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Abstract: Land cover maps are indispensable for decision making, monitoring, and management in
agricultural areas, but they are often only available after harvesting. To obtain a timely crop map of a
small-scale arable landscape in the Swiss Plateau, we acquired uncalibrated, very high-resolution
data, with a spatial resolution of 0.05 m and four spectral bands, using a consumer-grade camera
on an unmanned aerial vehicle (UAV) in June 2015. We resampled the data to different spatial
and spectral resolutions, and evaluated the method using textural features (first order statistics
and mathematical morphology), a random forest classifier for best performance, as well as number
and size of the structuring elements. Our main findings suggest the overall best performing data
consisting of a spatial resolution of 0.5 m, three spectral bands (RGB—red, green, and blue), and five
different sizes of the structuring elements. The overall accuracy (OA) for the full set of crop classes
based on a pixel-based classification is 66.7%. In case of a merged set of crops, the OA increases by
~7% (74.0%). For an object-based classification based on individual field parcels, the OA increases
by ~20% (OA of 86.3% for the full set of crop classes, and 94.6% for the merged set, respectively).
We conclude the use of UAV to be most relevant at 0.5 m spatial resolution in heterogeneous arable
landscapes when used for crop classification.

Keywords: consumer-grade camera; land cover; very high resolution (VHR); random forest (RF)
classifier; object-based classification; pixel-based classification; small-scaled agricultural fields; texture;
spatial feature

1. Introduction

Agriculture reacts very sensitively to climate change [1]. Since the world population is expected
to grow to 9.6 billion by the year 2050 [2], global food demand is increasing [3], and therefore,
the availability of accurate and timely information about agriculture on a global [4], as well as on a
local scale, is essential [5] to ensure that a growing world population can be fed. In order to address the
problems of food insecurity or the volatility of the food market, remote sensing technologies provide a
wide range of opportunities to assess these challenges [4,6].

Numerous aspects in agriculture and agronomy have been addressed for years with the support of
remote sensing [6]. Among others are estimation of yield [7], biomass [8], seasonal plant development
and stress monitoring [9,10], phenology and vigor [11], and land cover or land use change [12,13].

Accurate land cover assessments form the basis for such analyses in agricultural areas [14], and are
particularly important for planning of water resources [15], automated short-term monitoring for yield
estimation [16], sustainable land management [17], crop modeling before the end of season [18], or plot
extraction for high-throughput phenotyping [19–21]. Further, current conditions and extent of land
cover are needed as a basis for climate change modeling [22]. Often, information about arable land

Remote Sens. 2018, 10, 1282; doi:10.3390/rs10081282 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9627-9565
https://orcid.org/0000-0002-6716-585X
http://www.mdpi.com/2072-4292/10/8/1282?type=check_update&version=1
http://dx.doi.org/10.3390/rs10081282
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1282 2 of 21

cover is only available in administrative units, while detailed information on spatial distribution is
lacking [23] or not accessible to the general public for reasons of data protection regulations [24].

In Switzerland, the agricultural landscape is mainly characterized by small structured
farmland [25]. Support of farmers through direct payments plays a key role in Swiss agricultural policy.
In 1996, the policy was changed from underwriting guarantee for most of the agricultural products
towards compensation for provided services [26]. Today, the focus of direct payments to farmers in
Switzerland is aligned with preservation of the cultural landscape, ensuring food supplies, sustainable
production, enrichment of biodiversity, and contributions to the quality of the landscape. Small-scale
subdivision of the arable area into portions of different crops guarantees an attractive landscape and
fosters biodiversity [26,27]. Finally, direct payments are based on acreage, compensation for hilly
terrain, individual crop plants, and their respective combinations [28]. Contributions for specific
crops are paid, among others, for oilseed and sugar beet, while different types of cereals are not of
specific interest.

The respective reporting is so far based on self-declaration, and likewise, the controlling is
based on field visits. Accurate verification of crop types is important for subsidy control, to monitor
biodiversity relevant land management practices, like crop rotation, soil protection and sustainable
application of fertilizer, and to link up protected areas and ecological compensation areas [26].

Sharing information from reporting and controlling is often time consuming, and not
straightforward. This is critical when it comes to the need for early warning [11], e.g., in case of
water shortage, when sustainable planning is necessary [15]. Future predictions by climate models
indicate that water will become a limited resource in Switzerland, as well [22,29]. Since water need
for irrigation is crop dependent, accurate and timely information on crop allocation and acreage is
required for planning purposes.

With the agricultural landscape in Switzerland being small structured, data of spatially very high
resolution (VHR) are required to derive crop type and field extent [4,6,30]. Common sensors that
acquire VHR data usually have the disadvantage of a limited number of spectral bands, which limits
their capability when applying purely spectrally based classifications. Consequently, the incorporation
of texture information contained in VHR data bears potential in data analysis [31–33]. In general,
additional textural features result in the highest improvement of classification compared to other
additional information sources like ancillary data, multitemporal datasets, or spectral indices [34].

Multispectral satellite data, e.g., stemming from RapidEye [35], SPOT 5 [36], QuickBird MS [16],
IKONOS [16,37], WorldView-2 [38], or WorldView-3 [14], have been widely used to assess land cover
in agricultural areas. These datasets have typical spatial resolutions between 0.5 m–6.5 m, and varying
spectral bands (in terms of number, center wavelength and band width) mainly in the visible (VIS)
and near-infrared (NIR) spectral range.

Nowadays, an increasing number of unmanned aerial vehicles (UAVs) provide the possibility
to acquire VHR data. With such systems, it is possible to flexibly record data in an optimal spatial
resolution. For agricultural mapping of small-scaled fields, a spatial resolution between 0.5 m–3 m is
suggested to assess the infield variability [39]. Operating UAVs enables customized data acquisition
in support of the definition and implementation of a dedicated processing chain for subsequent
product generation.

