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Abstract: The sparse rain gauge networks over the Tibetan Plateau (TP) cause challenges for
hydrological studies and applications. Satellite-based precipitation datasets have the potential
to overcome the issues of data scarcity caused by sparse rain gauges. However, large uncertainties
usually exist in these precipitation datasets, particularly in complex orographic areas, such as the
TP. The accuracy of these precipitation products needs to be evaluated before being practically
applied. In this study, five (quasi-)global satellite precipitation products were evaluated in two
gauge-sparse river basins on the TP during the period 1998–2012; the evaluated products are
CHIRPS, CMORPH, PERSIANN-CDR, TMPA 3B42, and MSWEP. The five precipitation products were
first intercompared with each other to identify their consistency in depicting the spatial–temporal
distribution of precipitation. Then, the accuracy of these products was validated against precipitation
observations from 21 rain gauges using a point-to-pixel method. We also investigated the streamflow
simulation capacity of these products via a distributed hydrological model. The results indicated
that these precipitation products have similar spatial patterns but significantly different precipitation
estimates. A point-to-pixel validation indicated that all products cannot efficiently reproduce the
daily precipitation observations, with the median Kling–Gupta efficiency (KGE) in the range of
0.10–0.26. Among the five products, MSWEP has the best consistency with the gauge observations
(with a median KGE = 0.26), which is thus recommended as the preferred choice for applications
among the five satellite precipitation products. However, as model forcing data, all the precipitation
products showed a comparable capacity of streamflow simulations and were all able to accurately
reproduce the observed streamflow records. The values of the KGE obtained from these precipitation
products exceed 0.83 in the upper Yangtze River (UYA) basin and 0.84 in the upper Yellow
River (UYE) basin. Thus, evaluation of precipitation products only focusing on the accuracy of
streamflow simulations is less meaningful, which will mask the differences between these products.
A further attribution analysis indicated that the influences of the different precipitation inputs on
the streamflow simulations were largely offset by the parameter calibration, leading to significantly
different evaporation and water storage estimates. Therefore, an efficient hydrological evaluation
for precipitation products should focus on both streamflow simulations and the simulations of other
hydrological variables, such as evaporation and soil moisture.

Keywords: precipitation datasets; satellite precipitation; Tibetan Plateau; hydrological models;
remote sensing

1. Introduction

Precipitation is one of the most important water balance components of the global water cycle
and its spatial–temporal variability directly affects the available water resources in a region [1,2].
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Accurate estimates of precipitation are crucial not only for scientific research but also for water
resources management, drought and flood forecasting, and debris-flow and landslide hazard
forecasting [3–8]. However, accurate and reliable precipitation estimates remain a challenging
task due to the strong spatial–temporal variability of precipitation. Precipitation is generally
measured in three ways: gauge observations, weather radar observations, and remotely sensed
observations [9,10]. The gauge observations provide relatively direct ground precipitation estimates.
However, in many cases, gauge observations are subject to several limitations, such as sparse gauge
networks, data gaps, reporting time delays, and limited accessibility to available data [11]. A weather
radar can provide reasonable spatial coverage of precipitation for large areas (up to ~9000 km2)
from a single radar site [12,13]. However, radar precipitation observations also suffer from several
limitations, such as ground clutter, beam height variation, and beam blockage by mountains and
high buildings [13,14]. These limitations cause the radar precipitation observations to usually need
to be calibrated with the traditional rain gauge observations in the initial operating period of the
radar [14,15]. Satellite remote sensing and reanalysis techniques have gained increasing attention in
precipitation estimates recently, since they are not limited by topography and can provide continuous
and high-resolution precipitation estimates at a quasi-global scale [16–18]. Over the past two
decades, numerous satellite precipitation products have been developed and extensively used for
large-scale hydrological studies and applications [19–21]. Some commonly used satellite precipitation
products by the hydrological community include Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis (TMPA; Huffman, et al. [22]), Climate Prediction Center morphing
technique (CMORPH; Joyce, et al. [23]), Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks (PERSIANN; Sorooshian, et al. [24]), and Integrated Multisatellite
Retrievals for Global Precipitation Measurements (IMERG; Huffman, et al. [25]). Although the
accuracy of satellite precipitation products has improved continuously over the past several decades,
they always suffer from significant error sources associated with indirect measurements of ground
precipitation [26]. The satellite precipitation products mainly utilize three data sources to estimate
precipitation: visible/infrared (VIS/IR) sensors, microwave (MW) sensors, and precipitation radar (PR).
The corresponding methods used to derive precipitation can be largely classified into the VIS/IR-based
methods, the MW-based methods, and the merged methods using VIS/IR, MW, and PR [27]. However,
all these methods cannot observe ground precipitation directly, but rely on monitoring or modeling
the precipitation-related variables to estimate precipitation indirectly. Indirect precipitation estimates
may introduce non-negligible errors into the precipitation products [28]. For example, the VIS/IR
methods assume that the surface precipitation is related to cloud-top temperature, thereby obtaining
the precipitation estimates by monitoring the cloud-top temperature [29]. However, in many cases,
the relationship between cloud-top temperature and precipitation is weak and not all clouds form
precipitation [27,28]. Similarity, MW and PR directly measure the content of hydrometeor within the
cloud column and then convert the measurements to ground precipitation estimates by empirically or
physically based models.

