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Abstract: High-precision indoor three-dimensional maps are a prerequisite for building information
models, indoor location-based services, etc., but the indoor mapping solution is still in the stage
of technological experiment and application scenario development. In this paper, indoor mapping
equipment integrating a three-axis laser scanner and panoramic camera is designed, and the
corresponding workflow and critical technologies are described. First, hardware design and software
for controlling the operations and calibration of the spatial relationship between sensors are completed.
Then, the trajectory of the carrier is evaluated by a simultaneous location and mapping framework,
which includes reckoning of the real-time position and attitude of the carrier by a filter fusing
the horizontally placed laser scanner data and inertial measurement data, as well as the global
optimization by a closed-loop adjustment using a graph optimization algorithm. Finally, the 3D point
clouds and panoramic images of the scene are reconstructed from two tilt-mounted laser scanners and
the panoramic camera by synchronization of the position and attitude of the carrier. The experiment
was carried out in a five-story library using the proposed prototype system; the results demonstrate
accuracies of up to 3 cm for 2D maps, and up to 5 cm for 3D maps, and the produced point clouds
and panoramic images can be utilized for modeling and further works related to large-scale indoor
scenes. Therefore, the proposed system is an efficient and accurate solution for indoor 3D mapping.

Keywords: indoor mapping; slam; scene reconstruction; point cloud; panorama

1. Introduction

Humans spend at least 70% of their time indoors, but the cognition of indoor space is far less than
that of outdoor space. With the continuous improvement of the quality of life, 3D spatial information
regarding indoor environments is increasingly demanded in various applications, such as risk and
disaster management, human trajectory identification, and facility management. Building an accurate
indoor map quickly is a prerequisite for building information modelling/management (BIM), indoor
location-based service (LBS), and augmented and virtual reality applications [1-4].

In the traditional indoor surveying workflow, the instrument is placed on a tripod at several
pre-determined stations, and the data from separate stations is registered into a common reference
frame by homonymous points with distinctive features. While this procedure is expected to provide
the best accuracy for the resulting point cloud, it has some obvious drawbacks. The migration between
multiple stations results in the waste of time and manpower consumption, and the scan results
often contain many blind areas due to the limited number of observation stations. Furthermore, the
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surveying process requires skilled personnel and sufficient knowledge of the survey area to pick
optimal stations, good network design for marker placement, etc. [5-8].

Mobile measurement technology integrates positioning, attitude determination, and measurement,
which realizes the measurement in motion, improves the degrees of freedom of the measurement
platform, and greatly reduces the time and labor costs. A typical mobile measurement system
(MMS) consists of laser scanners, optical cameras, the global navigation satellite system (GNSS)
and a high-grade inertial measurement unit (IMU) mounted on a vehicle. The trajectory of the
vehicle is determined using GNSS and IMU, and the measurement results of scanners and cameras
are reconstructed to a unified geographic frame by the relative position and attitude between units.
The acquisition technology of large-scale outdoor point clouds using MMS has matured, and this type
of system has been commercially available for several years and can achieve good accuracy [9-12].
Unfortunately, such a system cannot be directly used for indoor applications due to its reliance on
GNSS, which obviously is not available indoors.

With the boom of machine vision and the robotics industry, simultaneous location and mapping
(SLAM) is extensively studied. SLAM solves the chicken-and-egg problem in an unknown environment
by positioning according to the motion estimation and the existing map while simultaneously building
an incremental map on the basis of positioning results in the process of moving. Compared with MMS
using GNSS to obtain a unified mapping reference frame, SLAM addresses the measurement visibility
via a cumulative measurement process, which is bound to cause accumulation error. Thus, SLAM
is also committed to solving the problem of error accumulation. Some indoor mobile measurement
systems (IMMS) based on SLAM technology have been presented in recent years, such as NavVis M3,
Leica Pegasus backpack, GeoSLAM ZEB-REVO, etc. A variety of exteroceptive sensor sources have
been suggested, and they can be roughly divided into laser SLAM and visual SLAM.