Typical application fields of UAVs comprise vegetation, environmental, urban, or disaster
monitoring [40], as well as precision agriculture, land cover mapping, and rangeland monitoring in
the agricultural sector [41]. VHR data derived with a UAV have been used to determine land cover
of small agricultural areas up to a few square kilometers [42]. Compared to satellite or airborne
data acquisitions, UAVs are less expensive to operate [43,44], data acquisition needs less human
interaction compared to destructive measurement methods [33], and is more flexible concerning
weather conditions and flight planning [33,40]. Constraints are imposed by weather (e.g., rain and
wind) and unfavorable solar illumination conditions. Nevertheless, since UAVs are usually operated at
low flight altitude, data acquisition is also possible under cloudy conditions. In some countries, legal
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restrictions for operating UAVs apply [43,45,46]. Apart from that, UAV data acquisition is more flexible
throughout the day and not limited by given revisit times, as in the case of satellites, or potential flight
restrictions with larger airborne platforms.

Although a wide range of sensors, ranging from consumer-grade cameras over multispectral
sensors to imaging spectrometers [40], is available for UAVs today, their spectral calibration for
sophisticated higher-level products requires additional effort [47,48]. On the one hand, sensors need to
be calibrated while operated, e.g., by deploying a standard (white) reference in the field [49]. On the
other hand, the exact spectral behavior of the sensor spectral bands must be known to eventually
derive physical quantities [50].

In our study, we used a VHR dataset acquired with two uncalibrated consumer-grade cameras
carried by a UAV for crop classification. While one camera captured the common red, green, and blue
(RGB) bands, the other one recorded data with near-infrared, green, and blue (NirGB) bands. The data
of the two cameras were combined into a NirRGB dataset. We present a novel method combining
spectral and textural information to classify agricultural crops in a typical small structured arable
landscape in the Swiss Plateau, using a random forest (RF) classifier [51] and VHR data from
uncalibrated consumer-grade cameras. In this study, we analyze the influence of (i) spatial resolution,
(ii) choice of spectral bands, and (iii) number of textural features, i.e., different sizes of the structuring
element (SE), on the classification accuracy on a per-pixel basis and on the level of aggregated parcels.

2. Material

2.1. Study Area

The study area is situated in the Swiss Plateau within the Canton of Zurich (47.312◦N, 8.733◦E),
Switzerland (Figure 1). The rural area is mainly covered by cropland and grassland. The elevation
of the test site varies between 440 m–570 m above sea level (a.s.l.) and the climate can be described
as warm temperate humid, with a yearly mean temperature around 9.3 ◦C and annual precipitation
around 1134 mm [52]. Soils comprise mainly clay loam or loam, and Cambisol [53].

The predominant crop types in the study area are maize, sugar beet, and winter wheat (Table 1).
Grassland comprises perennial (permanent) and annual (i.e., temporary) cover. Fields that were
covered with hay during data acquisition and pure clover were treated as separate classes. The few
and small spelt and winter barley fields were also taken into account. Rapeseed fields covered a minor
area, and the bare soil fields were later planted with maize. Crop types present on less than three
fields in the study area were excluded from our study. Additionally, the individual crop classes were
grouped into generalized, merged classes to assess the performance of the subsequent classification
(Table 1). Winter wheat, winter barley, and spelt were combined to cereals, the grassland class was
merged with clover, and maize was extended to include pure soils, since maize was grown on these
plots later during the year. Hay-covered fields were eventually excluded from our analysis, due to
their heterogeneous appearance.
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Figure 1. Outline of the study area (near Mönchaltorf, Switzerland). (See overview map of 
Switzerland, top right) in the Canton of Zurich, acquired with a spatial resolution of 0.05 m using a 
consumer-grade RGB (red, green, and blue) camera mounted on an unmanned aerial vehicle (UAV). 

Table 1. Crop classes present in the study area and their respective field characteristics. 

Crop Class 
Total Area 

(ha) 
Number of 

Fields 

Spacing 
Phenology 

(BBCH) Full Set Merged Set Within-Row 
(cm) 

Row 
(cm) 

Maize 
Maize 

19.6 15 14-16 75 0–33 
Bare Soil 7.4 5 - - - 

Sugar Beet Sugar Beet 14.1 7 16 50 39 
Winter Wheat 

Cereals 
24.4 13 5 14–15 75 

Spelt 2.6 3 5 14–15 75 
Winter Barley 2.5 3 5 14–15 99 

Grassland 
Grassland 

15.0 17 - - - 
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Grass Hay Excluded 3.6 5 - - - 
Rapeseed Rapeseed 7.6 6 10 30 80 

2.2. Dataset 

The entire study area comprises an extent of 170 ha, whereof 102 ha were taken into account. 
Data acquisition took place between 11:00–13:45 local time on 26 June 2015 in four flights of 30 min 
each. At this time of the year, all investigated crop types were present. The agricultural fields have 
an average size of 1.3 ha, ranging from 0.03 ha to 7.4 ha, with lengths of 140 m–200 m and widths of 
23 m–180 m. Two larger fields have an extent of 183 × 437 m2 (8 ha) and 465 × 87 m2 (4 ha). 

Figure 1. Outline of the study area (near Mönchaltorf, Switzerland). (See overview map of Switzerland,
top right) in the Canton of Zurich, acquired with a spatial resolution of 0.05 m using a consumer-grade
RGB (red, green, and blue) camera mounted on an unmanned aerial vehicle (UAV).

Table 1. Crop classes present in the study area and their respective field characteristics.

Crop Class
Total Area

(ha)
Number of

Fields

Spacing
Phenology

(BBCH)Full Set Merged Set Within-Row
(cm) Row (cm)

Maize
Maize

19.6 15 14-16 75 0–33
Bare Soil 7.4 5 - - -

Sugar Beet Sugar Beet 14.1 7 16 50 39

Winter Wheat
Cereals

24.4 13 5 14–15 75
Spelt 2.6 3 5 14–15 75

Winter Barley 2.5 3 5 14–15 99

Grassland
Grassland

15.0 17 - - -
Clover 5.4 3 - 10.5 -

Grass Hay Excluded 3.6 5 - - -

Rapeseed Rapeseed 7.6 6 10 30 80

2.2. Dataset

The entire study area comprises an extent of 170 ha, whereof 102 ha were taken into account.
Data acquisition took place between 11:00–13:45 local time on 26 June 2015 in four flights of 30 min
each. At this time of the year, all investigated crop types were present. The agricultural fields have
an average size of 1.3 ha, ranging from 0.03 ha to 7.4 ha, with lengths of 140 m–200 m and widths of
23 m–180 m. Two larger fields have an extent of 183 × 437 m2 (8 ha) and 465 × 87 m2 (4 ha).

