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Abstract: Most supervised classification methods for polarimetric synthetic aperture radar (PolSAR)
data rely on abundant labeled samples, and cannot tackle the problem that categorizes or infers
unseen land cover classes without training samples. Aiming to categorize instances from both seen
and unseen classes simultaneously, a generalized zero-shot learning (GZSL)-based PolSAR land
cover classification framework is proposed. The semantic attributes are first collected to describe
characteristics of typical land cover types in PolSAR images, and semantic relevance between
attributes is established to relate unseen and seen classes. Via latent embedding, the projection
between mid-level polarimetric features and semantic attributes for each land cover class can be
obtained during the training stage. The GZSL model for PolSAR data is constructed by mid-level
polarimetric features, the projection relationship, and the semantic relevance. Finally, the labels of the
test instances can be predicted, even for some unseen classes. Experiments on three real RadarSAT-2
PolSAR datasets show that the proposed framework can classify both seen and unseen land cover
classes with limited kinds of training classes, which reduces the requirement for labeled samples.
The classification accuracy of the unseen land cover class reaches about 73% if semantic relevance
exists during the training stage.

Keywords: generalized zero-shot learning; semantic attributes; classification; polarimetric SAR;
polarization feature

1. Introduction

As an important means of longtime earth surface monitoring and large-scale land cover
information acquiring, synthetic aperture radar (SAR) has become increasingly important in land cover
classification [1,2], natural disaster prevention [3], target recognition [4,5] and urban observation [6,7].
More and more SAR systems, e.g., RadarSAT-2, TerraSAR-X, Gaofen-3 [2,8] can acquire polarimetric
SAR (PolSAR) images and provide more information about terrain targets and land cover [9] by
emitting and receiving fully-polarized radar waves. Therefore, developing classification methods
for PolSAR interpretation to identify land cover information has been widely studied. Generally,
PolSAR land cover classification algorithms can be divided into three categories called statistical
model-based algorithms [10,11], scattering mechanism analysis-based algorithms [7,12,13], and the
algorithms combining machine-learning classifiers and polarimetric features [14,15] or PolSAR
data [16]. Many works focus on the third category among abovementioned approaches; more and
more complicated and efficient supervised learning [14–16] and deep learning algorithms [17–19] have
been proposed to interpret the PolSAR land cover information.

Despite the fact that the some traditional supervised learning and deep learning algorithms for
PolSAR classification can achieve promising results, they fail to recognize unseen classes which are not
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included in the training data. That is, in the test stage, if there is a new land cover class which was never
seen in the training stage, they do not possess the ability to learn or infer the new classes, which may
limit these methods for practical applications [20]. On the other hand, remote sensing has traditionally
enjoyed an abundance of data, but obtaining label information has always been an important bottleneck
in classification studies [21,22]. Especially for PolSAR interpretation, correct and sufficient labeled
samples are usually rare and labeling the samples always needs some professional knowledge. In short,
labeling samples in PolSAR imagery is difficult, expensive, and time-consuming [23]. Therefore, it is
especially necessary to develop methods for PolSAR interpretation to identify the unseen targets or
land cover, since the massiveness of the PolSAR data, the urgent need for PolSAR interpretation tasks,
and the labeled data are not always available.

Zero-shot learning (ZSL) aims to recognize objects whose instances have not been seen during
training [24–26] by means of leveraging intermediate semantic information, which could significantly
extend machine-learning abilities for handling practical problems [27]. With the capability of
transferring semantic knowledge, ZSL can be regarded as a good complement to conventional
supervised learning [28,29]. Therefore, ZSL has received much attention recently in computer vision
research [27] and has obtained promising results for identifying unseen samples in several standard
datasets [24,26,27], including the Animals with Attributes dataset (AwA) [28], CUB-200-2011 Birds
dataset (CUB) [27], aPascal and aYahoo datasets [26], ImageNet [24], and so on. Typical intermediate
semantic information, such as visual attributes [27,28,30] or Word2Vec vector representations [22,24,26]
are shareable to both seen and unseen classes [28,30,31], thus, ZSL can learn how to recognize
new unseen classes that have no training samples by relating them to seen classes that were
previously learned.

However, despite ZSL achieving promising results in several standard datasets, few articles on
ZSL application in the remote sensing interpretation have been reported. Li et al. [22] applied ZSL for
high spatial resolution remote sensing images classification and the average accuracy was about 58%
for the UC Merced land use dataset with the unseen/seen ratio equal to 5/16 (16 kinds of training
samples and the testing samples were the other five kinds). Song et al. [32] employed ZSL to SAR
target recognition demonstrated on the MSTAR data set, where seven targets samples were used in
training and the eighth target type was used for testing. Sumbul et al. [21] studied the ZSL problem
for fine-grained street tree recognition in aerial data and achieved a 14.3% recognition accuracy with
an unseen/seen ratio of 16/24. Moreover, ZSL methods have been studied in an unrealistic setting
where the test data are assumed to come from unseen classes only [33]. Generally, the seen classes are
more common than the unseen ones, therefore, it is unrealistic to assume that we will never encounter
seen classes during the test stage. In a real scenario, though there are limited types of labeled training
classes, the test samples always contain both the seen samples and unseen samples. This problem is
known as generalized zero-shot learning (GZSL) [24,33] and is considered a more challenging problem
setting [33,34]. GZSL relaxes the unrealistic assumption in conventional ZSL that test data belong only
to unseen novel classes. In GZSL, test data may also come from seen classes, and the labeling space is
the union of both the unseen and seen classes [33].