The current approaches of visual SLAM include monocular, stereo, and fisheye cameras, among
others. Visual SLAM is still in a stage of further research and application scenario expansion; it has
the advantages of low cost, no maximum range limitation, and extractable semantic information,
but it also has many disadvantages, such as limited sunlight, large amount of calculation, and poor
stability [13-15]. Its process is relatively complex, and an additional step to reconstruct the camera
position and attitude through parallax is needed compared with laser SLAM. Moreover, range cameras,
such as the Kinect, would have an advantage in that they capture a part of a scene in 3D at an instant.
However, their limited field of view and relatively short maximum range—typically no more than
5-10 m—make range cameras unsuitable for data acquisition in larger indoor spaces (airports, hospitals,
museums), and it is those types of public indoor spaces in particular for which the demand for indoor
modeling is apparent [16,17].

Laser SLAM started early with relatively mature theory and technology. Although the cost is very
high, its excellent accuracy and stability, especially the results with the capability of direct modeling
and navigation, make it the best method for indoor mapping and modeling. Common laser SLAM
systems are listed as follows:

1.  Gmapping is the most widely used SLAM algorithm [18]. It simulates the position and attitude
of the equipment by a Rao-Blackwellized particle filter (PF), with odometer data as the initial
value. This method has good robustness due to the maximum likelihood principle of probability
statistics, but the reliance on odometer data limits the use scenarios.

2. Konolige, et al.,, proposed the sparse pose adjustment method [19], which breaks the
computational bottleneck of optimizing large pose graphs when solving SLAM problems.
The graph-based SLAM system named kartoSlam was implemented as an open-source package
on the Robot Operating System (ROS), which is a set of software libraries and tools that help
developers create robot applications.
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3. Inthe Hector Slam [20], inertial data and laser data are fused using unscented Kalman filtering
(UKEF) to give it the ability of 3D positioning and mapping. At same time reliable localization
and mapping capabilities in a variety of challenging environments are realized by using a fast
approximation of map gradients and a multi-resolution grid.

4. Google’s latest shared algorithm, Cartographer [21], integrates excellent filtering methods and
graph optimization ideas and is capable of mapping in a wide range of scenes through variform
vehicle platforms. It optimizes local error by the extended Kalman filtering and distributes global
error by the graph optimization arithmetic.

The panoramic image and point cloud are the basic data support for indoor scene display. There
are many forms in which to express the 3D scene, including multi-view depth map, point cloud, voxel,
mesh, and primitive-based CAD models. The textured CAD model with additional information is
one of the most conforming to human knowledge. To build the textured model, the common process
is to build a model from point clouds and then map images to the model. There are many literature
entries that discuss the construction of structured models from point clouds [7,22-24]. Additionally,
it is the most widely used method for fitting and segmenting point clouds by relying on the systematic
surfaces of artificial buildings. The registration of images and models to the textural mapping can be
solved by equipment calibration and iterative optimization of the color map [25]. Some novel methods
generate rough models directly by understanding panoramic images [26,27], which is useful for a
panoramic image display system as an auxiliary. The work [28] does provide a good idea for showing
indoor spaces via panoramic images and point clouds. However, in general, there is still no simple
and effective method to build satisfactory textured models automatically.

Based on the above analysis, indoor 3D mapping equipment is designed with a panoramic
camera and three-axis laser scanners, and a corresponding workflow is proposed in this paper.
The software for controlling the operations and the calibration of spatial relationships between sensors
is developed after finishing the hardware design. This solution obtained the optimized trajectory
of the carrier using the horizontally placed laser scanner data and inertial data via our excellent
SLAM technology framework described in Section 2.2, which consists of the EKF algorithm and the
closed-loop adjustment. Then, the 3D point cloud of the measurement area is reconstructed according
to the relative rigid transformation between the three laser scanners, and the synchronized panoramic
images are also associated. Experimental results show that the accuracy of the indoor 3D point cloud
can reach 5 cm, and the textures are abundant using the proposed prototype system. Therefore, the
proposed system is an efficient and accurate solution for 3D modeling and further works in large-scale
indoor scenes.

2. Materials and Methods

This research designs and assembles indoor surveying and mapping equipment with three 2D
laser scanners and an integrated panoramic camera and proposes an indoor 3D mapping approach
that integrates panoramic images and three-axis laser scanners according to the working principle of
MMS and the art in SLAM. The solution is shown in Figure 1.

First, a system overview regarding the device design and calibration is described in Section 2.1.
Then, the horizontal laser scanner data and IMU data generate an optimized trajectory through
a SLAM technology flow proposed in Section 2.2.1, which include motion tracking by point cloud
matching as described in Section 2.2.2, data fusion by UKF as explained in Section 2.2.3, and closed loop
optimization as discussed in Section 2.2.4. Finally, the 2D map and 3D point clouds are reconstructed
according to the relative position and attitude between the three laser scanners, and the panorama
with position and attitude is stitched in Section 2.3.
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Figure 1. Study workflow chart.