At the end of June 2015, the various crops were in different phenological stages. We determined the
phenological code based on “Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie”
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(BBCH) [54] by non-destructive field inspections. Cereals were in maturity stage, with winter wheat
and spelt in milk-ripe stage (BBCH 75), and winter barley in senescence (ready for harvest, BBCH 99).
Maize included freshly sown to stem elongation stages (BBCH 0–33), rapeseed was just at the beginning
of ripening (BBCH 80), and sugar beets had reached complete soil cover (BBCH 39). For grassland
and clover, the exact phenological stages were not determined, since they were subject to a range
of differing management. The phenological stages of pastures were heterogeneous due to grazing,
whereas in the case of perennial and annual grasslands, phenological differences were linked to
differing cutting strategies, reaching from complete mowing of the entire field to daily cuts of small
parts for fresh forage.

Data acquisition was performed under clear sky conditions with a few condensation trails present.
As the typical flight time of the deployed eBee UAV (Sensefly, Cheseaux-Lausanne, Switzerland) is
limited to approximately 30 min, the total study area was divided into two parts in order for each
subarea to be recorded in a single flight. For each subarea, both a 16.1 megapixel Canon IXUS 125HS
camera with red, green, and blue (RGB) bands (center wavelengths at 660, 520, and 450 nm) and a
modified camera of the same type with near infrared (NIR), green, and blue (NirGB) bands (center
wavelengths at 720, 520, and 450 nm) were used consecutively. Flight planning and subsequent image
acquisition were performed using the eMotion2 software (Sensefly, Cheseaux-Lausanne, Switzerland).
The flight altitude was 150 m above ground, resulting in a spatial resolution of approximately 0.05 m.
The images were acquired in parallel flight paths with a lateral overlap of 60% and a longitudinal
overlap of 75%.

A total of 1092 single images were geo-tagged based on their respective GPS and IMU
measurements on board the UAV during flight. The images were subsequently processed in Pix4D
Mapper (Pix4D SA, Lausanne, Switzerland). The software uses the structure from motion (SfM)
technique to generate a dense point cloud, a digital elevation model, and a mosaicked and rectified
image product with a predefined spatial resolution of 0.05 m. During processing, five ground control
points (GCP) that were measured with a differential GPS (dGPS) device on the ground were added
for improved geo-rectification of the camera-wise image mosaics. The RGB mosaic and the NIR band
was eventually stacked together with the RGB bands of the RGB camera, resulting in a VHR dataset
consisting of four bands.

A crop type reference dataset of the study area was built based on a concurrent field survey and
identified parcel boundaries (Figure 2). In order to avoid mixing effects at field borders, a buffer of 2 m
was applied for classification training and validation (see Section 3).
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3. Method

We applied a robust classification and accuracy assessment workflow that consists of several
steps (Figure 3). First, the VHR dataset was resampled to a range of spatial resolutions from which
textural features were subsequently extracted. The features of these datasets were compiled to six
different settings, based on spectral properties and amount of SE sizes. The data of these settings were
then split into three parts for (i) training of the random forest (RF) model, (ii) validation of the model
parameters, and (iii) testing of the final model classification performance. For the classification, we
used an RF approach [51], having been widely used in previous studies and successfully applied [55].
The validated classification model was eventually applied to the test dataset, and an accuracy
assessment was performed on both spatial supports (i.e., pixel- and parcel-based classification). The
individual steps of our approach are described in detail below.
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3.1. Resampling

To evaluate the influence of the spatial resolution on the classification accuracy, we resampled the
VHR dataset to 0.1 m, 0.25 m, 0.5 m, 0.75 m, 1 m, and 2 m using a bicubic transformation. The reference
dataset was resampled to the same spatial resolutions by applying a nearest neighbor method.

3.2. Feature Extraction

In order to incorporate spatial information into the classification chain, two types of textual
features, i.e., first-order statistics and mathematical morphology, were calculated. The following
statistical characteristics were used: mean, standard deviation, range, and entropy. Morphological
operations comprised dilatation/erosion, opening/closing, opening/closing top hat, opening/closing
by reconstruction, and opening/closing by reconstruction top hat [56–59]. The respective formulas can
be found in Table 2.

These features were calculated based on a SE, i.e., a moving window. Since its shape and size
are decisive, an SE is usually pre-selected based on expert knowledge. With some agricultural crops
(in particular maize and sugar beet) in our dataset being cultivated in rows, their orientation has a
major impact on the analyzed texture in an SE. Consequently, resulting feature values depend on the
angle between plant rows and SE, especially in the case of a linear, but also a rectangular SE. To be
rotation-invariant, all features were calculated in a disk-shaped SE.

The SE size, i.e., the diameter of the disk, was selected according to the measured distances
between the plant rows in the study area, with the goal to include at least two rows of plants, in case of
5 cm spatial resolution. The distance between two rows for clover was 10.5 cm, for cereals 14 cm–15 cm,
for rapeseed 30 cm, for sugar beet 50 cm, and for maize 75 cm (Table 1). To assess the texture of at least
two crop rows, diameters of 3, 5, 9, 13, and 29 pixels were thus chosen as SE sizes. We applied the
same SE sizes to all spatially resampled datasets.

For the subsequent analysis, six combinations of spectral bands and amount of SE sizes, so-called
settings, were formed in total (Table 3). They are based on three sets of spectral bands, i.e., a set of
all available bands of the two cameras (NIR, R, G, B), and two spectral subsets, representing the two
cameras (NirGB and RGB) individually. Each of these spectral datasets was applied once to all SE sizes
(5SE) and once to a reduced number of two SE sizes (2SE), with diameters of 3 and 5 pixels [38,60].
The added textural features were specifically built on the corresponding spectral subset. The settings
are named according to the respective spectral bands and SE sizes (e.g., 5SE-NirRGB, comprising all
spectral bands and all textural features with all SE sizes).

Table 2. Mathematical morphology formulae for image f and structuring element (SE) B for a pixel x.
For further details see [56–59].