As mentioned above, to get correct and sufficient labeled samples in PolSAR imagery is always
difficult, expensive, and time consuming. For some obvious land cover classes such as urban areas,
forest lands, water areas, etc., it is easy to obtain labeled samples in PolSAR imagery, but the labeled
samples of rural areas, wetland, and grasslands are relatively difficult to obtain. Furthermore,
a common situation for PolSAR land cover classification is that there are only samples of urban
areas and water areas, but the actual test data contain more abundant land cover categories and need
to get more detailed category information. On the other hand, there is rich scene information that
can be described by semantic relationships in the PolSAR imagery, for example, both forest lands
and grasslands exhibit certain surface scattering characteristics. Therefore, GZSL can provide more
practical solutions for PolSAR interpretation to recognize some new land cover categories without
labeled samples, while conventional supervised learning and common deep learning algorithms
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always fail to categorize unseen instances. This paper focuses on the GZSL for PolSAR land cover
classification since we hold the view that the GZSL in PolSAR land cover classification is more practical
than ZSL.

The main challenge for GZSL applied in PolSAR land cover classification comes from the
intermediate semantic information representation of PolSAR land cover classes and the inference of
whether a testing sample belongs to a seen or unseen class. Attributes often refer to the well-known
common semantic characteristics of objects and can be acquired by human annotation [21], or neural
language models such as Word2Vec and GloVe [35]. The commonly used attributes in traditional ZSL
are mainly for natural images or ground-level images. Whether some of the related annotated attributes
and the neural language models are available for PolSAR land cover classes’ semantic representation
need to be further verified. The inference progresses of GZSL are often more complicated than ZSL,
since the search space is limited to the unseen classes only in the ZSL inference, while the search space
is the union of both seen and unseen classes in GZSL inference. Recent work [24,33] has shown that
the accuracies of most ZSL approaches drop significantly in the GZSL setting in which the test samples
always contain both the seen samples and unseen samples. To solve these two challenges of the GZSL
framework applied in PolSAR classification the following steps have been designed and conducted:
Firstly, the semantic attributes from the Word2Vec semantic vectors [35], SUN attributes [36], and the
selected SUN attributes are collected and evaluated to describe the characteristics of the PolSAR
typical classes and semantic relevance between attributes is obtained to relate unseen and seen
classes. Then the projection relationship between the mid-level representation of PolSAR data samples
and class attributes is established by a latent embedding model [37] during training stage. At last,
for every test instance, through the GZSL model constructed by the polarization feature representation,
the projection relationship, and semantic relevance, the labels of the test instances can be predicted.
Semantic relevance is used to constraint and to amend the scores between the unseen and seen classes
in this prediction process. Even though some test instances do not have training samples backing
them, the inference progress in the proposed framework is determined by the polarization feature,
projection relationship, and semantic relevance. The proposed method has the following contributions
and advantages:

• The adaption of the available semantic attributes for PolSAR land cover class description has
been evaluated, including the Word2Vec semantic vectors, SUN attributes, and the selected
SUN attributes.

• By utilizing the rich polarization features and semantic information in the PolSAR imagery, the
proposed GZSL framework can provide a more practical solution for PolSAR interpretation
to classify some new land cover categories without labeled samples, which can reduce the
requirement for sample labeling and make the framework has the ability to identify the new types
in PolSAR land cover classification.

To the best of our knowledge, the GZSL framework for PolSAR land cover classification has not
been studied in the remote sensing literature even though it is a highly probable scenario where new
land cover categories can be introduced after the training stage or when no training examples exist
for several rare classes that are still of interest. The remainder of the paper is structured as follows:
in Section 2, the related work about the ZSL and GZSL framework, and the intermediate semantic
information are briefly introduced. In Section 3, we present the workflow and the implementation of the
proposed GZSL for the PolSAR land cover classification method in detail. In Section 4, we present and
evaluate the results obtained by applying the proposed framework for PolSAR land cover classification.
The capabilities and limitations are discussed in Section 5. Finally, the conclusions are presented in
Section 6.
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2. Related Work

In this section, a brief overview of the previous studies related to the ZSL and GZSL framework is
provided, followed by a short introduction to intermediate semantic information.

2.1. From Zero-Shot Learning to Generalized Zero-Shot Learning

Zero-shot learning is an attractive new task that has recently aroused increasing
attention [22,30,35]. ZSL has made it possible to recognize new category without acquiring training
examples beforehand via leveraging semantic information. Typically, there are three main parts
in a conventional ZSL framework, including the image feature extraction, intermediate semantic
information of the training and test classes, and semantic embedding W [22,31,38], as illustrated in
Figure 1a. We denote the label space of the seen classes in the training stage as CS = {1, 2, . . . , p};
CU = {p + 1, p + 2, . . . , p + q} means the label space of the unseen classes in test stage, in ZSL framework
where CS ∩ CU = Ø. The ZSL framework proposed by Lampert et al. [39], first links the attribute
annotations that are human prior knowledge with low-level features extracted from images. Typically,
the taxonomy of ZSL framework could be distinguished as the approaches based on independent
semantics and the approaches based on semantic embedding [29,39]. For ZSL approaches based on
independent semantics, it consists of learning an independent classifier per semantic [29,31]. Due to
its simplicity, ZSL approaches based on independent semantics became widely popular, including
direct attribute prediction [39], semantic auto-encoder [26], and latent embedding [37]. While, for ZSL
approaches based on semantic embedding, these were accomplished using a label embedding function
ϕ, to map each class Ci into a vector ϕ(Ci) in the space of attributes. Semantic embedding based methods
such as indirect attribute prediction [39], label embedding [38], semantic similarity embedding [40],
and so on, learn single multi-class classifiers that optimally discriminate between all seen classes,
and the predicted probabilities and attribute annotations of the seen classes are then used to estimate
object attribute values [27,29]. As illustrated in Figure 1a, the label inference progress of a ZSL usually
employs the 1-nearest neighbor (NN) strategy [25,26,31].