2.1. Device Design and Calibration

2.1.1. Device Design

We design a mapping system with three 2D laser scanners and an integrated panoramic camera in
a configuration as shown in Figure 2. Common vehicles that can carry the indoor mapping equipment
include unmanned aerial vehicles, backpacks, trolleys, and handles. Considering the applicability, the
equipment proposed in this paper can work either as a trolley or as a backpack due to the detachable

structure between the pedestal and vertical support.

Figure 2. Device array (left) and schematic diagram of the scanning mode (right).

It employs three Hokuyo UTM-30LX 2D scanners with an opening angle of 270° and can perform
40 scans per second with 1080 range measurements per scan. The maximum range is 30 m, and the
ranging noise is 3 cm according to the scanner manufacturer. The three scanners are arranged as in
the magnification in Figure 1, and the spatial distribution of the scan lines is shown on the right [29].
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The horizontal scanner is used to locate and track the device, and the two slanted scanners are used to
map the 3D scene. Based on the experience in MMS and the knowledge mentioned in [29,30], the main
reason the two scanners are placed aslant instead of vertically is so the slanted scan line can obtain a
more uniform distribution of point clouds than vertical lines, especially on both sides of the corner.

It employs an integrated panoramic camera made up of six Xiaomi cameras. One is vertically
upward mounted, and the others are evenly mounted in a horizontal circle. Each camera can take a
4608 x 3456 image every 2 s, and a 8192 x 4096 panoramic image can be stitched together from six
synchronic images after data acquisition. A consumer micro-electro-mechanical system for inertial
measurement unit (MEMS-IMU) is placed at the camera and scanner connection to track the device
movement as an auxiliary. The ADIS16488 iSensor MEMS IMU can provide a simple and efficient
method of obtaining a full set of inertial data with an in-run bias stability of 6°/h.

There is an industrial personal computer (IPC) at the bottom of the backpack and the top of the
trolley. A control service runs on the IPC to control the power supply, data acquisition, and data
storage. It ensures that all data recorded—including scan lines, images, and IMU data—are labeled
with a unified time stamp. In addition, a real-time 2D map is provided on the tablet computer to the
operator to plan the route via the sparsely sampled data.

2.1.2. Device Calibration

Intrinsic and extrinsic sensor calibration are indispensable for a measuring tool. The internal
parameters, such as the calibration matrix of a camera, affect how the sensor samples the scene.
The external calibration parameters are the position and orientation of the sensor relative to some
fiducial coordinate system. For a multi-sensor integrated mapping equipment, the extrinsic calibration
between sensors is crucial to produce the high-precision measurement data. In our device, the extrinsic
parameters between the two slanted scanners directly affect the accuracy of the point cloud, and
finding the geometric relationship between the laser scanners and the camera is vital to creating metric
depth estimates to build textured 3D models.

The distortion model of non-wide-angle images is relatively simple, and the intrinsic and extrinsic
calibration technology of cameras is relatively mature. For a 2D laser range finder, the intrinsic
parameters are provided by the manufacturer, but it is slightly difficult to determine the extrinsic
parameters relative to other equipment. In 2004, Q. Zhang & Pless first proposed the extrinsic
calibration method between a camera and laser range finder [31], which sets up a bridge between
the 2D laser range finder and other rigidly connected devices. In 2010, Underwood, etc., thoroughly
analyzed and built an error model to minimize the systematic contradiction between sensors to enable
reliable multi-sensor data fusion [32].

Zhang’s method is adopted in our calibration process. The world coordinate system is set as the
coordinate system of the calibration board, and the calibration plane is the plane Z = 0 in the world
coordinate system.

First, the extrinsic parameters of the camera (R, t) can be determined by the space resection

p ~ K(RP+1t) (1)

where p and P are the image coordinates and the world coordinates of feature points on the calibration
board, K is the camera intrinsic matrix, R is a 3 X 3 orthonormal matrix representing the camera’s
orientation, and f is a three-vector representing its position.