Name Formula

Dilatation [εBf]x = minb ∈ Bf (x + b)
Erosion [δBf]x = maxb ∈ Bf (x + b)

Opening ΓBf = δB◦εB(f)
Closing ϕBf = εB◦δB(f)

Opening by top hat OTH = f − γBf
Closing by top hat CTH = ϕBf − f

Opening by reconstruction γR(n) = Rfδ[εnf]
Closing by reconstruction ϕR(n) = Rfε[δn(f)]

Opening by reconstruction top hat ORTH = f − γRn(f)
Closing by reconstruction top hat CRTH = ϕRnf − f
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Table 3. Composition of spectral and textural settings.

Setting Spectral Bands SE Sizes (Diameter (Pixel))

5SE-NirRGB NIR-R-G-B 5SE (3, 5, 9, 13, 29)
5SE-RGB R-G-B 5SE (3, 5, 9, 13, 29)

5SE-NirGB NIR-G-B 5SE (3, 5, 9, 13, 29)
2SE-NirRGB NIR-R-G-B 2SE (3, 5)

2SE-RGB R-G-B 2SE (3, 5)
2SE-NirGB NIR-G-B 2SE (3, 5)

3.3. Data Splitting for Validation

The dataset was split in three parts to perform a 3-fold cross validation, whereby one split was
used for training of the RF classifier, one for validation of RF parameters, and the last one for testing to
determine the classification accuracy. This ensures that only data that were not used for training and
validation were used for classification [61]. Therefore, entire fields were assigned randomly to one of
these data subsets, such that one third of the fields of a crop class was assigned to a split. In order to
avoid these split specific assignments that influence the classification, all six possible permutations,
called folds, were exercised.

3.4. Classification

To train the RF and to validate the model parameters, a set of 1000 stratified, randomly sampled
pixels per class were selected from the respective training and validation datasets. The native
TreeBagger implementation in MATLAB Version 2016a was used for the RF classifier. Usually,
the number of trees is preselected by preliminary tests [38], or default values may be used [18].
In our case, we trained the RF with 20 logarithmically evenly spaced values between 10 and 1000 trees
to determine the best amount of trees. A minimal leaf size of 3 was chosen to avoid overfitting. For all
other parameters, default settings were kept, in particular, the square root of all features at each split.

In a first step (Equation (1)), we calculated the proportion of the correctly classified validation
pixels and fitted them to an exponential function of the form

y = a ∗ e−b∗x + c, (1)

using a nonlinear least squares method with starting values of 0 for a and b, and 1 for c. A pre-study
showed that this model and these parameters were the most suitable.

Then, we chose the number of trees with an accuracy loss of 0.1% compared to the best accuracy
achieved with the fitted function in 1000 trees. However, in order to ensure stability, we set a threshold
of at least 100 trees. Eventually, we trained the final model for classification with the determined
number of trees, and all training and validation pixels. For the pixel-based classification, this final
model was applied to all pixels of test data in the respective fold.

3.5. Spatial Support

Data smoothing at parcel level is commonly applied to agricultural classification results [16].
Parcels were resampled to the respective spatial resolutions using a nearest neighbor approach.
The pixel-based classification was followed by the assignment of the most frequent label within a
parcel to each pixel of the respective parcel, producing, thus, the parcel-based classification result.

3.6. Accuracy Assessment

The confusion matrix for the test dataset of each fold forms the basis for calculating the overall
accuracy [62], kappa coefficient [63], as well as user and producer accuracy [62]. In order to get a
better overall view, we averaged the values achieved for each fold. Overall accuracy (OA) refers to the
average of the overall accuracy values of the six folds weighted by the number of total test pixels in
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the corresponding fold. It is a very frequently used accuracy measure, and allows the comparison to
other studies [34]. Kappa refers to the kappa coefficient, average accuracy (AA) refers to the mean of
the user accuracies, and average reliability (AR) to the mean of the producer accuracies, respectively.

4. Results

We first present the overall best performing setting (i.e., 5SE-RGB) and then the influence of
spatial resampling, selection of spectral bands, and amount of features, i.e., SE sizes. We show the
results for the spatial support of pixels and parcels, as well as the full and merged sets of crop classes.
All results over all classes are presented and discussed based on OA. Obtained kappa, AA, and AR
are not described here in detail, although the corresponding values can be found in Tables S1–S4, and
condensed summaries of accuracy values are given in Tables 4 and 5. Subsequently, we also present
the class specific UA and PA values.

Table 4. Overall accuracy (OA (%)) for 5SE-RGB for all tested spatial supports (i.e., pixel- and
parcel-based) and crop classes at different spatial resolutions.

Resolution (m)
Pixel-Based Parcel-Based

Full Set Merged Set Full Set Merged Set

0.1 61.1 80.2 76.1 94.7
0.25 60.5 86.5 69.9 96.7
0.5 66.7 86.3 74.0 94.6
0.75 63.7 86.5 65.7 96.2

1 62.6 86.0 61.9 94.3
2 60.0 82.7 67.8 92.2

Table 5. OA (%) for all settings, spatial supports and sets of crop classes at 0.5 m spatial resolution.

Settings
Pixel-Based Parcel-Based

Full Set Merged Set Full Set Merged Set

2SE-NirGB 53.5 72.4 68.0 79.4
2SE-NirRGB 60.5 77.1 75.6 83.5

2SE-RGB 60.1 81.5 65.0 92.6
5SE-NirGB 62.1 79.8 73.0 93.0

5SE-NirRGB 65.5 83.5 76.7 95.0
5SE-RGB 66.7 86.3 74.0 94.6

The best accuracy values are achieved for the 5SE-RGB setting at a spatial resolution of 0.5 m
(Figure 4). In case of pixel-based classification the OA reaches 66.7%, whereas in the parcel-based case,
an OA of 74.0% is achieved for the full set of crop classes (Table 4). The corresponding land cover maps
can be found in Figure 5.
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For the merged set of classes, the best values are achieved for 0.75 m spatial resolution for a
pixel-based classification in terms of OA and AA (OA 86.5%, kappa 0.823, AA 85.8%, AR 87.9%), and for
0.25 m in terms of kappa and AR (OA 86.5%, kappa 0.823, AA 85.4.7%, AR 88.1%) (Table S3). However,
the differences between the calculated accuracy measurements are small. The difference between the
spatial resolution of 0.75 m and 0.5 m is 0.050% in terms of OA (differences in kappa: 0.000%, AA:
0.204%, AR:−0.127%). For the parcel-based classification, the best performance was achieved for a spatial
resolution of 0.25 m with an OA of 96.7%, which is 2.1% better than for 0.5 m (Table S4).