Although the aforementioned ZSL models have shown considerable promise on some standard
datasets, a key limitation in most of these models is that, at the test stage, they are highly biased
towards predicting the seen classes [24,33,34]. This is because the ZSL model can only learn from the
seen classes in the training stage, while the test examples only come from the unseen classes and the
search space is limited to the unseen classes only. The more challenging setting where the training and
test classes are not disjoint is known as generalized zero-shot learning (GZSL), and is considered a
more formidable problem setting [33,34].

The biggest difference between GZSL and ZSL is the setting of test classes, as illustrated in
Figure 1a,b. The training and test classes are assumed to be strictly disjoint in the ZSL framework,
while in GZSL, the test data are from both seen and unseen classes. Recent work [33] has shown
that the accuracies of most ZSL approaches drop significantly in GZSL settings. Thus, the inference
progress should more complicated than ZSL. With the ability to identify both the unseen and seen
classes via leveraging semantic information, GZSL can provide a new way for PolSAR image land
cover classification by utilizing the rich polarization features and semantic information in PolSAR
imagery. To a certain extent, GZSL can reduce the requirement for sample labeling and make the
framework has the ability to identify new types in PolSAR land cover classification.
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2.2. Intermediate Semantic Information

Since no training instances are available for some unseen test categories in GZSL, image features
alone are not sufficient to form the association between the unseen and seen classes. Thus,
intermediate semantic information (auxiliary information [21] or side information [20]) can act as an
intermediate layer for building this association between the unseen and seen classes. As typical
intermediate semantic information, attributes [20,21] acquired by human annotation have been
successfully used in ZSL tasks for the identification of different animal, bird, or dog species or
indoor and outdoor scene categories in computer vision. Another main type of intermediate semantic
information available is the word vectors from a linguistic corpus with neural language models such as
the Word2Vec model [41]. The word vectors are vector representations of words learned in a large-scale
language corpus which suggests that words frequently appearing in a common context would result
in a closer distance [28], which can be used to map names of scene classes (both seen and unseen) to
semantic vectors [22,26,37,40].

Remote sensing images, especially PolSAR images, contain rich scene information, including the
land cover surface properties and spatial properties [42]. The SUN attribute database [43,44] is the first
large-scale scene attribute database, build on top of the diverse SUN categorical database that spans
more than 700 categories and 14,000 images. Additionally, the SUN attributes are related to materials,
surface properties, functions, and spatial envelope properties. The adaption of Word2Vec semantic
vectors, SUN attributes, and the selected SUN attributes for PolSAR land cover class description will
be evaluated in Section 4.
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3. Methodology

The applied GZSL workflow (Figure 2) of PolSAR land cover classification is organized by three
parts including the polarization feature representation, semantic representation about PolSAR land
cover classes, and the generalized zero-shot learning with semantic relevance. The test instances are
from both the seen and unseen classes, and we need to classify them into the joint labeling space of
both types of seen and unseen classes. The detailed description of the method works as follows.
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3.1. Polarization Feature Representation

PolSAR data can be represented by a scattering matrix S, covariance matrix C, or coherency matrix
T, which can provide more scatting information for land cover classification [45]. The Yamaguchi
decomposition [13,42,46] extended the three-component scattering model [46] by adding the helix
scattering mechanism as the fourth component to deal with the observed actual phenomenon.
The model can be expressed as:

T = fsTS + fdTD + fvTV + fcTH (1)

T is the measured polarimetric coherency matrix. TS, TD, TV, and TH correspond to the coherency
matrix for surface scattering, double-bounce scattering, volume scattering, and helix scattering,
respectively, and fs, fd, fv, and fc are the corresponding coefficients. Furthermore, the orientation
of buildings areas with respect to the radar illumination also affects their polarimetric properties [7];
this is possible to cause confusion between those buildings areas and vegetation. A rotation of the
coherency matrix (namely, deorientation) [13] can be adopted for a more accurate decomposition.

Based on the aforementioned scattering powers obtained from Yamaguchi four-component
decomposition with deorientation, we employ our previous work [5,46,47] to obtain the mid-level
components, called intermediates, which are unsupervised statistical patterns learned from PolSAR
images. The mid-level polarization feature representation has proven to have a good classification
ability, especially for the differentiation of building areas and vegetation [5,46], and the differentiation
of building density [47] in PolSAR data. The flowchart of the applied mid-level polarization feature
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(scattering mechanism based statistical feature) representation algorithm based on four-component
decomposition with deorientation is given in Figure 3. The PolSAR images analyzed in proposed
framework are mainly the 8-m resolution full polarimetric SAR imagery, thus, the sample size of
50 × 50 pixels can hold the composition of different land cover types and capture sufficient context
information. The dimension of the applied mid-level polarization feature is 80. Typically, the volume
scattering power and surface scattering power are much larger than the power of double-bounce
scattering and helix scattering, for vegetation areas, water areas and some low- and medium-density
building areas with special orientations in PolSAR imagery [7,46,47]. In order to keep enough
characteristics of the volume scattering and surface scattering, and avoid too much of the zero value in
double-bounce scattering and helix scattering characteristics after the merging, the merging number of
the four scattering components are different.
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3.2. Semantic Representation Of PolSAR Land Cover Classes