Then, in the camera coordinate system, the calibration plane can be parameterized by a
three-vector N such that N is parallel to the normal of the calibration plane, and its magnitude,
IIN||, equals the distance from the camera to the calibration plane. It can be derived that

N = —R; (Rg-t) ?)
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where Rj is the third column of the rotation matrix R and f is the center of the camera in world
coordinates.

Suppose that a point P in the laser coordinate system is located at a point P in the camera
coordinate system; the rigid transformation from the camera coordinate system to the laser coordinate
system can be described by

Pl =®r° 4+ A (3)

where ® is a 3 x 3 orthonormal matrix representing the camera’s orientation relative to the laser ranger
finder and A is a three-vector corresponding to its relative position.
Because the point P is on the calibration plane defined by N, it satisfies

N-P¢ = ||N?|| )
and thus, it constraints on ® and A when a laser point P/ exists on the measured calibration plane.
~Rs(Rj-t) @~ (P! ) = [|N?] 5)

The rigid transformation from a camera to a scanner can be calibrated using Equation (5). For our
device, the extrinsic parameters between three scanners and six cameras are calculated, and an
approximate mean from multiple results is determined to be the relative position and attitude. Figure 3
shows our calibration field, which has been scanned by a fine 3D laser scanner to obtain its fine model.
We place the device on several known position and attitude, divide the calibration field into multiple
calibration boards according to different planes, establish transformation equations from the obtained
image pixels and laser points, and finally solve the optimal transformation matrix iteratively.

Figure 3. Calibration field for camera and laser calibration.

To facilitate 3D point cloud reconstruction and texture mapping in the future, the unified reference
coordinate system of this device is set to the coordinate system of the horizontal scanner. Table 1 lists
the errors between the two tilted laser scanners and the horizontal laser scanner, as well as the error
between the two tilted laser scanners.



Remote Sens. 2018, 10, 1269 7 of 18

Table 1. Residuals before and after calibration of relative pose between three laser scanners.

Laser Scanner Status Orientation Error Position Error
Tilted 1 to initial 0.58° 0.3 cm
horizontal final 0.091° 0.1 cm
Tilted 2 to initial 0.64° 0.3 cm
horizontal final 0.044° 0.1 cm

initial 0.62° 0.5 cm

Tilted 2 to tilted 1 final 0.058° 0.2 cm

2.2. Trajectory Evaluation

2.2.1. Framework of Trajectory Evaluation

Considering the real-time requirements and computational complexity of SLAM applications,
a complete SLAM system consists of a front-end thread and a simultaneously running back-end thread.
The front-end is responsible for real-time point cloud matching and local filtering optimization, and the
back-end is responsible for the closed-loop detection and the elimination of closing errors. Referring to
the existing SLAM algorithm framework [15,21], the framework of the trajectory evaluation of this
paper is designed as shown in Figure 4.

Front thread

imu imu tracker

motion filter pose

scannerH scan matching |
insert

——p| | submaps
adjust \
trajectory loop detection

graphic optimization AJ

Figure 4. Framework of trajectory evaluation.

End thread

The front-end and back-end algorithms of trajectory evaluation mentioned in Figure 4 can be
implemented by Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Front-end algorithm of trajectory evaluation

while (scan and inertial[])
posel < posel =1 + recursion (inertiall])
pose «— match (scan, submap, pose!);
posel, «— fusion (pose!, posel);
insert (scan, posef,, submap);
if (submap is large enough)
Algorithm 2 (submap);
takedown this submap, and new an empty submap;
end
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While a scan line and the inertial records within the corresponding time range fall into the
framework, the front-end gets the device pose pose! by adding the last pose pose,~! and the inertial
records’ recursive value first. Then, the device pose pose!, is obtained by matching the scan line to the
submap with the initial value posef. Next, the optimized pose pose}, is obtained by EKF fusing the pose
form motion deduction pose! and the pose form scan matching posel. Next, the scan line is inserted
into the submap using the optimized pose pose!. Finally, if the submap is large enough, it is taken off
from the front-end and inserted into the back-end, and a new submap is created to run next.