4.1. Spatial Resampling

Concerning OA values for the tested spatial resolutions, most settings show a similar pattern for
pixel-based classification of the full set of crop classes (Figure 4). The maximum OA is reached around
0.5 m, with decreasing values for higher or lower spatial resolution (Table 4).

In the case of pixel-based classification, the OA of the best performing setting (5SE-RGB) rises
from 60.0% at a spatial resolution of 2 m, to 66.7% at 0.5 m for the full set of crop classes (Table 4).
Then, it decreases to 61.1% at 0.1 m. For the set of merged classes, the OA raises from 82.7% at 2 m up
to 86.3% at 0.5 m, and decreases to 80.2% at 0.1 m.

For parcel-based classifications, different spatial resolutions perform best for the full and merged
set of crop classes (Figures S2 and S3). For the full set, a spatial resolution of 0.5 m yields the best
classification accuracy, except for some settings that perform slightly better at 0.1 m spatial resolution.
For the merged set of classes, highest accuracies are achieved at 0.25 m or 0.75 m spatial resolution,
with slightly lower values at 0.5 m.

4.2. Spectral Resolution

Regarding spectral resolution of pixel-based classification, RGB settings generally lead to a better
performance than settings with the additional NIR band (Figure 4 and Table 5). Settings without
the red band (i.e., NirGB) perform worse. In the case of the full set of crop classes and the settings
with five SE (5SE), this is only true for a spatial resolution of 0.5 m and 2 m (Table S1). For the other
considered spatial resolutions, 5SE-NirRGB performs slightly better than 5SE-RGB in terms of OA.
OA values for 5SE-NirGB are always lower than in the case of 5SE-NirRGB and 5SE-RGB, except for a
spatial resolution of 0.25 m, where a 5SE-NirGB setting performs best. For settings with less SE sizes,
2SE-NirRGB outperforms 2SE-RGB, except for a resolution of 2 m. The OA values for classification of
a 2SE-NirGB setting are always lower than for the other settings. In the case of the merged set of crop
classes, the above statement applies to all spatial resolutions and amount of SE sizes (Figure S1).

Settings with RGB bands lead to better classification results than NirRGB and NirGB settings,
irrespective of the spatial resolution and the amount of SE sizes (Table 5). On average, RGB settings
show a 6% better OA compared to NIR-RGB, and 9% compared to NirGB for the full set of crop classes,
and 7% and 10% in the case of the merged set, respectively.

In the parcel-based classification of the full set of crop classes, four-band settings perform best,
followed by RGB and NirGB settings, with some exceptions for 0.1 m and 2 m spatial resolution
(Table S2). Independent of the amount of SE sizes, 2SE-RGB and 5SE-RGB settings achieve better
accuracies at a spatial resolution of 2 m than NirRGB settings. In addition, 5SE-RGB performs best at
a spatial resolution of 0.1 m. In case of merged crop classes, RGB settings perform best, followed by
NirRGB and NirGB settings.

4.3. Number of SE Sizes

In general, a higher number of SE sizes (5SE), and therefore, more textural features, lead to
higher classification accuracies compared to a reduced amount (2SE) for the same spectral and spatial
resolutions (Table 5). Nevertheless, 2SE settings outperform 5SE settings for parcel-based classification
of the full set of crop classes at a spatial resolution of 0.75 and 1 m (Figure S1), and of the merged set of
classes at 2 m (Figure S3), respectively.
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4.4. Number of Classes and Spatial Support

In case of the best overall setting (i.e., 5SE-RGB, at 0.5 m), the classification result of the merged
set of crop classes yields a 19.6% better OA compared to the full set for the pixel-based classification,
and a 20.6% better OA for the parcel-based case (Table 5). The difference in OA between the two spatial
supports is 7.3% for the full set of crop classes, and 8.3% for the merged set, respectively.

4.5. Class Specific Accuracy

For the full set of crop classes, the class specific accuracies range between 7.4% (UA of hay)
and 100% (PA of various crops, e.g., sugar beet) for the best performing setting, i.e., 5SE-RGB
at 0.5 spatial resolution, and a parcel-based classification (Tables S5 and S6). For the pixel-based
classification, the range is slightly smaller and lies between 10.8% (UA of hay) and 91.8% (PA of
rapeseed). Main mixtures occurred between maize and bare soil on the one hand and grassland, maize,
and sugar beet on the other hand. The three cereal types mainly mixed up with each other. The same
was true for grassland, clover and hay.

The class specific accuracies are slightly better with the additional NIR band in the NirRGB
setting. Consequently, AA slightly increases to 60.0% and AR to 64.7% for the pixel-based classification
(Table S1), and to 70.3% (AA) and 78.0% (AR) for the parcel-based classification (Table S1), compared to
the 5SE-RGB setting. The mixtures between classes remain the same, but could be reduced. In particular,
UA and PA of the cereals and bare soil could be improved by approximately 10%.

For the merged set of classes, the range of UA is 17.0% for the pixel-based classification and 14.8%
for the parcel-based case, respectively. The range of PA is 15.5% for the pixel-based classification
and 17.5% for the parcel-based case (Table S6). The primary mixtures occurred between grassland,
maize, and sugar beet. In addition, rapeseed was mixed up with cereals, and the cereals with maize
and grassland.

For some of the crop classes, a slight improvement of UA and/or PA could be achieved with
the additional NIR band combined with a finer spatial resolution. For a spatial resolution of 0.25 m,
AR increased by 1.5% for the parcel-based classification. The increase of AA with other settings and
resolutions is negligible, as well as the increase of AA and AR for the pixel-based classification for the
merged set of crops.

5. Discussion

A random forest-based classification method incorporating textural features was developed to
assess the influence of spatial resolution, the choice of spectral bands, as well as the amount of different
SE sizes on the classification accuracy of an uncalibrated, UAV-based VHR dataset. Overall, the best
performing setting is 5SE-RGB at a spatial resolution of 0.5 m (Figure 4). For the full set of crop classes,
an OA of 66.7% is achieved with a pixel-based classification. For a parcel-based classification, the OA
increased by 7.3% to 74.0%. In the case of the merged set of crop classes, a similar behavior can be
observed, with the OA for the pixel-based classification being 86.3%, and increasing by 8.3% to 94.6%
for the parcel-based classification.