The typical land cover classes in 8-m resolution PolSAR images include urban areas (c1),
rural areas (c2), water (c3), forest lands (c4), croplands (c5), wetland (c6), and agricultural land
(c7). The abovementioned land cover classes are all regional objects in PolSAR images under 8-m
resolution and they possess certain surface properties and spatial properties. By employing the
Word2Vec model [41], these land cover classes can all be mapped to semantic word vectors; the setting
is the Skip-Gram model and the vector is of 400 dimensions. Some examples of the typical land cover
classes and corresponding word vectors have been illustrated in Table 1.

On the other hand, we also employ the SUN attributes [43,44] since the 102-dimensional attribute
vector, including some typical surface and spatial properties. These may correspond to the rich scene
information in PolSAR images. So, some attributes of the corresponding scene categories are selected,
the ‘city’ scene category represents the ‘urban areas’ class, the ‘lake natural’ scene category represents
the ‘water’ class, the ‘woodland’ scene category represents the ‘forest lands’ class, the ‘cornfield’
scene category represents the ‘croplands’ class, the ‘village’ and ‘factory outdoor’ scene category
represents the ‘rural areas’ class, and so on. As the same scene category in the SUN attributes has more
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than one vector, for the same scene, we use the mean of all vectors to represent the scene category
attribute vectors.

Table 1. The examples of the land cover class and the corresponding word vectors.

Class Name Urban Areas Water Forest Lands

400
dimensional
word vectors
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In detail, some attributes in the 102-dimensional attribute vectors, including ‘natural, man-made,
glossy, matte, sterile,’ etc., are desirable attributes for the land cover classes’ descriptions. However,
the attributes including ‘fire, sunny, rusty, warm, scary,’ etc., are too different in the actual properties of
the land cover classes. Thus, we subjectively selected 58-dimensional attribute vectors, which are more
suitable for describing the actual properties of the land cover classes from the 102-dimensional original
SUN attribute vectors. Some examples of the typical land cover classes and corresponding SUN and
selected SUN attribute vectors have been illustrated in Table 2. In Tables 1 and 2, the applied semantic
information represented by word vectors and SUN attribute vectors are both quantified, which can
represent typical word-based semantic vectors and attribute-based semantic vectors, respectively.

Table 2. The examples of the land cover class and corresponding SUN/selected SUN attribute vectors.

Class Name Urban Areas Water Forest Lands

102 dimensional SUN
attribute vectors
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Therefore, we can obtain the word vector matrix S_wv, SUN attributes vector matrix S_sa, and the
selected SUN attribute vector matrix S_ssa about the typical land cover classes in the 8-m resolution
PolSAR images. The size of S_wv is n × 400; n is the class number in the training and testing of PolSAR
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data samples, including the seen and unseen classes. The size of S_sa is n × 102, the size of S_ssa

is n × 58. Then, we further construct semantic relevance G between the attributes, G_wv for S_wv,
G_sa for S_sa, G_ssa for S_ssa, correspondingly. For example:

S = [s1; s2; · · · ; si; · · · ; sn] (2)

s′i = si/‖si‖2, SN =
[
s′1; s′2; · · · ; s′i; · · · ; s′n

]
(3)

GN = ST
NSN, GN = [g1; g2; · · · ; gi; · · · ; gn] (4)

g′i = gi/‖gi‖2, G =
[
g′1; g′2; · · · ; g′i; · · · ; g′n

]
(5)

In Equation (2), si is the attributes vector of a land cover class. From Equations (2)–(5), G_wv, G_sa,
and G_ssa can be obtained. The size of G is n × n and it represents the semantic relationship between
land cover. The semantic relevance G will be applied to take part in determining whether the test
sample is a seen or unseen class.

3.3. Generalized Zero-Shot Learning with Semantic Relevance

As the above-mentioned ZSL and GZSL framework in Section 2.1, how to represent the projection
relationship W between attributes with image features is a key for ZSL and GZSL. Here we employed
the latent embedding model [37,48,49] to obtain W; latent embedding is a non-trivial extension of
structured joint embedding [50] (SJE, the objective used for learning W in SJE is similar to that proposed
for the structured SVM parameter learning). Instead of learning a single mapping transformation in
SJE, latent embedding learns a piecewise linear compatibility function of K parameter matrices Wi

(i = 1,···, K, K ≥ 2). Latent embedding ZSL applies a ranking based objective to learn the model using
an efficient and scalable stochastic gradient descent based solver [37].

For a typical ZSL task, the training data D = {(xn, yn)}N
n=1 with the labels yn from the label space

of the seen classes CS = {1, 2, . . . , p}, xn represents the image features of the sample. We denote
CU = {p + 1, p + 2, . . . , p + q}, the label space of unseen the classes (CS ∩ CU = Ø). The main goal of ZSL
is to classify the test data into the unseen classes, assuming the absence of the seen classes in the test
stage. In other words, each test data is assumed to come from, and will be assigned to, one of the labels
in CU. Given a test instance x (image features), conventional latent embedding ZSL will be labeled as
the class whose semantic representation maximizes the following Equations (6) and (7). The inference
in ZSL is usually based on the nearest neighbor strategy. It has been reported that latent embedding
was state-of-the-art in ZSL for the benchmark datasets in computer vision [37,48,49].

