service and the United States Department of Interior
(DOI). LANDFIRE provides comprehensive nationwide coverage across the U.S., is updated every
two–five years, and is available for free (www.landfire.gov). The spatial fuels products provided by
the LANDFIRE project include: canopy cover, canopy height, crown base height, crown bulk density,
and fire behavior fuel models. However, its 30 m spatial resolution is too coarse to represent the
variations in forest fuel at a local scale [22] and LANDFIRE data applications are limited to landscape
scales only (>405 hectares) [15,23,24]. Finer resolution data that accurately represent local-scale forest
characteristics are needed to generate more detailed wildfire models. The accuracies in the LANDFIRE
forest fuels raster products can vary by location compared to field-based measurements and often need
to be adjusted to better represent actual site-specific conditions [25]. For example, in a study conducted
by Reeves et al. [26] across 12 different sites, LANDFIRE canopy base heights had correlation coefficient
(R2) values that ranged from 0 to 0.93 when compared to field data.

Recent developments in unmanned aerial vehicles (UAVs) and miniaturization of sensor
technologies have made them an attractive alternative for acquiring high resolution data at local scales.
Compared to the resolution of aerial images (one meter resolution) or satellite data (2–30 m resolution),
images acquired from UAVs tend to have spatial resolutions of 5–15 cm due to a lower altitude of
acquisition. Additionally, UAVs offer the ability to control the image acquisition process and timing,
and can obtain overlapping images to the user’s specifications. Similar to aerial- and satellite-based
spectral data, UAV images can be used for classifying vegetation types and estimating forest canopy
cover [27–30]. If acquired with high overlap, UAV images can be used with Structure-from-Motion
(SfM) algorithms to produce three-dimensional (3D) point cloud data that represent both the ground
surface and vegetation [31,32], which can then be used to derive forest structure information. Currently,
UAV SfM datasets have a smaller footprint (40–120 hectares) than aerial lidar, but have finer resolution
(10+ points/m2) due to the interpolated nature of the points. Relative to aerial lidar acquisitions,
the cost of UAV equipment (roughly around $30,000 for UAV and sensor) enables landowners and
managers to purchase their own and conduct surveys as needed. The average cost to conduct
a field-based forest inventory is $104–180/plot [33] and field-based surveys are often implemented at
a sampling frequency of one plot for every two–three hectares. UAVs can offer more comprehensive
coverage and a less human-biased assessment of forest structure characteristics [34], leading to adaptive
management opportunities and more informed decision-making.

UAV SfM data (14+ points/m2) have been successfully used in temperate deciduous forests to
derive forest canopy height estimations (R2 = 0.86, root mean square error (RMSE) = 3.6 m) [32,35].
When compared against manned airborne lidar data and field measurements, UAV data in a dry
sclerophyll eucalypt forest performed well at estimating total canopy cover and tree density, with 82%
and 90% detection, respectively, with a R2 of 0.68 (RMSE = 1.3 m) for tree height estimates [36].
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UAV-derived estimates for Lorey’s mean height, dominant height, stem numbers, basal area, and stem
volume have demonstrated R2 values of 0.71, 0.97, 0.60, 0.60, and 0.85, respectively, with RMSE values
of 1.4 m, 0.7 m, 538.2 ha, 4.5 m2/ha, and 38.3 m3/ha, respectively [34]. In Australia, UAV image-derived
individual tree segmentation detected 70% of the dominant trees, and 35% of suppressed trees, but with
a low R2 of 0.15 in aboveground biomass estimates [37]. Sankey et al. [30] successfully estimated
canopy cover (R2 = 0.74; RMSE = 8.5%), individual tree height (R2 of 0.64 to 0.93; RMSE = 1.5 m to
2.9 m), and crown diameter (R2 of 0.66 to 0.70; RMSE of 0.72 to 1.9 m) in a ponderosa pine forest
area similar to this study. However, the individual tree delineation showed weaker correlations with
field-based measurements (R2 of 0.36–0.53; RMSE of 0.83 trees/100 m2 and 2.2 trees/100 m2) [30].
Our study tested the accuracies in measuring tree canopy base height and canopy bulk density using
SfM methods. At the time of this study, no others had tested and quantified the accuracy of canopy
base height and bulk density using these methods.

Our overall goal was to estimate ponderosa pine forest canopy fuel and potential crown fire
behavior using UAV data to supplement the coarse-resolution LANDFIRE data and better represent
actual site-specific conditions. The specific objectives included the following:

1. Estimate the following stand-level variables from the UAV data in 10 m cells for fire behavior
modeling: total canopy cover (%), tree density (total no./cell), mean canopy height (m), mean
canopy base height (m), mean canopy bulk density (kg/m3), topographic elevation (m), slope
(degrees), and aspect (azimuth).

2. Test and quantify the errors associated with UAV SfM-derived point cloud data in delineating
individual trees and estimating for each individual tree: total height, canopy base height,
and canopy bulk density.

If successfully generated, these UAV-based data could offer a fuel measurement method that is
more efficient and potentially more accurate than field surveys. By supplementing or replacing
LANDFIRE data, UAV-derived metrics can provide fine- to mid-scale spatial data and provide
opportunities for managers to prioritize treatments, calibrate ongoing treatments, and conduct
responsive adaptive management.

2. Materials and Methods

2.1. Study Area

This study focused on the wildland-urban interface of Flagstaff, Arizona, USA, and the
surrounding Coconino National Forest managed by the U.S. Forest Service (Figure 1). Specifically,
we focused on a 12.14 ha area that has been identified by the city of Flagstaff as high priority for fuels
treatment and mechanical thinning, due to its close proximity to residential structures, and is located
in Phase 1 of a forest fuels reduction project known as the Flagstaff Watershed Protection Project
(FWPP). The study area has not experienced any timber harvesting since 1970 and was chosen due to
its operational feasibility for UAV use. Phase 2 of FWPP is also located in Coconino National Forest
and includes helicopter and skyline cable harvesting techniques, which is planned to be treated in
future years. The final treatment area, Phase 3, is located about 25 km southeast of Flagstaff.

The elevation of the study area ranges between 2158 and 2188 m above sea level with a southwest
aspect of 0–10 degrees slope. Annual mean precipitation is 55 cm, which predominantly occurs
during summer Monsoon events and winter snowfall, and the mean annual temperature is 7.9 ◦C.
On average, the coolest month is December, with an average temperature of −1.3 ◦C, whereas July is
the warmest month with an average temperature of 18.9 ◦C [38]. The dominant overstory vegetation
type is ponderosa pine (Pinus ponderosa) with a small Gambel oak (Quercus gambelii) component.
Native understory vegetation is primarily composed of Arizona fescue (Festuca arizonica), bottlebrush
squirreltail (Elymus elymoides), mountain muhly (Muhlenbergia montana), and Fendler’s ceanothus
(Ceanothus fendleri). Common invasive species in this area include Dalmatian toadflax (Linaria dalmatica),
common mullein (Verbascum thapsus), and cheatgrass (Bromus tectorum).
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Figure 1. Vicinity map of our study site, UAV flight areas, and field sampling locations: (A) Location 
of our study area in within the state of Arizona, (B) UAV flight locations and their proximity to 
Flagstaff, Arizona, USA, and (C, D) Both UAV flight areas overlaid on false color UAV imagery with 
points representing each field measured tree. 