Algorithm 2: Back-end algorithm of trajectory evaluation

while (submap)
for (variant in possible rotation and translation of submap)
score <— probe (variant, maps);
if (score > threshold)
errors <— match (submap, maps);
constraints.add (maps, errors);
[poses, maps] <— optimize (constraints);
Algorithm 1 (poses);
end

While a submap from the front-end is received, multiple possible rotations and translations
are applied to the submap to detect closed loops. First, a score of the coincidence degree between
each variant and existing submaps is probed by a fast-rough matching method (matching between
low-resolution submaps). If a score is greater than the threshold, the submap’s relative pose is obtained
by a fine matching (matching between high-resolution submaps), and the relative pose can be called
edges in a graph or cumulative errors. Then, an optimization is executed after all errors are loaded
into the solver. Finally, an accurate map and optimized trajectory are obtained, and the front-end is
notified simultaneously.

In summary, there are three key technologies that support the implementation of Laser SLAM.
(1) Point cloud matching is the basic one to track movement. (2) Multi-sensor fusion based on a filtering
algorithm guarantees the robustness of the local smooth trajectory. (3) Graph optimization based on
measurement of the closed loop suppresses and divides cumulative errors.

2.2.2. Motion Tracking

Point cloud matching is the basic one to track movement. The relative motion can be obtained by
matching the current frame with the previous one; the relative position and attitude can be obtained
by matching the current frame with the existing map; the global map and accumulative error can be
obtained by matching local maps. The matching method can be divided into dense matching and
feature-based sparse matching according to the number and attribute of the points participating in
the matching.

The most widely used method of point cloud matching is ICP (Iterative Closest Point), which
iteratively refines the transform by repeatedly generating pairs of corresponding points on two meshes
and minimizing an error metric. Many variants of ICP have been proposed, which affect all phases of
the algorithm from the selection and matching of points to the minimization strategy. Q. C. Li, Muller,
& Rauschenbach analyzes the ICP algorithm in detail and lists and compares the possible variants of
each step [33]. ICP has very strong universality for aligning 3D models based purely on the geometry,
and sometimes color, of the meshes. However, it is limited by the reliance of an initial estimate of the
relative position and attitude, and the slow convergence speed.

Getting the inspiration from the image matching method, the feature-based point cloud matching
algorithm is designed based on extracted feature points, lines, and planes from a raw point cloud
such as [34,35]. This method employs and extends some image feature extraction methods, such as
SIFT, split-and-merge algorithm, and histogram cluster. This is very meaningful because it can be
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applied not only to local matching but also to global matching, which detects closed loops quickly.
However, this method has poor applicability in the natural environment, especially in the vegetation
environment, due to the scarcity of feature points, lines, and planes.

In this paper, the incremental probabilistic grid is used to represent the 2D map from existing
measurement information. When a scan line fills in the process, an ICP is used, which takes the sum
of the relative movement from IMU and the pose of the last moment as the initial relative pose, and
takes the discrepancy of each cell’s probabilistic value as the error metric. Finally, the relatively rigid
transformation is obtained by minimizing the error metric.

2.2.3. Local Optimization

Multi-sensor fusion based on a filtering algorithm guarantees the robustness of the local smooth
trajectory. The random errors in the positioning process can be effectively reduced by fusing inertial
data, odometer data, and scanning data using probabilistic methods. The existing filtering methods
have advantages and disadvantages according to their probability theories and principles [36,37].

Kalman filtering considers the state assessment of the robot as the process of finding the optimal
solution of the motion equation and observation equation. The equations are described as

X = AXp_1 + W1
zr = Hxp + vy

(6)

where x; is the position and attitude of the equipment at time k, zj is the laser scanning point at time
k, A are the motion values from IMU, H is the observation model of the scanner, and w and v are
the random noise. Under the assumptions that the error obeys the Gauss distribution, and that the
minimum mean square error is the criterion, Kalman filters can obtain the local optimal estimation by
Bayesian iteration. For application to nonlinear problems, the extended Kalman filtering (EKF) and
unscented Kalman filtering (UKF) were proposed.

The particle filtering (PF) uses a genetic mutation-selection sampling approach, with a set of
particles to represent the posterior distribution of the position and attitude of sensors. It can express
the posterior probability distribution more precisely due to the non-parametric characteristics, and it
has strong robustness since the pose state of the device is represented by multiple particles. It is widely
used in early robot localization, and the Gmapping is also the most widely used SLAM system.

An unscented Kalman filter is used for fusion of the motion from the MEMS-IMU and the rigid
transformation form point cloud matching in our workflow. On the one hand, the UKF has better
performance than other KFs and better efficiency than PF. On the other hand, the requirements are
not strict in the SLAM framework with closed-loop optimization due to the small-scale local map
(submap).