5.1. Influence of Spatial Resolution

Additional textural features, along with spectral data, improve the classification result, but these
features depend on the spatial resolution of the sensor and SE size and number. This is consistent
with [34], who found that additional textural features resulted in the highest improvement of a
classification. In case of coarse resolutions, however, texture does not always improve the results,
as was shown for mapping crops in an agricultural area in Austria with spatial structures similar to
our study area and using Sentinel-2 data of 10 m resolution [18].

The spatial resolution of the dataset is crucial, because it determines the degree of detail.
The elements that cause texture effects in crops are, on the one hand, the row spacing and the



Remote Sens. 2018, 10, 1282 13 of 21

within-row spacing of plants and, on the other hand, the visible bare soil in between the plants.
At full canopy closure, the effects are mainly caused by shading of leaves and varying reflectance
properties at different leaf angles [64]. In coarse resolution datasets (several meters), all these effects
are integrated in the measurement of a single pixel, whereas in high-resolution data (few centimeters)
the different leaf angles or even pebbles on the soil in the background are captured by a single pixel.
Consequently, the optimal spatial resolution is driven by the fact that the between-class variability of
pixels allows for the discrimination of the crop type, while not hampering the classification algorithm
by within-class variation.

For industrially managed crops, the texture effects depend largely on the spacing between both
the within-row and the row spacing [37]. Usually, single plants (or seeds) are placed at an optimal
mutual distance in order to achieve the maximal possible yield [65], or rather, profit [66]. Therefore,
best classification accuracies are achieved at an optimal spatial resolution where within-class variability
of (texture) features is smaller than between-class variability [60].

In case of crops, both the within-class variability and the between-class variability decline with
coarser spatial resolution. Consequently, the best performing spatial resolution is a trade-off in
within- and between-class variability [67]. On the one hand, the within-class variability needs to
be minimized. This is achieved when multiple plants are covered by a single pixel. On the other hand,
the between-class variability should be as large as possible. For coarser resolutions, neighboring pixels
in a class become more similar, and as a consequence, texture properties of different classes converge.

Within-row and row spacing influence the textural features of crops. In our study site, only sugar
beet and maize are not yet in a stage of complete canopy closure at the end of June. Hence, the best
spatial resolution is in the same range as the row spacing of these two classes. With a row spacing of
0.5 m for sugar beet, this value is equal to the best performing spatial resolution. Since maize fields are
in (i) very early and (ii) heterogeneous phenological stages (Table 1), their row spacing does not have a
dominant effect on the best spatial resolution.

Nevertheless, the optimal spatial resolution is also dependent on the spatial support, and number
and kind of crop classes. For the pixel-based classification with a merged set of crop classes, the optimal
spatial resolution is slightly coarser, i.e., a spatial resolution of 0.75 m performs best (Table 4). In contrast
to the full set of crop classes, discrimination of grassland and clover, as well as among different cereals,
is no longer performed. In case of parcel-based classification, a dataset based on 0.25 m spatial
resolution yields higher classification accuracies than a dataset of 0.5 m pixel size (Figure S3).

In summary, a spatial resolution of 0.5 m performs best, in general, despite small accuracy losses
for some classes or spatial supports. This is consistent with the findings of [39], where a spatial
resolution of 0.5 m was found to be optimal to analyze the in-field variability of pasture using the red
band of a multispectral sensor.

Numerous studies have been based on datasets of coarser spatial resolution acquired e.g., by the
Moderate Resolution Imaging Spectrometer (MODIS) or Landsat, and providing sufficient spatial,
spectral, and temporal resolution for large scale field monitoring [6]. Their main difference to our study
relates to the prevalent field sizes in the Swiss Plateau, being smaller than elsewhere. In agricultural
areas like, for instance, the US Central Great Plains, single fields are larger, with field sizes of more
than 30 ha [13]. These areas are not as small-scaled as in Switzerland. Consequently, data of higher
spatial resolution is necessary to analyze crop types in study areas like ours [4].

5.2. Impact of Spectral Characteristics

In general, remotely sensed data of spaceborne instruments are of more favorable spectral and
radiometric specifications than VHR data obtained with an uncalibrated consumer-grade camera
carried on a UAV, as in our study. Unlike our system that only acquires data in RGB bands and
in an additional NIR band, datasets of e.g., Landsat 8 or MODIS provide a broader spectral range,
with a number of bands in the NIR and SWIR spectral region. In addition, the spectral characteristics
of spaceborne instruments are better defined in terms of spectral band width, and full width at
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half maximum (FWHM). Nevertheless, our study demonstrates the feasibility to generate crop
maps of documented accuracy, based on the respective VHR data and following the proposed
classification method.

A number of studies document the benefits of using a NIR band [33,37] or a band in the red
edge region [35] for crop classification. However, in our study, the NIR band does not improve the
OA, in general. The NIR band of the modified Canon IXUS 125HS camera covers the wavelength
region of approximately 690–730 nm, where the data values of vegetation and bare soil occur to be
very similar in the acquired dataset. Further, the red band with its spectral range of approximately
640–680 nm is closely situated to the NIR band. Highest accuracies were thus achieved with an RGB
band configuration. The fact that NirGB performs worst in general demonstrates the importance of
the red band in our constellation. Indeed, we find that the differences in remotely sensed data values
of vegetation and bare soil are most pronounced in this band. Consequently, RGB settings without a
NIR band perform better overall. Only in the case of the merged set of crop classes on a parcel-based
classification the 5SE-NirRGB setting achieves a slightly better OA than the 5SE-RGB setting. However,
the classification of sugar beet and grassland would profit from the additional NIR band in terms of
class specific accuracy (UA and PA, as mentioned in Section 4.5), but only in combination with a higher
spatial resolution. Due to very similar spectral behavior of the three cereal crops (i.e., winter wheat,
winter barley, and spelt) any additional spectral information may improve a classification performance.