2.2. UAV Images and Pre-Processing 

We used a SenseFly eBee fixed-wing UAV platform that weighs approximately 537 g with a 
wingspan of 96 cm [30,34]. The fixed-wing UAV has a cruising speed of 40–90 km/h and maximum 
flight coverage of 12 km2 under optimal conditions [39]. It is launched by hand and lands by reducing 
speed and altitude until it belly lands. The eBee operates with eMotion 2 [40] custom flight planning 
software package and a ground station, which sends waypoint navigation data to the aircraft to 
perform pre-planned, autonomous flights. We completed two UAV surveys on August 21, 2016 and 
on November 22, 2016 close to solar noon to minimize shadowing (Figure 1). The temporal difference 
between the two survey dates had minimal impact at our study site, which is dominated by evergreen 
conifer trees. Both surveys were conducted with 85–90% latitudinal and longitudinal overlap, at a 
maximum flight altitude of 120 m, resulting in image pixel resolution of 15 cm. Flight 1 lasted for 15 
min resulting in 960 individual images taken, whereas Flight 2 took 22 min to complete and acquired 
a total of 1828 individual images. 

The eBee UAV was equipped with a multispectral sensor with four spectral bands: green (550 
nm), red (660 nm), red edge (735 nm), and near-infrared (790 nm). The images were processed using 
Pix4D software (Pix4D, Lausanne, Switzerland), which effectively co-registers and merges the images 
together to create an orthomosaic image for each spectral band. The resulting four orthomosaics were 
then spectrally stacked with ENVI 5.3 (Harris Geospatial Solutions, Broomfield, CO, USA) image 
analysis software to create a single multispectral orthomosaic image with the four separate bands 
with 15 cm spatial resolution for each flight area. 

Figure 1. Vicinity map of our study site, UAV flight areas, and field sampling locations: (A) Location of
our study area in within the state of Arizona, (B) UAV flight locations and their proximity to Flagstaff,
Arizona, USA, and (C, D) Both UAV flight areas overlaid on false color UAV imagery with points
representing each field measured tree.

2.2. UAV Images and Pre-Processing

We used a SenseFly eBee fixed-wing UAV platform that weighs approximately 537 g with
a wingspan of 96 cm [30,34]. The fixed-wing UAV has a cruising speed of 40–90 km/h and maximum
flight coverage of 12 km2 under optimal conditions [39]. It is launched by hand and lands by reducing
speed and altitude until it belly lands. The eBee operates with eMotion 2 [40] custom flight planning
software package and a ground station, which sends waypoint navigation data to the aircraft to
perform pre-planned, autonomous flights. We completed two UAV surveys on 21 August 2016
and on 22 November 2016 close to solar noon to minimize shadowing (Figure 1). The temporal
difference between the two survey dates had minimal impact at our study site, which is dominated
by evergreen conifer trees. Both surveys were conducted with 85–90% latitudinal and longitudinal
overlap, at a maximum flight altitude of 120 m, resulting in image pixel resolution of 15 cm. Flight 1
lasted for 15 min resulting in 960 individual images taken, whereas Flight 2 took 22 min to complete
and acquired a total of 1828 individual images.

The eBee UAV was equipped with a multispectral sensor with four spectral bands: green (550 nm),
red (660 nm), red edge (735 nm), and near-infrared (790 nm). The images were processed using
Pix4D software (Pix4D, Lausanne, Switzerland), which effectively co-registers and merges the images
together to create an orthomosaic image for each spectral band. The resulting four orthomosaics were
then spectrally stacked with ENVI 5.3 (Harris Geospatial Solutions, Broomfield, CO, USA) image
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analysis software to create a single multispectral orthomosaic image with the four separate bands with
15 cm spatial resolution for each flight area.

We also generated 3D point cloud data using the Pix4D software from each spectral band and
merged them in CloudCompare (www.cloudcompare.org) software to create a single, dense point
cloud file for each flight area. The average point densities for the point clouds were 32 points/m2 and
56 points/m2 for Flights 1 and 2, respectively. The point cloud for Flight 2 contained a few spurious
points that were well below the ground height, which were removed using the Statistical Outlier
Removal tool in CloudCompare software with one standard deviation.

2.3. UAV Image-Derived Canopy Cover

Forest canopy cover was derived using the UAV orthomosaic images and a normalized difference
vegetation index (NDVI)-based segmentation method. First, NDVI was calculated in ENVI 5.3 software
with the following equation:

NDVI =
(NIR − Red Edge)
(NIR + Red Edge)

(1)

Our preliminary tests indicated that the NIR and red edge band combination generated a better
NDVI raster than the NIR and red band combination with the images from our sensor. Next, the ENVI
image segmentation tool was used to classify canopy pixels, which were then overlaid on a canopy
height model raster, generated with the raster (https://CRAN.R-project.org/package=raster) package
in R (R Development Core Team 2008, Vienna, Austria), to remove pixels with a tree canopy height
of less than 1.37 m. This process effectively removed areas of high NDVI values and low canopy
height (e.g., herbaceous vegetation) to produce a raster image of only tree canopy. The resulting binary
canopy raster was resampled from 15 cm to 20 cm pixels and imported to ArcMap 10.4 (ESRI 2015,
Redlands, California, USA), and summarized into 10 m cells (N = 2500 pixels per 10 m cell) to estimate
total canopy cover within each 10 m cell.

The UAV image-derived canopy cover estimates were validated using two different independent
data sources. First, the latest available U.S. Department of Agriculture National Agriculture Imagery
Program (NAIP) image from summer of 2017 with 1 m spatial resolution was used. A similar workflow
to the UAV processing was used to classify canopy cover in the NAIP imagery and summarize the data
into 10 m grids (N = 100 NAIP image pixels per 10 m cell). A pixel-wise regression analysis was then
used to compare the tree canopy cover estimates from the UAV image classification and NAIP image
classification. Secondly, our field-based measurements were used to validate the UAV image-derived
canopy cover estimates. Field measurements of each tree canopy diameter were summarized in
ArcMap 10.4 to estimate total canopy cover within each 10 × 10 m field plot (N = 57 plots) and
compared to UAV image-derived estimates also via a simple linear regression.