Fc(x) = max
1≤i≤K

xTWiSTe (6)

ŷ = argmax
c∈Cu

Fc(x) (7)

In Equation (6), STe is the semantic vector matrix of the test classes, only the unseen classes in
ZSL. Fc(x) means the discriminant scoring function. ŷ represents the predicted label. However, it has
been proved that if the above ZSL classification prediction process in Equations (6) and (7) has been
simply employed in the GZSL setting, the accuracies of most ZSL approaches drop significantly in this
setting [33]. That is, nearly all test data from the unseen classes are misclassified into the seen classes
when the ZSL approaches are applied with the test samples containing both seen and unseen classes.
Thus, to realize GZSL in the proposed framework, the label prediction process must be improved.

There has been very little work on generalized zero-shot learning (GZSL) [24,33,34], but GZSL is
more attractive and practical in the PolSAR interpretation application. GZSL can provide a new way
for PolSAR image land cover classification by utilizing the rich polarization features and semantic
information in the PolSAR imagery to identify both the unseen and seen classes via leveraging semantic
information. In the existing GZSL model proposed in [33], the main idea was to introduce a calibration
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factor to calibrate the classifiers for both seen and unseen classes. That model has been tested on
benchmark datasets, including the AwA and CUB. This means that the inference stage is important
for GZSL.

Here the semantic relevance obtained from Section 3.2 has been employed to the inference
progress of the proposed GZSL framework. After the projection relationship W between the semantic
attributes with polarimetric features is established by means of the latent embedding in the training
stage. GZSL test samples include not only the unseen classes, but also the seen classes. In the proposed
GZSL framework for PolSAR land cover classification, STe includes the seen and unseen classes’
semantic vectors. The above semantic relevance G was introduced to constraint and amend the
GZSL classification prediction process. The union of the seen classes CS and unseen classes CU are
represented by SU = CS ∪ CU.

Fc =
{

f1, f2, · · · , fp, fp+1, · · · , fp+q
}

, c ∈ SU (8)

Mc = argmax
c∈SU

{
fi − gij, f j

}
, s.t.,


fi = max

{
f1, f2, · · · , fp, fp+1, · · · , fp+q

}
, i ∈ {1, 2, . . . , p}

f j = max
{

fp+1, fp+2, · · · , fp+q
}

, j ∈ {p + 1, p + 2, . . . , p + q}
fi ≥ f j

gij = G(i, j)

(9)

ŷ =

{
Mc

argmax
c∈SU

Fc, otherwise (10)

Given a test instance x which represents the mid-level polarization feature in the proposed
framework, we can get a preliminary discriminant score from Equation (6). For every test instance,
the preliminary discriminant score vector has p + q elements, as shown in Equation (8). Then,
the final label of the test sample can be obtained from the classification rule in Equations (9) and (10).
The corresponding semantic relevance gij is an amendment to reduce the scores for the seen classes.

3.4. GZSL For PolSAR Land Cover Classification

This paper is aimed at recognizing both seen and unseen instances in PolSAR images by applying
the semantic information, as illustrated in Figure 2. The GZSL is constructed by means of land cover
class semantic attribute descriptions, the relationship between semantic attributes, and the projection
between the image feature layer, intermediate semantic information layer, and the class label layer.
In Section 3.1, the effective mid-level polarization feature is first extracted. Then, as in Section 3.2,
the semantic attributes from the Word2Vec semantic vectors, SUN attributes, and the selected SUN
attributes are collected and analyzed to describe the characteristics of the PolSAR typical classes,
and the semantic relevance G between the attributes is obtained. Moreover, the projection relationship
W between the mid-level representation of the PolSAR data samples and class attributes are established
by latent embedding during the training stage. Finally, for every test instance, through the GZSL model
constructed by polarization feature representation, projection relationship W and semantic relevance
G, the labels of the test instances can be predicted, even though some test classes do not have training
samples. By utilizing the rich polarization features and semantic information in the PolSAR imagery,
the proposed GZSL can provide a more practical solution for PolSAR interpretation to recognize some
new land cover categories without labeled samples, while the conventional supervised approaches
always fail to categorize the unseen instances. To a certain extent, GZSL can reduce the requirement
for sample labeling and make the framework has the ability to identify the new types in PolSAR land
cover classification.

It should be noted that the selected unseen class should correspond with some semantically
related seen samples, e.g., when the unseen class is croplands, there should be some vegetation classes
in the seen samples; when the unseen class is building areas, there should be some man-made classes
in the seen samples. The semantic relation is the base of the ZSL and GZSL ability, and these can
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avoid the projection domain shift problem [26,51] to some degree. This phenomenon will be further
demonstrated by experiments in Sections 4 and 5.

4. Experimental Results

In this section, we first introduce the experimental data and then present the classification results
obtained by applying the proposed method from the RadarSAT-2 fully-polarimetric SAR imagery.
Moreover, the evaluation of the experimental results has been shown.