5.3. Effect of Different SE sizes

Besides the spatial and spectral resolution having an influence on the classification result,
more and larger SE sizes improve the classification accuracy. Morphological features keep or erase
the elements in the SE that cause the texture by enlarging or erasing dark or bright elements [56].
As mentioned in Section 5.1, the main textural elements in crops are plants and bare soil. Depending
on the sun position, shade causes dark parts. Since the different crops were tilled with different
within-row and row spacing, the SE sizes must be defined in a way that they capture all present
gaps [60]. Therefore, settings using five SE sizes (5SE) perform better than those taking only two SE
sizes (2SE) into account, since the SE sizes should correspond to the present crops and their spacing.

5.4. Influence of Spatial Support

Object-based, i.e., parcel-based, classification improves the classification result [33], and is
considered as the state-of-the-art in crop mapping [16]. In our case, it improves the pixel-based
classification by 20% in terms of OA. The required field boundaries originate either from an additional
data source [16], manual digitalization from scratch [38], or unsupervised segmentation [42]. For rural
areas in the Swiss Plateau, a manual digitalization of individual parcels is feasible, since the field
boundaries usually remain stable over several years.

5.5. Considerations about Acquisition Date and Temporal Resolution

An accurate classification of agricultural crops depends on a suitable point in time for data
acquisition, since phenological stages of crops are changing rapidly [4]. By the end of June, all crops
present in our study area were accrued, apart from maize. At this time of the year, most cultures are in
their final stage of maturation, except for maize and sugar beet. Other studies also considered earlier
and later acquisition dates, but concluded that maturity is the most promising phenological stage for
a monotemporal analysis [16]. A later acquisition date (e.g., 30 August) leads to confusion, as some
of the winter crops have already been harvested [18], while earlier dates may affect differentiation
between bare soil and small plants [16,18]. In our dataset, this issue applies to maize being in an early
phenological stage, and therefore, mixing up with bare soil. Additionally, the phenological variability
among individual maize fields is large. In multitemporal analyses, datasets acquired before the end of
July are reported to be the most important, with later datasets leading only to a minor improvement of
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the classification result [15]. However, classification of a monotemporal dataset can achieve similar
accuracies as in the case of a multitemporal dataset [18].

5.6. Comparison to Other Studies

When comparing our findings on the best performing spatial resolution of 0.5 m to other studies,
not only spatial and spectral properties of the dataset and amount of different SE sizes for the textural
features need to be considered. As could be seen in the differences in classification accuracy for the full
and merged set of crop classes, the result depends as well on the actual classes, and the spatial support.

A recent study based on a multilevel classification in central Ontario, Canada, mainly aimed to
differentiate tree species [42]. Maize, wheat, soybean, and alfalfa were classified as a side product in a
parcel-based classification. The dataset was obtained using an eBee UAV as well, but with different
cameras acquiring spectrally calibrated data. The study achieved an OA of 89% using a dataset
acquired with the Parrot Sequoia sensor (green, red, NIR, and red edge bands, spatial resolution of
12.9 cm). Simultaneously, an RGB true color dataset was acquired (spatial resolution of 3.42 cm),
serving as the basis to classify the crops with an OA of 83%. Finally, a Sony DSC-WX220 RGB camera
was deployed (successor of the camera used in our study) to acquire a dataset with a spatial resolution
of 3.52 cm. With this dataset, crop classification resulted in an OA of 81%. In addition to the spectral
bands, the authors used texture and normalized difference vegetation index (NDVI) features, as well.
With the method presented in our study and the 5SE-RGB setting, we achieve an OA of 94.6% at a
spatial resolution of 0.5 m for the parcel-based classification of the merged classes. Based on a spatial
resolution of 0.1 m, we still achieve an OA of 92.8%. Our approach performs slightly better, most likely
due to the resampling to a coarser spatial resolution. Despite the additional calibration and NDVI
feature, the OA accuracy of the aforementioned study is slightly lower.

Another classification study on simulated Sentinel-2 data from the Marchfeld region in Lower
Austria achieved an OA of 76.5% [18]. The authors used an object-based method to classify seven
agricultural cultures (carrots, maize, onions, soya, sugar beet, sunflower, and winter crops) based on
spectral features only. The lower accuracy compared to our study was likely due to the unfavorable
data acquisition date (30 August). At that point in time, winter crops were already harvested, and were
therefore classified based on the spectral signature of bare soil and crop residuals. The high soil
proportions in the harvested fields led to confusion with onion fields. Their pixel-based classification,
however, performed better (OA of 83.2%), although with a higher variability in class specific accuracy,
than in our case.

A further monotemporal study analyzed an Ikonos dataset of a rural area in Bursa, northwest
Turkey, with a spatial resolution of 4 m acquired on 13 June [16]. Only R, G, B, and NIR bands of the
dataset were used. An OA of 83.6% was achieved for a pixel-based classification of maize, pasture,
rice, sugar beet, wheat, and tomato using an SVM-based method. A parcel-based classification leads to
an improvement of 12.5% in OA. In comparison to our proposed method applied to the merged set of
crop classes, this study achieved a slightly lower OA for the pixel-based classification, and a slightly
better OA for the parcel-based classification approach.

Crop height is an additional parameter that can be derived from UAV data. In [68], the authors
used the difference of the surface height between two acquisitions of RGB and NIR data with a spatial
resolution of 0.8 m on 30 June and 21 October in Texas, USA. It could be shown that with crop height
alone, the classification quality was limited, due to high variance even in single fields. Therefore,
the authors used spectral, textural, and spatial features in addition, and reached an OA of 97.50% for an
object-based method, and an OA of 78.52% for a pixel-based maximum likelihood (ML) classification.
The OA accuracy was 2.5% lower when height information was not used. The reported land cover
consisted of corn, cotton, sorghum, grass, bare soil, and wheat, being well comparable to our merged
setting of crop types. The OA of our parcel-based classification is similar to the reported case without
crop height information. In the pixel-based case, we achieved a roughly 10% better OA.
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A further study was performed in July 2015 in the same area, using an RGB and a NIR camera
to acquire data of five crop classes (i.e., cotton, corn, sorghum, soybean and watermelon) and five
non-crop classes (i.e., impervious ground, bare soil, fallow, water, grass, and forest) at a spatial
resolution of 0.35 m [69]. The authors tested a variety of groupings with pixel- and parcel-based
classifications. The pixel-based classifications were based on a three-band setting (RGB) or a four-band
setting (NirRGB). Based solely on spectral bands, the pixel-based classifications achieved OAs between
62% and 69% for the most comparable grouping containing all crops, and a single class for non-crops.
In our setting, with textural features and the full set of crop classes, we achieved a comparable accuracy
(OA of 66.7%). However, our merged set of crop classes outperformed all groupings of [69] with an
OA of 86.3%. For the parcel-based classification, the authors additionally used vegetation indices (VIs),
and statistical, geometrical, and textural features. In contrast to our study, they found an improvement
of OA with an additional NIR band, which could be caused by the VIs that are based on the NIR band.
They achieved OAs between 73% and 91%, depending on the setting and number of bands. Hence,
their parcel-based results are slightly better when compared to our full set of crop classes (OA 74.0%),
but slightly less accurate than our merged set (94.6%).