2.4. UAV Image-Derived Individual Tree Segmentation

Ground points were first classified in the UAV SfM-derived point cloud data using a progressive
morphological filter [41] in the lidR (https://CRAN.R-project.org/package=lidR) package in R.
A digital terrain model (DTM) was then created from the ground points and subtracted from the point
cloud Z values to calculate above ground height or Z values [34,42–45]. The resulting point clouds
contained an abnormal amount of noise points that were a few meters above the ground surface, but
represented neither ground nor vegetation. To remove these points, we applied a second progressive
morphological ground filter with a higher maximum threshold height (4 m). Next, the point clouds
were overlaid with the NDVI raster image and all points with a NDVI value <0 were excluded.
Applying these two steps generated a point cloud that best represented only tree points, which were
then used in the tree segmentation algorithm (Figure 2).

www.cloudcompare.org
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=lidR
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Figure 2. Point cloud pre-processing prior to tree segmentation: (A) Point cloud with initial ground
classification are displayed in red, (B) Point cloud that has been normalized and filtered to remove
ground points, which still included some non-tree points, and (C) The final point cloud after the second
ground filtering and NDVI threshold only included tree points.

The tree segmentation method in the R lidR package used in this study segments trees by analyzing
points from the tree top to bottom and using the horizontal distance between points to determine if
they are part of a specific tree [42]. The segmentation method relies on four user-defined parameters:
minimum height of a tree, maximum crown radius, and two numeric distances, which define horizontal
distance (in meters) thresholds between all points above 15 m in height, and below 15 m in height.
These thresholds values are hereafter referred to as distance thresholds (DT). The DT value is site
specific [42]. A low DT value generally results in over-segmentation with many additional trees
identified in the point cloud, whereas a high DT value causes under-segmentation, where many tree
canopies are merged together into single large canopies. In this study, 16 different iterations of varying
DT values were tested. We used a minimum tree height of 2 m, and a maximum canopy diameter of
7 m, based on the ranges observed in our field data.

The UAV SfM point cloud-derived trees were first overlaid with the 10 × 10 m grid to count all
trees detected within each cell, and then compared to the field-mapped trees to assess the accuracy of
the tree segmentation and to quantify true positive detection and false negatives (omissions). False
positives (commissions) were calculated by summing the number of UAV point cloud-derived trees
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within the 10 × 10 m plots that did not match a field-mapped tree. Tree segmentation with constant
parameters across the entire study area yielded varying accuracies in areas of higher versus lower tree
density. Assuming a linear relationship between tree density and canopy cover, an optimized version
of the tree segmentation was developed. Using the UAV image-derived tree canopy cover estimates,
we first classified the study area into regions of high canopy cover and low canopy cover. In areas of
>50% canopy cover, the tree points from a lower DT value iteration were used, and in areas of <50%
canopy cover, the tree points from a higher DT value iteration were used.

Validation metrics used to assess each tree segmentation iteration included recall (r), precision (p),
and F-score (F), which were calculated using the following equations [42,46]:

r =
True Positives

(True Positives + False Negatives)
(2)

p =
True Positives

(True Positives + False Positives)
(3)

F = 2 × (r × p)
(r + p)

(4)

Additionally, an ANOVA test with Tukey’s multiple comparisons was conducted to determine if
a statistically significant different number of trees were detected between the UAV point cloud data
and field-based measurements within each density class and between the UAV point cloud-derived
density estimates among different density classes.

2.5. UAV Image-Derived Individual Tree Metrics

The following individual tree measurements were derived from the UAV SfM point cloud
data: the X and Y coordinates of each tree top, canopy diameter, total tree height, canopy base
height, canopy bulk density, and percentile heights (ranging from 5th to 99th percentiles in 5 m
increments). These metrics were compared to the corresponding field-mapped trees for validation:
total tree height, canopy base height, and canopy bulk density. Several possible UAV-derived predictor
variables were explored to estimate canopy base height and canopy bulk density. For canopy base
height, these predictor variables included the height percentiles of each segmented tree and the
height-to-crown-diameter ratio. Estimates for canopy bulk density involved first establishing a tree
height to diameter at breast height (DBH) relationship. This relationship was used to predict tree DBH
with the UAV-derived tree height. The predicted DBHs were then used in northern Arizona-specific
allometric equations, shown in Equations (5)–(7), for ponderosa pine [47] to estimate the canopy mass
of each tree. The UAV-derived total tree height, average canopy radius, and canopy base height were
then used to estimate canopy volume assuming a cylindrical canopy model. Canopy mass was then
divided by canopy volume to estimate the canopy bulk density. This process for estimating canopy
bulk density directly mirrored the steps used with the field measurements to estimate bulk density.
Linear regression models then were used to examine the relationships between the UAV image-derived
and field-measured variables. A bootstrap resampling analysis (subsample = 100; iterations = 100,000)
was conducted with the UAV tree height measurement errors to determine the mean error with a 90%
confidence interval.

2.6. Field Validation

Field measurements were designed to provide a validation dataset for the forest stand
characteristics and individual tree measurements derived from the UAV data. Two specific forest
stand-level variables that required validation data were: tree canopy cover and tree density estimates in
10 m cells (100 m2). Using 10 m grids in ArcMap, along with polygons of the study areas imaged with
the UAV, we first randomly chose 100 field plot locations with a minimum distance of 10 m (Figure 1).
Field sampling was then stratified by tree density based on an initial visual estimate of tree density
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(trees/cell) in the high-resolution (~15 cm) orthomosaic image from the UAV surveys. The study area
contained only a few areas of higher tree density, but the desired goal of this study was to measure and
evaluate tree canopy cover and tree density estimates across the entire possible range of tree densities
(1–7 trees/cell). We, therefore, actively sought and located at least 5 cells with higher densities of 5, 6,
and 7 trees/cell, and at least 10 cells with a lower density of 1 to 4 trees/cells (Table 1). The sampling
goal was achieved at all density levels with a total 57 plots, 10 × 10 m in dimension, distributed across
the study area. We then navigated to the four corners of each plot to match the locations of the field
plots with the 10 m cells derived in ArcMap 10.4. Once the plot boundaries were delineated, the global
positioning system (GPS) location of each tree inside the plot was digitized on the orthomosaic map to
ensure that matching area and individual trees were examined in the field and UAV images.

Table 1. Distribution of the field samples. Field sampling was stratified by tree density to collect
individual tree measurements in areas of varying density. The sampling goal was to measure 10 cells
with a density of 1, 2, 3, and 4 trees/cell, and 5 cells with a density of 5, 6, and 7 trees/cell. The sampling
goal was met at all densities.