4.1. Experimental Data and the Settings

The effectiveness of the proposed method has been tested on three RadarSAT-2 PolSAR datasets
(C-band at fine quad-pol mode, with a resolution of 8 m). The selected data contain more types of land
cover classes and the orientations of the building areas are also more complicated; higher requirements
are put forward for the classification algorithm. In total, the experimental data contain seven kinds
of typical land cover classes. The basic information and the GZSL unseen/seen ratio of the selected
experimental data are shown in Table 3. All the samples from PolSAR data are 50 × 50 pixels patches,
and the training samples are selected randomly.

Table 3. The data description of the employed PolSAR data.

Data Flevoland Data Wuhan Data1 Wuhan Data2

Imaging time 2008 2011–12 2011–12
Image sizes (pixels) 1400 × 1200 5500 × 2400 5500 × 3500

Land cover classes 4 classes:
c1, c3, c4, c5 *

4 classes:
c1, c2, c3, c4

6 classes:
c1, c2, c3, c4, c6, c7,

Ground truth Available (4 classes) No ground truth No ground truth

Seen/unseen
Seen: c1, c3, c4/ c1, c3, c5/

c1, c4, c5/ c3, c4, c5,
unseen: c5/ c4/ c3/ c1

Seen: c1, c3, c4,
unseen: c2

Seen: c1, c3, c4,
unseen: c2, c6, c7,

Training samples 300 300 300
Test samples 15,776 20,805 30,441

* Urban areas (c1), rural areas (c2), water (c3), forest lands (c4), croplands (c5), wetland (c6), and agricultural
land (c7).

4.2. Results and Evaluation of the Flevoland Data

For the RadarSAT-2 Flevoland data, as shown in Figure 4, the training samples include urban areas,
water, and forest lands; the testing samples include urban areas, water, forest lands, and croplands;
that is, the unseen class is croplands. The PolSAR data is first divided into 50 × 50 pixel patches with
an 80% overlapping rate; that is, the number test samples of the Flevoland data is 15,776. Additionally,
the sample number for each training class is 100 and all the three kinds of labeled samples are selected
randomly. The four kinds of test class results obtained by the proposed GZSL method have been shown
in Figure 4, the accuracy has been evaluated in Table 4, and the adapted semantic attributes from the
Word2Vec semantic vectors, SUN attributes, and the selected SUN attributes have been evaluated, too.
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Word2Vec attributes applied; (d) the results with SUN attributes applied; and (e) the results with the
selected SUN attributes applied.

In Figure 4, when the training classes are urban areas, water, forest lands, and the test
classes are urban areas, water, forest lands, and croplands, the GZSL results applied Word2Vec
attributes, SUN attributes, and the selected SUN attributes are shown in Figure 4c–e, correspondingly.
Additionally, the proposed method can recognize the unseen class with an accuracy of about 60.76%,
68.72%, and 73.93% through the applied Word2Vec attributes, SUN attributes, and the selected SUN
attributes, accordingly, without the training cropland samples. Furthermore, the overall accuracies of
the proposed GZSL framework in the Flevoland data are all above 74.5% when the unseen/seen ratio
is 1/3; that is, the training/testing classes’ ratio is 3/4. Among the employed attributes, the results
in Figure 4 and Table 4 show the best effect are the selected SUN attributes, with an overall accuracy
of about 78%. We repeated experiments in Figure 4e ten times, the mean and standard deviation of
the unseen class accuracy were 73.07% and 0.015, and the mean and standard deviation of the overall
accuracy were 77.56% and 0.0075.

For the experimental settings in Figure 4, the semantic relevance between the unseen class
(croplands in Figure 4) and the forest lands in the seen classes is of great semantic similarity. In order
to further verify the semantic relevance and domain shift problem described in Section 3, the following
experiments set the urban areas, water, and forest lands as the unseen class, one by one, and then used
the other three classes of samples to obtain the information of the four land cover classes’ information



Remote Sens. 2018, 10, 1307 13 of 21

and to make corresponding quantitative evaluations. All the GZSL results in Figure 5 applied the
selected SUN attributes.

Table 4. The evaluation of GZSL classification results in the Flevoland data (%) (the unseen class
is cropland).

Seen Unseen

Word2Vec
attributes

urban areas water forest lands croplands

urban areas 87.09 0.87 7.95 4.09
water 8.12 82.43 7.25 2.20

forest lands 8.89 5.30 74.25 11.57
croplands 18.86 4.87 15.51 60.76

Overall accuracy (OA): 74.52

SUN attributes

urban areas water forest lands croplands

urban areas 90.01 0.63 4.11 5.26
water 8.75 79.52 8.72 3.01

forest lands 9.54 4.55 76.14 9.77
croplands 14.82 1.23 15.22 68.72

Overall accuracy (OA): 77.59

Selected SUN
attributes

urban areas water forest lands croplands

urban areas 87.13 0.65 6.16 6.06
water 6.48 79.14 10.76 3.36

forest lands 8.07 3.66 74.71 13.56
croplands 11.52 3.75 10.79 73.93

Overall accuracy (OA): 78.04
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From Figure 5a–d, the classification results have been obtained with the unseen class of urban
areas, water, forest lands, and croplands, correspondingly. As illustrated in Figure 5a, the training
classes are water, forest lands, and croplands, and the test classes are urban areas, water, forest lands,
and croplands. The accuracy has been evaluated in Table 5. As shown in Figure 5 and Table 5,
it can be found that when the unseen classes are urban areas and water, the overall classification
accuracies are low: 68.53% and 72.65%, respectively. Additionally, when the unseen classes are forest
lands and croplands, the overall classification accuracies are higher: 77.42% and 78.04%, respectively.
These are due to the high semantic relevance between forest lands and croplands, which can be
distinguished based on the distance relationships described in Section 3.4; while the semantic relevance
between urban areas with other land cover classes in the Flevoland data is poor, so are those of the
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water with other land cover classes. Since ZSL and GZSL depend on the semantic relevance to
identify unseen classes, if the semantic relevance between the seen classes and unseen classes are poor,
the above-mentioned domain shift problem [26,51] tends to appear, making it difficult to identify the
unseen classes with poor semantic relevance accurately.