In another study at the same location, a NirRGB dataset of 0.4 m spatial resolution was upscaled
to 1, 2, 4, 10, 15, and 30 m pixel sizes [70]. The authors classified cotton, sorghum, soybean, watermelon,
non-crop vegetation, and non-vegetated area in the RGB dataset with an OA of 83.3%, and in the
NirRGB dataset with an OA of 90.42% at a spatial resolution of 0.4 m. For coarser pixel sizes, the OA
decreased to less than 70%. Compared to our best performing setting (5SE-RGB at 0.5 m spatial
resolution) with an OA of 86.3%, they achieved similar accuracies in the RGB case. Again, with the
additional NIR band and the implementation of VIs, their performance increased by 7%.

5.7. Limitations of Our Method

Both our method and the employed dataset have some limitations. Besides the spectral bands,
the current approach relies mostly on textural features. Additional spectral or multitemporal features
could improve the classification [34]. So far, there are only the spectral bands themselves incorporated,
but further spectral features, such as spectral indices, could lead to performance improvements [31].

Since parcel-based classifications lead to higher accuracies, ancillary information about field
borders is required. With this information not always being available, a conditional random field
(CRF) smoothing to homogenize class assignments of a pixel-based classification for a certain field
could alternatively be applied, leading to only slightly lower accuracies, but not being dependent
on additional information sources [16]. Alternatively, a classification of segments within fields could
improve the results as well [42].

A NIR band at ~800 nm instead of 720 nm would most likely improve the classification, as can be
seen from the comparison of a Sequoia Parrot sensor and our modified Canon IXUS 125HS camera
containing a NIR band [42]. This would allow an appropriate incorporation of vegetation indices
(e.g., NDVI, generalized difference vegetation index (GDVI), or soil-adjusted vegetation index (SAVI)).
Moreover, the spatial resolution of individual bands should be further analyzed, since a coarser
resolution for NIR bands compared to a red band could lead to similar results [39].

6. Conclusions

We presented a classification method for crops on a dataset obtained by uncalibrated
consumer-grade cameras mounted on a UAV. We analyzed different spatial and spectral resolutions,
as well as different SE sizes for textural features. We investigated pixel and parcel-based spatial support
and two sets of crop classes. On the one hand, we analyzed nine individual crop classes, and on the
other hand, we pooled maize and bare soil, the three cereals types, and grassland and clover together.

Overall, the best performance was achieved with a dataset consisting of RGB bands and textural
features of five structuring element (SE) sizes at a spatial resolution of 0.5 m. We were able to show
that both a finer and a coarser spatial resolution perform worse. Settings that take the RGB bands into
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account outperform such with the additional NIR band. Nevertheless, the NIR band leads partially
to class specific improvements, but to slightly less accurate crop maps when all crops are classified
together. SE sizes that cover the entire range of both within-row and row spacing of crops perform
better. Consequently, our tested settings with five SE sizes outperform settings with two SE sizes.

A reduced set of crop classes led to better classification results (increase of ~7% in OA). As in
other studies, we were not able to properly discriminate clover from grassland and the different cereal
types from each other. Maize was in heterogeneous phenological stages ranging from fresh sown to
stem elongation and could, therefore, not be distinguished from bare soil. As expected, parcel-based
classification led to an improvement of ~20% in terms of OA compared to a pixel-based classification.

We conclude that a dataset with a spatial resolution of 0.5 m, consisting of spectrally poorly
characterized and uncalibrated RGB bands, can provide sufficient information to differentiate between
agricultural crop classes, given a set of SE sizes to describe textural features is taken into account
in an appropriate manner. With an increasing availability of spaceborne VHR imagery becoming
operationally available in the near future, the classification method presented and evaluated in
this study contributes to the generation of crop maps of documented accuracy in small-scaled
agricultural areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/8/1282/
s1. Figure S1: Overall accuracy (OA) for the merged set of crop classes for all tested spatial resolutions and
settings of the data set for a pixel-based classification. Circles mark five structuring element (SE) sizes at evaluated
resolutions and triangles two SE, respectively. The line styles correspond to the applied spectral band selection.
Figure S2: Overall accuracy (OA) for the full set of crop classes for all tested spatial resolutions and settings of the
data set for a parcel-based classification. Circles mark five structuring element (SE) sizes at evaluated resolutions
and triangles two SE, respectively. The line styles correspond to the applied spectral band selection. Figure S3:
Overall accuracy (OA) for the merged set of crop classes for all tested spatial resolutions and settings of the data
set for a parcel-based classification. Circles mark five structuring element (SE) sizes at evaluated resolutions
and triangles two SE, respectively. The line styles correspond to the applied spectral band selection. Table S1:
Accuracy values for all tested spatial resolutions and settings of the full set of crop classes for a pixel-based
classification. Table S2: Accuracy values for all tested spatial resolutions and settings of the full set of crop
classes for a parcel-based classification. Table S3: Accuracy values for all tested spatial resolutions and settings
of the merged set of crop classes for a pixel-based classification. Table S4: Accuracy values for all tested spatial
resolutions and settings of the merged set of crop classes for a parcel-based classification. Table S5: User Accuracy
(UA) and Producer Accuracy (PA) for the full set of crop classes in a pixel- and parcel-based classification at a
spatial resolution of 0.5 m and the 5SE-RGB setting. Table S6: User Accuracy (UA) and Producer Accuracy (PA)
for the merged set of crop classes in a pixel- and parcel-based classification at a spatial resolution of 0.5 m and the
5SE-RGB setting.
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