Tree Density (trees/cell) Sampling Goal (cells) Actual Measured (cells)

1 10 12
2 10 10
3 10 10
4 10 10
5 5 5
6 5 5
7 5 5

Total 55 57

To validate the UAV-derived individual tree metrics, the following measurements were made
for every tree within each field plot: species identification, diameter at breast height (DBH), canopy
diameter in the north–south and east–west axes, total tree height, canopy base height, and canopy bulk
density. The DBH was measured using a diameter tape at a height of 1.37 m on the upslope side of the
tree. Canopy diameter was measured using a Leica DISTO E7500i laser rangefinder (Leica Geosystems,
St Gallen, Switzerland) in both the north–south and east–west axes, which were determined using
a Suunto MC2 compass (Suunto, Vantaa, Finland) with 10◦ E magnetic declination adjustment. Canopy
height and canopy base height were measured using the laser rangefinder to determine horizontal
distance to the tree, and a Suunto PM-5 (Suunto, Vantaa, Finland) clinometer to measure the angles
to tree base, canopy top, and canopy base. Canopy base was the lowest point of the continuous
canopy. The distance and angle measurements were then used to calculate tree height and canopy
base height. Canopy bulk density was calculated by first estimating canopy mass using DBH and
allometric equations, shown in Equations (5)–(7), by Kaye et al. [47]. The canopy volume was then
calculated using the average canopy radius, overall tree height, and canopy base height, assuming
a cylindrical canopy model, as shown in Equation (8). Crown mass was divided by crown volume to
estimate a crown bulk density for each tree, given by Equation (9).

Mass of Live Branch Wood and Bark (kg) = 1.0425e−6.0278+ln (dbh)×2.8655 (5)

Mass of Dead branch wood and bark (kg) = 1.1322e−5.3589+ln (dbh)×2.250 (6)

Mass of Foliage (kg) = 1.0672e−4.1317+ln(dbh)×2.0159 (7)

Canopy Volume =
[
π (avg. canopy radius)2

]
× (tree height − canopy base height) (8)

Canopy Bulk Density =
Sum of Canopy Mass

Canopy Volume
(9)
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2.7. Fire Behavior Modeling

Land managers typically use spatial fuels data from LANDFIRE with FlamMap 5 [48] (U.S. Forest
Service Rocky Mountain Research Station, Missoula, Montana, USA) to model potential fire behavior
in an area of interest. We compared some of the LANDFIRE variables and UAV image-derived
variables as inputs to FlamMap 5 software to model crown fire behavior and to determine if a different
image source and resulting input rasters would produce substantially different fire behavior models.
FlamMap is used to combine forest fuel characteristics, topography, fuel moisture, and weather factors
to model fire behavior outputs. The outputs include flame length in meters, rate of spread in meters per
minute, and potential crown fire activity. Using FlamMap with LANDFIRE and UAV image-derived
input variables, we estimated areas of surface, passive crown, or active crown fire. Surface fire is
defined as a fire burning through the fuels on the ground surface. Passive crown fire occurs in an area
that exhibits surface fire and contains a canopy base height low enough to initiate crown fire, but the
canopy bulk density is insufficient to carry the crown fire. Active crown fire occurs where crown fire
initiation is achieved and canopy bulk density can adequately carry a crown fire [49,50].

The spatial fuels products produced in 30 m cells by the LANDFIRE project include: canopy cover,
total canopy height, crown base height, crown bulk density, and fire behavior fuel models. Canopy
height describes the average height of the forest canopy within a 30 m grid cell [26]. Crown bulk
density is the mass of canopy fuel per canopy volume that would burn in a crown fire [51–53]. Crown
base height is the lowest point at which sufficient canopy fuel exists for ignition (≥0.012 kg/m3) [23].
The fire behavior fuel models refer to the 13 Anderson Fire Behavior Fuel Models [54] and the 40 Scott
and Burgan Fire Behavior Fuel Models [55], which describe surface fuel composition and associated
fire behavior [56]. These LANDFIRE products are derived from satellite imagery, biophysical gradients,
and vegetation structure and composition data, as well as 40 different predictor variables, such as
annual precipitation, temperature, evaporation, evapotranspiration, and others [57–61].

The UAV-based canopy height raster was generated by creating a 0.25 m mean canopy height
model across the study area that was then resampled to 10 m resolution and classified into 10 m height
classes, similar to the LANDFIRE data format. A canopy base height raster was created by using
the percentile height of points within each 10 m cell that was the best indicator of field-measured
canopy base heights, and reclassified to units used in LANDFIRE (base height in meters × 10). We also
used the above described UAV-based canopy cover raster in 10 m resolution as an input to FlamMap.
The UAV image-derived DEM in ENVI LiDAR 5.3 (Harris Geospatial Solutions, Broomfield, CO, USA)
with 1 m resolution was used to create the elevation, slope, and aspect rasters in ArcMap 10.4. We
resampled all three topographic raster layers to 10 m resolution to match all the other raster layers.
A previous study assessed the accuracies from the same UAV platform and sensor in a similar area
in Northern Arizona [30] and reported that UAV SfM derived DEMs were well correlated to those
derived from both terrestrial and UAV-based laser scanning (R2 = 0.71 and 0.73, RMSE = 0.17 m and
0.5 m, respectively). Canopy bulk density was estimated with UAV data, but was not used due to its
poor correlation to field-based estimates. Instead, we used the LANDFIRE canopy bulk density raster.
Additionally, the fuel model raster was not estimated using UAV data and was also used directly from
the LANDFIRE database.

Crown fire behavior models were then performed using combinations of LANDFIRE and UAV
data (Table 2). A sensitivity analysis was conducted by substituting one LANDFIRE raster input at
a time with a single UAV-derived raster for each iteration to determine the effects of using UAV-derived
layers for each input. All FlamMap iterations were conducted using 10 m resolution input raster layers.
Since LANDFIRE data have 30 m resolution, the data were resampled to 10 m to be compatible with
the UAV data. Additional parameters in FlamMap for modeling crown fire behavior include a fuel
moisture file, wind speed, and wind direction. These additional parameters remained constant across
all iterations (Table S1).
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Table 2. Inputs rasters used in FlamMap to model crown fire behavior. The outputs from these
iterations were then compared to assess the differences in fire behavior models with the UAV-derived
inputs (UAV) versus LANDFIRE-based inputs (LF). All LANDFIRE data used were from the 2012
version. All raster input files were either resampled from LANDFIRE 30 m, or resampled from original
UAV data resolution, to a matching resolution of 10 m. Iteration 1 modeled crown fire behavior using
30 m LANDFIRE data, Iteration 2 used LANDFIRE data resampled to 10 m. Iterations 3 to 6 tested
UAV-derived rasters for topography, canopy cover, canopy height, and canopy base height, respectively.
Iteration 7 used all available UAV-derived rasters.