2.2.4. Global Optimization

The optimization of closed-loop measurement suppresses and divides cumulative errors. Loop
detection is the first step, followed by calculation of the cumulative error by adding revisit constraints
and redistribution using a back-propagation algorithm.

It is a challenging job for the machine to recognize whether the scene has been accessed, especially
using a point cloud, which only has geometric information of the scene. There are some strategies
proposed in existing studies to reduce the time consumption of closed-loop detection by avoiding
uniform traversal of the map space. In most visual SLAM systems, the bags of words method is
used to detect effective matching [38], which uses a hierarchical data structure and efficient traversal
algorithm. Based on the same idea, a strategy using multiresolution probabilistic grids is proposed
to solve the problem of rapid matching detection in laser SLAM [21]. Another way is noted by
Dubé et al., in 2016 [39], in which the large feature units with semantic information are extracted to
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reduce the candidate set. It also reiterates that the real-time machine learning will be a good way out
for closed loop detection problems through scene understanding and recognition.

After a revisited scene is confirmed, the cumulative error is added to the graph as an edge.
Then, the graph optimization solver distributes the cumulative errors to associated vertices using a
back-propagation algorithm. The optimization question can be described as

1
minz Zpi<\|f,'(x,'1, ., xik)||2>s.t.lj <xj <y ?)
i

where the expression pi<|| filxin, .-, xik)||2> is known as a residual block, where f;(-) is a cost
function that depends on the parameter blocks [xj1, ..., xj]. There are several available libraries for
graph optimization, such as g2o and Ceres-solver. Ceres-solver is employed in our work because
of its flexibility to solve Non-linear Least Squares problems with bound constraints and general
unconstrained optimization problems [40].

2.3. Scene Reconstruction

Time synchronization of trajectories and measured data is the key to the recovery of a 3D scene.
The rigid transformation (Rf, T*) at time t can be calculated by an interpolation of (Rf ,Tf ) and

(Rb, Tb) , where f and b are the time before t and after t, respectively, in the trajectory file.

(R, T") = interpolate((Rf, Tf>, (Rh, Tb)) (8)

where the function interpolate is uncertain for a transformation matrix due to the unclosed property
of the addition operation of a matrix. To obtain the interpolation, the transformation matrixes must
be written into quaternions, and a linear averaging is performed on the quaternions according to the
properties of quaternions [41].

The 3D point cloud can be reconstructed by the relative position and attitude of the slanted
scanner in the reference frame of the device and the movement trajectory of the device. Suppose
that the calibration of the rigid transformation from the slanted scanner to the horizontal scanner
coordinate system is (Rs, Ts), that the position and attitude of the device in the world space is (RE, T‘fl)
at time ¢, that p, is the coordinate of a scanning point at time ¢ in the self-coordinate system, and that
its coordinates in world space can be described by py

Pw = th(RS'pO + Ts) + Té/ (9)

A pretreatment including denoising and thinning is indispensable to the reconstructive point
cloud. First, outliers caused by glass or highly reflectivity surfaces, sparse point cloud bands—caused
by pedestrians and other moving objects and point clouds close to the device—need to be eliminated.
Then, after a uniform space sampling, not only are redundant points due to the uneven scanning
removed, but the subsequent processing is also convenient. Of course, some small objects need to be
deleted manually before modeling or displaying scenes using the point cloud.

The technology for stitching multiple images with the intrinsic and extrinsic parameters into
a 360-degree panorama is relatively mature, and there is a large amount of research regarding the
rational arrangement of stitching lines, the elimination of visual differences on both sides of stitching
lines, etc. In the process of indoor mapping, one problem that needs to be addressed is the image
deformation and stitching error caused by the short shooting distance. Therefore, the scale of the
measurement scene should be considered when calibrating cameras. A more accurate and complex
interior and relative orientation parameters calibration for camera heads is required, on a small-scale
measurement scene.
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As in the reconstruction of the 3D point cloud, the position and attitude information at the
shooting time ¢ can be appended to the panoramic image. The position T and the attitude R can be
calculated by

T=R,T.+ T

1
R = RiR, {10

where (R, T¢) is the calibration rigid transformation of the integrated camera in the horizontal scanner
coordinate system. An additional instruction is needed in that the attitude of the integrated camera R,
is defined as the attitude of the camera in front of the device, and the position of the integrated camera
T, is defined as the geometric center of the six cameras’ positions.