Table 5. The evaluation of GZSL classification results in Flevoland data with different unseen class (%).

Seen Unseen

water forest lands croplands urban areas Overall Accuracy(OA)
72.08 86.62 70.04 39.42 68.53

urban areas forest lands croplands water
79.63 83.91 71.85 47.55 72.65

urban areas water croplands forest lands
82.39 73.64 78.26 75.18 77.42

urban areas water forest lands croplands
87.13 79.14 74.71 73.93 78.04

4.3. Results of the Wuhan Data1

For the RadarSAT-2 Wuhan Data1, as shown in Figure 6a, the training samples include urban areas,
water, and forest lands; the testing samples include urban areas, water, forest lands, and rural areas.
That is, the unseen class are the rural areas. The PolSAR data are first divided into 50 × 50 pixel patches
with a 50% overlapping rate, the number of test samples in Wuhan Data1 is 20,805. Additionally,
the sample number for each training class is 100 and all the three kinds of the labeled samples
are selected randomly. The results obtained by the proposed GZSL method have been shown in
Figure 6b–d, and the adapted semantic attributes from the Word2Vec semantic vectors, the SUN
attributes, and the selected SUN attributes have been shown accordingly.
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Figure 6. The Wuhan Data1 and the GZSL classification results. (a) The Pauli RGB image of the Wuhan
Data1; (b) the results with the Word2Vec attributes applied; (c) the results with the SUN attributes
applied; and (d) the results with the selected SUN attributes applied.
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For the experiment with the Wuhan Data1, we set the unseen class as rural areas; that is, there are
no training samples with rural areas. However, from the GZSL results in Figure 6b–d, it can be seen
that the rural areas’ information can also be classified. In detail, it is easy to find that the rural areas
in Figure 6c,d are larger than the results in Figure 6b. This is mainly due to the semantic difference.
The SUN attribute database does not have a category that strictly corresponds to the rural areas, so we
use a combination of attributes from ‘townhouse’ and ‘village’ to represent the semantic information
of the rural areas.

In order to illustrate the effectiveness of the classification of the rural areas’ information in Figure 6,
we chose an ROI for verification. This ROI correspond to Canglongdao in the Jiangxia district, a suburb
of Wuhan. Additionally, the corresponding ROI optical images from Google Earth have been illustrated
in Figure 7b. There are a large number of low and small buildings in this ROI, and the buildings
are sparse, which are different from the urban areas. The results in Figure 7c–e reflect the semantic
relevance between the urban areas and rural areas in the Word2Vec attributes space, the SUN attributes
spaces, and the selected SUN attribute spaces.
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attributes applied.

The results in Sections 4.2 and 4.3 show that the proposed GZSL framework can classify some
new land cover categories without labeled samples by using the semantic information between
land cover categories and effective polarization features. The experimental results also illustrate the
potential of semantic information for PolSAR land cover classification, and the GZSL mechanism
can reduce the requirement for sample labeling to a certain extent. Moreover, the effectiveness of
adapted semantic attributes about Word2Vec semantic vectors, SUN attributes, and the selected SUN
attributes have been evaluated and compared. From the quantitative evaluation of Flevoland data
in Table 4, the SUN attributes are slightly better than the Word2Vec semantic vectors under the same
experimental conditions. This may be due to the fact that the SUN attributes contain more spatial and
surface properties, which is consistent with the characteristics of remote sensing images. The results in
Table 5 prove that the semantic relation is the base of the GZSL ability.
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5. Discussion

Since the land cover classes in the Flevoland data and Wuhan Data1 are not very numerous,
the unseen class in the above experiment is one class; that is, the ratio of the training classes and testing
classes is 3/4. To further illustrate the effectiveness of the proposed GZSL method, we implemented
the following experiment on Wuhan Data2, as shown in Figure 8a. There are more rich land cover
classes in Wuhan Data2. The land cover classes in this data mainly consist of six types: urban areas,
water, forest lands, rural areas, wetland, and agricultural land.
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For the RadarSAT-2 Wuhan Data2, the training samples include urban areas, water, and forest
lands, and the testing samples include all six types mentioned above; that is, the unseen classes are the
rural areas, wetland, and agricultural land. The PolSAR data are first divided into 50× 50 pixel patches
with a 50% overlapping rate, the number of test samples in Wuhan Data2 is 30,441. Additionally,
the sample number for each training class is 100 and all the three kinds of the labeled samples are
selected randomly. These three kinds of samples in the Wuhan Data2 can be the same as the Wuhan
Data1 samples. The six kinds of test classes’ results obtained by the proposed GZSL method has been
shown in Figure 8b. Additionally, the adapted semantic attributes mainly come from the Word2Vec
model, the main reason was that there was no exact category with attributes in the SUN attributes
database on ‘wetland’ and ‘agricultural land’, and the ‘rural areas’ attributes in the SUN attributes
database were not exactly the same.