Input Raster Data Source for Each Iteration

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

Elevation LF LF UAV LF LF LF UAV
Slope LF LF UAV LF LF LF UAV

Aspect LF LF UAV LF LF LF UAV
Canopy Cover LF LF LF UAV LF LF UAV
Canopy Height LF LF LF LF UAV LF UAV

Canopy Base Height LF LF LF LF LF UAV UAV
Canopy Bulk Density LF LF LF LF LF LF LF

Fuel Model LF LF LF LF LF LF LF

3. Results

3.1. Forest Stand-Level Metrics

The fixed-wing UAV orthomosaic images from Flights 1 and 2 covered 6.7 ha area each with
corresponding 3D point cloud data. When an equal number of 10 m cells (N = 1371) from the UAV- and
NAIP-derived canopy cover estimates were compared, the regression model resulted in an adjusted R2

of 0.72 (RMSE = 10.91%; Figure 3). The regression coefficients indicated that the NAIP-derived canopy
cover estimates were higher than the UAV-derived estimates, especially in areas of high canopy cover
(Figure 3). When the UAV image-derived canopy cover estimates were compared to the field plots
(N = 57), the regression model also showed a positive correlation (adj. R2 = 0.67, RMSE = 11.87%).
In this comparison, the UAV image-derived estimates tended to be lower than the field-based estimates,
especially in areas of high canopy cover.
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The UAV SfM point cloud-derived tree density estimates were first compared with field-based
measurements in each density class. The mean number of segmented trees for plots with one, two,
and three trees closely matched the number of trees mapped in the field plots. However, plots with five,
six, and seven trees had a greater variance around the mean estimates. The ANOVA test with Tukey’s
multiple pairwise comparisons among the mean segmented trees between all density classes indicated
that there was no significant difference between any adjacent density classes. However, UAV point
cloud-derived density class 1 contained a significantly different mean number of segmented trees than
density classes three, four, five, six, and seven. Density class two had significantly different mean
number of segmented trees compared to density class six and seven. Mean segmented trees were not
significantly different between density classes two, three, four, and five. Additionally, tree density
classes three to seven were not significantly different.

Tree detection was assessed for each DT iteration (Table 3). The iteration with the smallest DT
value had the highest detection of 88% or 159 of the 192 field-mapped trees. It also produced the
highest commission error with 132 additional trees. The largest DT value had the lowest detection
rate (109 of 192 trees), but also the lowest commission error (8 trees). The lowest DT value also had
the lowest recall and the highest precision, whereas the highest DT value resulted in the highest
recall and lowest precision (Table 3). The highest F-scores occurred with a mid-to-high range of DT
values of 1.4 and 1.7 m (0.78). In general, the detection rate decreased as the tree density increased,
with lowest detection rates of less than 50% in density classes five, six, and seven. The optimized
iteration contained a similarly high F-score of 0.78 and a balance of omission error and commission
error was achieved for lower and higher density classes (Table 3).

Table 3. Individual tree detection results for each iteration. A total of 192 trees were detected.
The distance threshold (DT) value was changed by 0.1 m for each iteration to determine the effects of
the parameter. The optimized iteration contains two DT values: 1.4 m for areas with more than 50%
canopy cover, and 1.7 m for areas of 50% or less canopy cover. Recall (r), precision (p), and F-score
(F) are standardized measures of detection, omission, and commission, respectively, calculated with
Equations (2)–(4), respectively.

DT Value Detected Trees (%) Omitted Trees (%) Commission Error (%) r p F

1 83 17 69 0.83 0.55 0.66
1.1 79 21 38 0.79 0.68 0.73
1.2 77 23 32 0.77 0.71 0.74
1.3 76 24 21 0.76 0.78 0.77
1.4 73 27 15 0.73 0.83 0.78
1.5 71 29 14 0.71 0.84 0.77
1.6 69 31 11 0.69 0.86 0.77
1.7 68 32 7 0.68 0.9 0.78
1.8 66 34 7 0.66 0.91 0.77
1.9 66 34 7 0.66 0.91 0.76
2 61 39 6 0.61 0.91 0.73

2.1 59 41 5 0.59 0.93 0.72
2.2 61 39 3 0.61 0.96 0.75
2.3 56 44 5 0.56 0.92 0.7
2.4 57 43 5 0.57 0.92 0.71
2.5 57 43 4 0.57 0.93 0.71

Optimized (1.4/1.7) 74 26 16 0.74 0.83 0.78

3.2. Individual Tree Metrics

The comparison between the UAV-derived and field-based individual tree metrics was conducted
only for the trees that were correctly detected with the optimized DT iteration (N = 142), since
this validation required field measurements for every UAV-derived tree. A regression model of
UAV-derived tree heights and field-measured tree heights indicated a positive correlation with an
adjusted R2 of 0.71 (RMSE = 1.83 m) (Figure 4). A bootstrap resampling analysis with 10,000 iterations
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indicated that the mean error rate of the UAV-derived tree height was 5.29% of the field measured
heights (Table 4).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 22 
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Figure 4. Linear regression model between the UAV image-derived and field-measured individual tree
heights. The solid line represents the fitted regression line and the dashed line is a 1:1 line for reference.

When all height percentiles were examined to determine a predictor for canopy base height,
adjusted R2 ranged between 0.25 and 0.40 and RMSE ranged from 1.67 to 2.88 m. In comparison,
LANDFIRE base height estimates have an average R2 value of 0.09 across 12 sites [26]. No single
height percentile was a clear best predictor of base height, but the fifth height percentile had the closest
regression mean line to a 1:1 relationship (R2 = 0.34, RMSE = 2.52 m). Using the UAV image-derived
fifth percentile height as a predictor for canopy base height, the mean error of the UAV estimate was
determined to be 32.29% of the field-measured base height (Table 4).

The UAV-derived DBH had an adjusted R2 of 0.38 with an RMSE of 4.82 cm when compared to field
measurements. The UAV-derived DBH predictions ranged from 12.3 to 51.1 cm with a mean of 38.2 cm.
The DBH predictions were then used to estimate the canopy mass of each tree, which ranged from
7.6 to 283.1 kg, with a mean of 138.8 kg. When compared to the field-based predictions, these estimates
produced an adjusted R2 of 0.39 with an RMSE of 39.25 kg. To estimate the canopy volume of each tree,
three UAV-derived canopy measurements were used: total tree height, canopy base height, and average
canopy radius. When compared to field measured canopy radius, the UAV-derived radius had an
adjusted R2 of 0.26 (RMSE = 0.88 m) and a mean radius of 2.97 m. The UAV-derived canopy volume
estimates had an adjusted R2 of 0.33 (RMSE = 246.13 m3) with a mean volume of 323.15 m3. When the
UAV-derived mass and volume estimates were combined to estimate canopy bulk density, the predicted
values were not correlated to field estimates (adj. R2 = 0.0001, RMSE = 2.3 kg/m3, Table 4).

Table 4. Results comparing UAV-derived and field-derived individual tree metrics. R2, p-value,
and RMSE were calculated by linear regression. The mean percent error and range of percent error
were calculated using a bootstrap resampling analysis with the percent error between UAV-derived
and field-derived estimates.