3. Results

3.1. Experimental Area and Data Acquisition

The experiment was carried out in a library covering an area of 3000 m? with five floors and an
underground garage. The underground garage is almost empty due to less parking. The first floor
contains the hall and two self-study rooms on both sides. Both have a simple space structure and
spacious field of vision. The scenes of the second and third floors are complicated due to dense book
shelves, which leads to various discontinuities and poor visibility. The fourth and fifth floors contain
typical long corridors with meeting rooms on both sides.

The indoor point clouds and panoramas can be accessed by pushing equipment through the
observation area. It took one operator to complete the task in two hours, including migration between
floors. In Figure 5, the picture on the left records the actual acquisition process, and the picture on
the right shows the rough real-time measurement results provided by manipulation software. This
real-time reveal can help the operator to master the progress of existing measurements and plan the
next walking route. It is very helpful in obtaining a minimized full coverage measurement data in an
unfamiliar complex environment.

| embemm 1miie
TRIRNG, otss
Lniodbon. /|

i)y
2017-04-20 15:30 4

Figure 5. Snapshot of acquisition process.

After the acquisition, a total of approximately 570,000 laser scan lines from three scanners were
recorded in the form of ASCII code, and a total of more than 7000 images of 4608 x 3456 pixels from
six lenses were obtained by synchronous exposure every 4 s. On the whole, the number of point clouds
and images is relatively dense and is sufficient to meet the needs of space modeling. The point cloud is
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neat because of the smooth movement and smaller flow. Most images are clear, and only a few show
motion blurs.

3.2. Trajectory Results and Accuracy Evaluation

After the field measurement, a complete trajectory evaluation process needs to be executed,
because the real-time reveal is too rough for a space reconstruction. The accurate scanning trajectory of
each floor is produced by pushing the data from the horizontal scanner and the MEMS-IMU into the
SLAM framework described in this paper. On a desktop computer with an Intel i5 CPU running at
3.2 GHz and 12 GB of memory, the SLAM framework takes approximately 2 h to finish the six floors’
work. Figure 6 shows the trajectory and 2D map. Through the red track point, we know that the
measurement route is very rugged, which is caused by the narrow space and poor visibility.

(e) fourth floor (f) fifth floor

Figure 6. (a—f) Trajectories and 2D maps.

By observing the dynamic process of trajectory evaluations on the second floor, the third floor
and the fourth floor, it is found that a larger tracking failure occurred when turning in the bookshelf
groups. The reasons can be traced to the narrow corridor formed by two rows of bookshelves and the
uneven bookshelf side. Therefore, when the equipment has to be pulled into the bookshelf group for
measurement, it is necessary to return to the broad space for a good relocation in time.

The detailed accuracy results are listed in Table 2. The most common accuracy index of”map
error” is measured by the wall thickness in the 2D map in cm, which can be considered as the accuracy
of the trajectory evaluation technology after finishing the closed-loop optimization. The “track error”
is the bearing error in degrees, showing the final tracking result without a closed-loop optimization.
It can reflect the stability of tracking. The “real error” is measured by the angle between two parallel
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walls of the two sides of the left and the right in the building. It can reflect the credibility of the
global optimization.

Table 2. Different accuracy indexes in trajectory evaluation

Scene Map Error Track Error Real Error
garage 3 cm 3° 0.05°
first floor 3 cm 5° 0.2°
second floor 5cm 12° 0.3°
third floor 5cm 27° 0.2°
fourth floor 6 cm 11° 0.4°
fifth floor 4 cm 5° 1.1°

It shows that the accuracy is up to 3 cm for the underground garage and the first floor, which have
a clear-cut spatial layout. The accuracy is between 3 cm and 6 cm on the other floors. The worst case of
8 cm occurred on the fourth floor due to the simultaneous occurrence of the typical long corridor and
the complex room layout. The maximum value of the track error occurred on the third floor due to the
corridor with a translucent glass wall on one side and a wall with uneven bookcases on the other side.
The real errors are small enough to be considered a byproduct of the map error, and the 1.1 degrees of
the fifth floor may be caused by an insufficient closed loop.

3.3. Point Clouds and Panoramic Images

The reconstructive 3D point cloud from two slant laser ranging is processed by statistical outlier
removal and a denoising using eight-neighbor filtering. For fast rendering and post-processing, the
point cloud is uniformly down-sampled to 1 cm.