From Figure 8b, it can be seen that the rural areas and agricultural land were basically
recognized simultaneously, although neither of these classes have training samples. ROI_1 and
ROI_2 correspond to the rural areas and agricultural land (most of these lands contain some low
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vegetation). The corresponding ROI optical images from Google Earth have been illustrated in
Figure 9a,c. Typical field investigation images in the selected ROIs have been illustrated in Figure 9b,d.
Combined with the provided reference images in Figure 9, it can be seen that the ROI_1 and ROI_2
classification results in Figure 8b have a certain degree of effectiveness. Moreover, the ratio of the
training classes and testing classes is 3/6, which also shows that the proposed method is effective and
has certain extensibility. In the above experiments, there is a certain semantic relevance between
the unseen classes and the seen classes, such as between the rural areas and the urban areas,
between wetland and water. Thus, GZSL can classify some new land cover categories without
the labeled samples, even though the ratio of the training classes and test classes is 3:6.
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Figure 9. The ROIs in Figure 8 and field investigation images. (a) Corresponding Google Earth optical
image of ROI_1; (b) the field investigation images in ROI_1 (latitude: 30◦39′48′′, longitude: 114◦29′13′′);
(c) corresponding Google Earth optical image of ROI_2; and (d) the field investigation images in ROI_2
(latitude: 30◦39′06′′, longitude: 114◦30′54′′).

Experiments on the above three RadarSAT-2 PolSAR datasets show that the proposed method can
classify 4–6 testing classes with only three training classes. That is, the ratio of unseen/seen classes can
be 1/3–3/3. There are few works on ZSL application in the remote sensing interpretation, and GZSL for
PolSAR land cover classification has not been studied in the remote sensing literature, to the best of our
knowledge. We introduce the unseen/seen class ratio settings in other related works (ZSL applied in
remote sensing interpretation) to make a comparative analysis. For the ZSL target recognition problem
in the SAR image in [32], the ratio of unseen/seen classes is 1/7, that is, seven classes for training
and only one class for testing. For the ZSL classification problem in the high spatial resolution image
in [22], the average accuracy was about 58% with an unseen/seen ratio of 5/16. Another ZSL problem
in [21] is the fine-grained street tree recognition in the aerial data; the recognition accuracy was about
14.3% with an unseen/seen ratio of 16/24. In our work, combining the actual basic requirements of the
PolSAR interpretation, the unseen/seen ratio was 1/3–3/3, that is, the training/testing classes’ ratio
is 3/4–3/6. Due to the small amount of training samples selected in the experiments, less than 1.9%
(300/15,996, 300/20,805, 300/30,441) of the samples were randomly selected as training samples, the
accuracy of our experimental results is not very high at present. However, we think that our method is
feasible and effective in the application of classifying some new land cover categories without labeled
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samples, for PolSAR imagery interpretation with about 8-m resolution. The GZSL framework can
reduce the requirement for sample labeling and give the framework the ability to identify new types
in PolSAR land cover classification.

In subsequent research work, several topics need to be further studied. Firstly, a more professional
semantic description about the land cover classes or targets in PolSAR imagery should be analyzed,
including the scattering characteristic, resolution, polarization mode, incident angle, seasonal,
and other information. Secondly, the semantic modeling methods and tools for the aforementioned
semantic description of the PolSAR land cover classes or targets need to be further developed.
A potential and promising semantic modeling method is the ontological semantic model [4,27], and this
will be the focus of our research work in the next step. Thirdly, as an important topic in computer
vision research, the ability of ZSL or GZSL has not yet been standardized; that is, there is no agreed
upon ZSL or GZSL benchmark [24,33]. Thus, the potential application of ZSL and GZSL can be further
explored for SAR image interpretation.

6. Conclusions

For PolSAR land cover classification, it is a highly probable scenario that new land cover categories
can be introduced after the training stage, or that no training examples available for several rare and
interesting classes. Inspired by generalized zero-shot learning (GZSL), which can categorize instances
from both seen and previously unseen classes, this paper studies the problem of classifying both the
unseen and seen land cover classes’ information from the PolSAR image under a semantic expressed
GZSL framework. By leveraging the rich semantic relevance between land cover attributes in the
PolSAR imagery, the semantic relevance between attributes is first obtained to relate unseen and seen
classes. Then, the projection relationship between the effective mid-level polarization features and
class attributes is established by latent embedding during training. Finally, for every test instance,
through the GZSL model constructed by the mid-level polarization feature, projection relationship,
and semantic relevance, the labels of the test instances can be predicted, even though some test
instances do not have training samples backing them. The quantitative and qualitative evaluation
of experiments on the three RadarSAT-2 datasets have shown that the classification accuracy of an
unseen class is about 73% if there are some semantically-related seen classes in the training stage.
Additionally, the proposed method can classify 4–6 testing classes with only three training classes.
This GZSL framework can reduce the requirement for sample labeling giving the framework the
ability to identify new types in PolSAR land cover classifications. Moreover, three kinds of land cover
class attributes, which include the Word2Vec semantic vectors, SUN attributes, and the selected SUN
attributes, have been applied and evaluated.

Since the currently employed semantic attributes lack some polarimetric semantic expressions,
including the resolution, scattering characteristic, incident angle, season information, and so on,
the classification ability of the proposed GZSL method is still relatively conservative. In the future,
we expect to continually improve and develop our research on semantic modeling of the land cover or
targets in SAR images.
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