Metric R2 p-Value RMSE Mean Percent Error Range of Percent Error

Tree Height 0.71 2.20x10−16 1.83 m 5.29% 2.79–8.32%
Base Height 0.34 2.65x10−14 2.52 m 32.29% 22.03%–45.54%
Bulk Density 0.0005 0.31 0.30 kg/m3 NA NA
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3.3. Fire Behavior Modeling

Both the 30 m and resampled 10 m LANDFIRE datasets resulted in crown fire behavior estimates
of 0% surface fire, 14% passive crown fire, and 86% active crown fire for the study area (Table 5:
Iterations 1 and 2). A reliable estimate of canopy bulk density could not be produced from the UAV
images given the relatively low correlation coefficients. However, UAV-derived estimates for other
critical variables had similar accuracies to the LANDFIRE variables. Therefore, UAV-derived estimates
for elevation, slope, aspect, canopy cover, and canopy base height were produced in 10 m resolution for
use in FlamMap. In the sensitivity analysis, using the UAV-derived topographic variables (elevation,
slope, and aspect) (Table 5: Iteration 3) resulted in a reduction in the active crown fire with an increase
in passive crown fire: 0% surface fire, a larger passive crown fire of 23%, and a lower active crown fire
of 77%, compared to the LANDFIRE-based outputs.

Substituting LANDFIRE-based canopy cover with the UAV-derived canopy cover estimates
(Table 5: Iteration 4) resulted in a slight reduction in active crown fire and passive crown fire, and a
small increase in the surface fire category: 3% surface fire, 13% passive crown fire, and 84% active crown
fire across the study area. UAV-derived canopy height (Table 5: Iteration 5) had a larger effect than
either topography or canopy cover. Active crown fire was reduced from 86% in the LANDFIRE-only
models to 44% with the UAV image-derived canopy height. Additionally, surface fire increased from
0 to 49%, and passive crown fire decreased from 14 to 7%. The inclusion of the UAV-derived canopy
base height (Table 5: Iteration 6) caused an extreme reduction in active crown fire and a drastic increase
in surface fire. Lastly, crown fire was modeled using all the available UAV-derived variables (Table 5:
Iteration 7), which resulted 100% surface fire, 0% passive crown fire, and 0% active crown fire.

Overall, when modeling crown fire behavior with only LANDFIRE data, the 30 m resolution and
resampled 10 m resolution produced the same results. Substituting UAV-derived canopy cover resulted
in a small reduction in active crown fire and an increase in surface fire. In increasing order, UAV-derived
topography, canopy height, and base height had substantial impacts on the crown fire behavior model
by reducing the percentage of active crown fire and increasing surface fire. The UAV-derived crown
base height layer almost completely eliminated crown fire initiation with only 2% active crown fire
and 98% surface fire. When all UAV-derived variables were used, crown fire initiation was completely
reduced to 0% active crown fire and 0% passive crown fire with 100% of the study area being modeled
as surface fire.

Table 5. Crown fire behavior model outputs for each iteration. Inputs for Iteration 1 included the
original data layers from the LANDFIRE database in 30 m resolution. Iteration 2 used the resampled
LANDFIRE data in 10 m resolution. Iteration 3 used UAV-derived elevation, slope, and aspect
rasters with LANDFIRE data as other inputs. Iteration 4 substituted UAV-derived canopy cover with
LANDFIRE data for all other inputs. Iteration 5 included the UAV-derived canopy height estimate
with LANDFIRE data for other inputs. Iteration 6 used the UAV-derived canopy base height estimate
along with all other LANDFIRE data inputs. Iteration 7 included UAV-derived topography, canopy
cover, canopy height, and canopy base height.

Percent of Fire Type (%)

Iterations 1 and 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

Fire Type LANDFIRE UAV Topo UAV CC UAV CH UAV CBH UAV All

Surface 0 0 3 49 98 100
Passive
Crown 14 23 13 7 0 0

Active
Crown 86 77 84 44 2 0
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4. Discussion

4.1. UAV Images and Forest Canopy Cover Estimates

The fixed-wing UAV platform provided high-resolution multispectral images of our study region
with 15 cm pixels that were not otherwise available. The accuracy of the UAV image-derived canopy
cover estimates was relatively high, when compared with two different data sources: commonly used
NAIP imagery in the U.S. with one meter resolution and field-based measurements from randomly
distributed 10 m plots. Each image and data source was resampled to a 10 m canopy cover percent
raster to directly compare among the three sources.

The UAV-derived canopy cover estimate was positively correlated with the NAIP-derived canopy
cover estimate (N = 1371; R2 = 0.72; RMSE = 10.9% canopy cover). There were several occurrences
of the NAIP-derived estimate both over- and under-estimating canopy cover compared with the
UAV-derived estimate. However, in general, the NAIP-derived estimate tended to overestimate
canopy cover across the study area, especially in areas of high canopy cover (Figure 3). This was
evident when examining the intercept and slope of the fitted regression line (intercept = 0.18% canopy
cover, slope = 0.79). Canopy cover estimates from NAIP data became increasingly greater than UAV
estimates as canopy cover increased. This difference can be largely explained by the difference in
spatial resolution between the original datasets. The finer resolution UAV imagery detected variations
in canopy cover that would otherwise be undetected using coarser resolution imagery [62]. Therefore,
the UAV imagery may be able to detect areas of no-canopy or sparse canopy within a one meter area
that the NAIP imagery cannot, which leads to an overestimation of canopy cover in NAIP. Another
possible source of this discrepancy could be from the date of UAV image acquisition in the Flight 2
area. This flight was conducted during the month of November during leaf-off season. Since canopy
cover was derived using an NDVI-based procedure, canopies without leaves, such as oaks, would not
have been detected. Although only a few deciduous trees are present in the Flight 2 Area, this could
have also lead to a small underestimation of canopy cover with the UAV imagery.

UAV-derived canopy cover estimates were also positively correlated with field-based estimates
(R2 = 0.67, RMSE = 11.87% canopy cover). Sankey et al. [30] found a similar, though slightly stronger,
relationship between UAV-derived canopy cover and field-based estimates (R2 = 0.74, RMSE = 8.5%
canopy cover) in a comparable study site. When comparing our UAV-derived canopy cover estimates
to field-based estimates, we found that UAV methods tended to underestimate, especially in areas
of high canopy cover. This underestimation might be observed due to within-canopy shadows
created by the higher sections of a tree canopy or an adjacent tree canopy. Although we found
no apparent trees entirely in a shadow across the UAV images, the high spatial resolution of the
UAV images often resulted in a few shadow pixels within a single canopy. The shadow pixels,
therefore, might lead to underestimates of individual tree canopy area, although the entire canopy
is not missed or occluded. An underestimation of canopy cover using UAV imagery was also found
in a study conducted by Wallace et al. [36]. UAV-derived canopy cover estimates are capable of fully
representing the unevenness of tree crowns, whereas the field-based estimates used in our study
relied on average crown radii that are used to assume an even and circular crown around each tree.
Additionally, UAV-derived canopy cover estimates also represent small gaps within a single crown,
whereas field-based estimates assume continuous, gapless crowns. These assumptions could account
for the general underestimation of canopy cover when comparing UAV-derived estimates to those
calculated from field measurements.