Figure 7 shows point clouds of the library, and the point cloud on the roof was removed. It is
clear that the utilization of the underground garage is too low with only eight cars. The point cloud of
the first floor shows more hollows compared with the others because it only contains the data from
one slant scanner. It can be found that most bookshelves have been scanned fully, although there is
still occlusion from the second floor, third floor, and fourth floor. The overview of the entire library is
formed by stacking point clouds of the six floors together based on the floor height. The detailed view
of the self-study room on the first floor shows that walls, garden tables, chairs, back-to-back sofas, and
computer desks with baffles are displayed clearly after segmenting point clouds by the normal vector.

One hundred 3D distances measurements between special targets are carried out randomly in the
reconstructive three-dimension point clouds, and the accuracy is determined by the difference between
the measured values and the real values. The results show an average error of 6 cm, and the maximum
is 12 cm. There is an unavoidable error of 5~6 cm in the 3D point cloud because the trajectory obtained
by SLAM has errors, as mentioned in Section 3.2. Thus, the extra error may be caused by some subtle
differences between the real 3D trajectory and the 2D trajectory obtained by SLAM, which has only
three degrees of freedom. We assume that the ground is sufficiently flat and that there is no offset in
the vertical direction, no pitching angle, and no roll angle as the equipment moves.

The panoramic images are produced by a panoramic stitching software, and Figure 8 shows the
book lending room on the left of the second floor with 204 panoramic images of 4096 x 2048 pixels in
size. Such dense panoramic images can fully meet the needs of coloring the model, and to a certain
extent, the 3D structure can be recovered only from panoramic images. The vast majority of panoramic
images are clear with no significant stitching, and only a few panoramic images have visible motion
blur and dislocation stitching according to the statistical observation.
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(a) underground garage (b) first floor

(c) second floor

(e) fourth floor (f) fifth floor

(g) overview of the entire librar

(h) detailed view

Figure 7. (a—h) Reconstructive 3D point clouds.
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Figure 8. Panoramic images with position and attitude.

4. Discussion

The technical framework of this paper is reconstruction of the 3D real scene by the optimized
equipment trajectory obtained by 2D SLAM technology. However, there is obvious information scarcity
from a 2D trajectory with three degrees of freedom to a 3D trajectory with six degrees of freedom.
Although there is no offset in the vertical direction, no pitching angle, and no roll angle when the
equipment moves on a plane of absolute level, there are some subtle differences due to non-horizontal
ground and jitter. Using the values acquired by MEMS-IMU to make up for this lack of information
is a feasible method. However, through the experiment, a small error increase was found from the
2D map to the 3D map. Perhaps a better method is to use 3D SLAM technology to track the device’s
trajectory because the six degrees of freedom of the trajectory are optimized simultaneously.

The panoramic images and point clouds are not the final product that describes 3D scenes.
Future work will aim for a simple and effective method to turn the point clouds into a model, map
the panoramic images on the model, and attach the semantic information to each object. Scene
understanding is vital to the creation of a model that conforms to human cognition. Simple plane
fitting is not qualified for high quality modeling; semantic extraction and learning intelligence need to
be introduced into the disposal of a bunch of scattered point clouds such as the methods proposed
in [42,43]. An intelligent generation method of a watertight mesh based on semantic information may
be a research direction in modeling, and a distinctive mesh based on the semantic information of the
object may be generated.

5. Conclusions

In this paper, an efficient solution for indoor mapping is proposed. Equipment with hardware
and software for indoor mapping and modeling is designed. Point clouds and panoramic images
for the description of 3D space are reconstructed based on optimized device trajectories obtained by
the 2D SLAM technology. First, the integrated equipment with a panoramic camera and three laser
scanners is designed and calibrated. Then, the 2D SLAM framework with tracking, local optimization,
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and global optimization is achieved. Finally, the algorithms for reconstruction of point clouds and
generation of panoramic images are implemented.

A library building is mapped precisely as an experimental case. The small-time consumption of
the experiment verifies the efficiency of the proposed workflow. The experimental results show that
the accuracy of the indoor 3D point cloud can reach 5 cm, and the textures are abundant using the
proposed prototype system. It demonstrates that the produced point clouds and panoramic images
are fully utilizable for modeling and further work for the large-scale indoor scene. In summary, the
proposed system is an efficient and accurate solution for indoor 3D mapping.
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