These findings of accurate forest canopy cover estimates from UAV data have important
implications for other forestry studies. For example, forest canopy cover has been shown to be
directly related to wildfire behavior and fuel loading [63,64]. Increased canopy cover causes higher
susceptibility to insect outbreak and forest pathogens [3,7,65]. Diversity in forest canopy cover can
provide habitat and forage areas for Mexican spotted owl (Strix occidentalis) [66,67]. Changes in canopy
cover due to restoration treatments have been shown to have implications for water yield and nutrient
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outflow [68,69]. Understory shrub and herbaceous species that provide species biodiversity and
forage for wildlife have an inverse relationship with forest canopy cover [7,70–72]. UAV surveys offer
scientists and land managers a method to further examine these ecosystem responses by providing
spatial canopy cover information with high spatial resolution at high temporal frequencies.

Future research might consider more high-resolution validation datasets to estimate UAV canopy
cover accuracy. Seasonality of the data acquisitions should also be considered. Factors such as
sun-angle and leaf-on versus leaf-off conditions can potentially affect canopy cover estimates that
are derived from NDVI. Future studies can also employ the method that we demonstrated in this
study to address the problem of high NDVI values between tree canopies that can be misclassified as
canopy. In our study, aside from the true areas of high NDVI (low vegetation: grass, forbs, and shrubs),
there were also areas of image distortion, likely due to misalignment during the orthomosaic building
process. However, the UAV data estimates have benefits including a 3D SfM point cloud that can be
used to provide height attributes to the UAV imagery. We leveraged this height information to create
a height mask that could be applied to the canopy cover classification and eliminate areas classified as
canopy that were below a certain height (1.37 m). This produced a canopy cover estimate that was
more representative of only the tree canopy. This method could be explored more in-depth with not
only UAV data, but also using aerial imagery and lidar.

4.2. Individual Tree Segmentation and Subsequent Density Estimates

This study implemented tree segmentation algorithms, originally intended for use with manned
airborne lidar point cloud data, to identify individual trees from a SfM-derived point cloud. Depending
on the parameters used in the algorithm, varying levels of detection, omission, and commission
were achieved. The highest F-score of 0.78 was associated with detecting 74% of the sampled trees.
This detection rate was similar to a SfM point cloud study in Australian savannas with a detection rate
of 70% and an F-score of 0.71 [37], but lower than the 85% detection rate documented in open canopy
mixed conifer forest [73]. Consistent with the findings reported by Goldbergs et al. [37], the detection
rates in our study declined with increasing tree density.

The parameters used in a given tree segmentation algorithm must be “tuned” to match the specific
site and user’s needs. We used a point-based algorithm [42] to segment individual trees from the
point cloud. The main parameter that affected the segmentation was the DT parameter—a distance
threshold between points that determined whether a point was or was not part of a particular tree.
Within the Li et al. [42] segmentation algorithm, there are two different DT values, both of which were
set as equal in our study. In future studies, these values can be set differently to potentially achieve
better segmentation results.

We also explored an optimization of SfM tree segmentation by taking advantage of the
multispectral orthomosaic image from the UAV. The availability of both orthomosaic images and SfM
point clouds offered the opportunity to leverage the two-dimensional (2D) canopy cover information
with 3D point cloud data. After running the segmentation using various DT parameters, grid cells of
higher canopy cover (>50%) were used to select trees that were segmented with parameters designed
to detect more trees, whereas grid cells of low canopy cover (≤50%) were used to select trees that were
segmented with parameters that minimized commission error and found less trees. This optimization
proved to be marginally more successful at detecting more trees with less commission error.

The results from the optimized tree segmentation were then used to explore the relationship
between the mean number of trees detected per plot across each density class (trees per 10 × 10 m
plot). In this analysis, a perfect segmentation would result in the number of trees segmented being
equal to the density class of the particular plot. The mean numbers of segmented trees followed this
trend within the one, two, three, and four tree density classes. However, the five, six, and seven tree
density classes did not follow this trend. The tree segmentation used in this study rarely detected more
than five trees in any of our study plots. The ANOVA test indicated that the one- and two-tree density
classes were significantly different than classes three, four, five, six, and seven, indicating that very
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low tree densities can be successfully identified and accurately separated from the high tree density
classes using UAV SfM point cloud data. However, areas with similarly high tree densities could not
be separated using this data source.

Other studies using UAV-SfM for individual tree segmentation have also had varying results.
In a spruce forest in Southeast Norway, Puliti et al. [34] estimated stem numbers of trees with an R2

of 0.60 when supplementing their data with aerial lidar data. In the Northern Territory of Australia,
Goldbergs et al. [37] successfully detected 70% of the dominant and co-dominant trees and 35%
of the suppressed trees in a eucalyptus forest with more than 30% canopy cover. In a ponderosa
pine forest with an average canopy cover of 37% in Northern Arizona, Sankey et al. [30] segmented
individual trees with UAV SfM point cloud data and had a positive, albeit weaker, correlation to
field tree counts (R2 = 0.53). Our study area had an average canopy cover of 36% (SD = 20.8%) as
measured with the UAV imagery and was, therefore, most comparable to the study sites of eucalyptus
forest in Australia [37], and the ponderosa pine forest in Northern Arizona [30]. In our study, we had
marginally higher detection rates with a positive detection of 74% of our field-measured trees with
a 16% commission error.

4.3. Individual Tree Metrics

The UAV SfM point cloud was segmented successfully and individual tree heights were accurately
estimated compared to field measurements (R2 = 0.71, RMSE = 1.83 m). Results from previous studies
generally showed a strong relationship between UAV-derived tree height estimates and field-based
measurements. Dandois et al. [35] and Wallace et al. [36] found strong correlations between UAV-derived
and field-based tree height estimates (R2 = 0.86; RMSE = 3.6 m and R2 = 0.68, RMSE 1.3 m, respectively).
Puliti et al. [34] also had a strong correlation when comparing the Lorey’s mean tree height metric
derived from UAV data and field measurements (R2 = 0.71, RMSE = 1.4 m). Although these studies
were conducted across a wide range of vegetation types, the tree height estimate accuracies found in
our study are consistent with previous studies.

We estimated canopy base height with the UAV SfM data using the height percentiles of the points
for each tree. Several height percentiles showed a positive correlation with field-measured canopy
base height with R2 ranging from 0.38 to 0.40, but there was no clear “best” predictor. We, therefore,
chose the fifth height percentile, which had the closest to a 1:1 relationship, with an R2 of 0.34 and
RMSE of 2.52 m. Although this correlation was somewhat low, the current standard of remotely
sensed canopy base height data for modeling crown fire potential is based on the LANDFIRE database,
which has been shown to have poor and highly variable relationships with actual field observations
with R2 values ranging from 0 to 0.93, with a mean of 0.09, across 12 sites [26]. For this reason, the fifth
percentile estimate derived from the UAV data was thought to be a sufficient predictor for base height
in this study and was therefore used as an input layer in FlamMap to model potential crown fire
behavior. At the time of this study, no other studies were found that attempted to estimate canopy
base height using similar UAV-derived methods, although canopy base height has been accurately
measured using aerial lidar [74–76].

Canopy bulk density relies on estimates of both canopy mass and canopy volume. We established
a tree height to DBH relationship (R2 = 0.48, p-value ≤ 0.01), which was then used to predict the DBH
from the UAV-derived tree height, and subsequently to estimate canopy mass. The UAV-derived
DBH in this study was positively correlated with field-measured DBH, but the relationship was fairly
weak (R2 = 0.38, RMSE = 4.82 cm). As a result, the canopy mass derived from the UAV data also had
a low correlation with the canopy mass derived from field data (R2 = 0.39, RMSE = 39.25 kg). Canopy
volume was estimated by determining the canopy height and average canopy radius to estimate
the cylindrical volume of the canopy. The UAV-derived estimates of canopy bulk density showed
a weak relationship with the field-based bulk density estimates. Differences between UAV-derived
and field-derived estimates of canopy bulk density may have been caused by several key estimates
being indirectly derived. The compounding error in both the mass and volume estimates can explain
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the poor relationship found when comparing canopy bulk density estimates from UAV-derived and
field-based measurements. Consequently, the UAV-derived and field-estimated canopy bulk densities
were not statistically correlated (R2 = 0.00, p-value = 0.34, RMSE = 0.3 kg/m3).

Additional error in canopy bulk density estimates also occurred due to UAV-derived volume
estimates. In order to estimate volume, three UAV-derived metrics were used: tree height, base height,
and average canopy radius. It was difficult to measure canopy base height, canopy diameter, and canopy
bulk density possibly due to the UAV imagery not always having a visual line-of-sight of the bottoms and
edges of tree canopies, which may often overlap. In general, this is a potential limitation for UAV imagery
being used in areas of high canopy cover and obtaining measurements of objects that may be obstructed
by tree canopy [32,36,37]. A comparison of the UAV-derived canopy volume to the canopy volume
estimated from field measurements showed that the overall volume estimated using each method was
highly variable and the relationship was poor (R2 = 0.33, p-value = 3.46 × 10−14, RMSE = 246.13 m3).
Although, difficult to accomplish with the UAV image-based methods used in our study, canopy bulk
density has been accurately estimated using aerial lidar (R2 = 0.86, R2 = 0.83 [74,75]).

4.4. Using UAV Data for Modeling Fire Behavior

The LANDFIRE database has traditionally been the major data source for modelling potential
crown fire behavior. In this study, UAV data were used as inputs to FlamMap and the overall
effect was a drastic reduction in the amount of area that was modeled as active and passive crown
fire. The sensitivity analysis indicated that the UAV-derived canopy base height had the single
largest influence on this reduction in crown fire area. Canopy base height was the primary factor
that determines the transition from surface fire to crown fire. A low canopy base height means this
transition is more likely to occur, whereas a high canopy base height reduces the likelihood of crown
fire initiation [49,50]. When comparing the canopy base height estimates, the UAV-derived estimate
showed an average canopy base height between four and five meters whereas LANDFIRE data had
a mean canopy base height of less than one meter. Our field data indicated that the mean canopy base
height was 7.7 m, which points to a substantial underestimation in the LANDFIRE data. This difference
could explain the discrepancy in the amount of crown fire modeled using each data source.

LANDFIRE data used to model crown fire behavior are only available in 30 m resolution,
whereas UAV-derived data were estimated from sub-meter data and resampled to 10 m resolution.
This difference in spatial resolution was partially responsible for the differences in data values and
the subsequent crown fire models. In general, the UAV data accurately depicted areas of less canopy
cover and decreased canopy height. The fine resolution of UAV data relative to LANDFIRE data may
be more effective at detecting areas that were often less than the size of a single LANDFIRE data
pixel. The effects of data resolution might also lead to differences in crown fire models from UAV and
LANDFIRE data. For example, there were areas where minimal tree cover was present due to small
roads, trails, and gaps between trees. Within the UAV imagery, these areas caused decreased estimates
for canopy cover and canopy height due to the absence of trees. However, these gaps were often not
represented in the LANDFIRE data due to the coarse spatial resolution.

A limitation of this study was the coarse estimation of base height, and the inability to estimate
canopy bulk density. Both of these measurements rely on accurate depictions of canopy edges and
bottoms, both of which were difficult to estimate with the UAV data used in this study. However,
in future studies, the integration of lidar data may produce better estimates of both of these variables.
Additionally, the fire behavior fuel models used by FlamMap to model fire behavior were not estimated
in this study. Future advances in remote sensing capabilities and modeling may provide a means to
estimate fire behavior fuel models with reliable accuracy, thus leading to more effective modeling of
potential wildfire behavior.
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5. Conclusions

This study tested the feasibility of using a fixed-wing UAV with a multispectral sensor for
estimating forest canopy fuel and structure in a southwestern ponderosa pine stand. The results
indicated that UAV surveys can be used to produce accurate estimates of canopy cover and canopy
height. Tree density can also be accurately estimated in areas of low tree canopy cover. We demonstrate
that tree segmentation can be improved by using adaptive algorithm parameters that can be adjusted
according to canopy cover. The accuracy of the canopy base height estimates was low, but was
comparable to LANDFIRE estimates. Canopy bulk density proved to be the most difficult metric to
estimate using the UAV methods.

Crown fire behavior outputs using UAV data yielded a drastic reduction in the total amount
of potential crown fire. We document that the input data in FlamMap fire behavior model can
have a drastic effect on the crown fire potential modeled in an area. Forest managers should
consider the source and accuracies of the input data when modeling fire behavior and making
management decisions. UAV data and methods used in this study provide another data source
to supplement, or possibly substitute, traditional forms of canopy fuel estimation, such as field surveys
and LANDFIRE. By using a combination of these data sources, scientists and land managers can
accurately and efficiently estimate forest canopy fuel to better understand ecological processes and
support decision making.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/8/1266/
s1, Table S1: FlamMap parameters that remained constant through all crown fire behavior iterations. Constants
used were those observed during the Schultz Fire of 2010. Fuel moisture refers to the percent of dry weight of
the fuel type. 1 hour fuels are dead fuels 0.66 to 2.5 cm in diameter, 10 hour fuels are 2.5 to 7.6 cm in diameter,
and 100 hour fuels are 7.6 to 20.3 cm in diameter. The crown fire calculation method refers to the particular method
used to calculate the potential for surface, passive, or active crown fire.
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