The evaluation of precipitation products is generally performed by two methods: (1)
direct comparison of the precipitation products against gauge observations, and (2) interactive
evaluation based on their capacity of streamflow simulations in a framework of hydrological
modeling [30]. The rationale for the interactive evaluation method is based on the assumption
that the error of precipitation products can be propagated into simulated streamflow time series [26,31].
Some global and regional evaluations have been carried out for different precipitation products
(e.g., Su, et al. [32];Yong, et al. [33]; Deus, et al. [34]; Miao, et al. [35]; Yong, et al. [36];Tang, et al. [37];
Poméon, et al. [38]; and Beck, et al. [39]). These studies revealed that: (1) different products
are not completely consistent [27] and some products exhibited better performance than others
whether compared with gauge observations or used as the inputs of hydrological models; (2) the
gauge-adjusted products tend to perform better than the unadjusted products [39]; and (3) the
uncertainties in precipitation products vary with respect to different factors, such as precipitation
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properties, climatic conditions, elevation, and topography [40]. For example, Mei, et al. [41] evaluated
four satellite precipitation products in mountainous basins and found that the two TRMM products
showed better consistencies with gauge observations than the CMORPH and PERSIANN products.
Beck, et al. [39] performed a global-scale evaluation of 22 precipitation products using gauge
observations and streamflow simulations; the results indicated that the MSWEP product outperformed
the others in depicting precipitation temporal variations and in simulating streamflow observations.
In addition, previous research on hydrological evaluations of satellite-based precipitation generally
focus only on the accuracy of runoff simulations, with less scrutiny on the simulations of hydrological
state variables and fluxes, e.g., evaporation and soil moisture.

Compared to the gauge-dense regions, it is more significant to evaluate the precipitation products
on gauge-sparse regions, e.g., the Tibetan Plateau (TP). The TP, known as the “third pole”, has an
average elevation of over 4000 m above sea level (a.s.l) [42]. The TP is also the source of many Asian
rivers, such as the Yellow River, the Yangtze River, and the Mekong River, supporting hundreds of
millions of people living downstream [43]. Owing to the sparse population, the existing rain gauge
networks over the TP are extremely sparse (see Figure 1 in Section 2.1), which is challenging for
hydrological research and practices. The satellite-based precipitation products provide a potential
way to solve the gauge-scarcity issue on the TP due to their global or quasi-global coverage. However,
these precipitation products generally suffer from large uncertainties on the TP due to indirect
measurements, insufficient gauge adjustment, and complex terrain [30,36,44]. For example, in many
parts of the TP, solid precipitation accounts for a large proportion of the total annual precipitation.
However, IR-based methods generally fail to capture the shallow snow over snow-covered surfaces,
whereas MW-based methods also face challenges detecting solid precipitation since solid precipitation
limits possible MW retrievals to use the scattering signal at higher frequencies [45]. Although some
evaluations of satellite precipitation products have been conducted over the TP (e.g., Gao and Liu [46];
Tong, et al. [30]; Wang, et al. [47]; and Liu, et al. [10]), many studies have focused only on a
single precipitation product (e.g., [10] and [48]), and few studies have combined the two methods
(mentioned above) to evaluate the precipitation products. In addition, some promising recently
released precipitation products, such as CHRIPS version 2.0, have not been evaluated yet on the TP.
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Figure 1. Locations of the two studied river basins on the Tibetan Plateau. The abbreviations UYA and
UYE represent the upstream basins of the Yangtze River and Yellow River, respectively. The black dots
denote meteorological stations and the red triangles denote hydrological stations.
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In this paper, a comprehensive evaluation of precipitation products was undertaken in two
sparsely gauged river basins on the TP. The purposes of this study are to determine how well each of
the products represents precipitation and which products are suitable for hydrological research and
applications on the TP. To fulfill this goal, we evaluated five popular satellite precipitation products
(see Section 2.2) with gauge-based observations and a physical-based distributed hydrological model
(Section 3.1). These precipitation products were first intercompared with each other (Section 4.1) and
then validated in 21 grid boxes with the gauge observations over the period 1998–2012 (Section 4.2).
After that, we compared the simulated hydrological fluxes and states driven by the five precipitation
products and gauge-based observations based on a distributed hydrological model (Section 4.3).
We also discussed the uncertainties in the evaluation results and the advantages and challenges for
hydrological applications of the satellite precipitation products (Section 5). This study can help extend
the applications of remote sensing technologies in hydrological practices in sparsely gauged regions.

2. Study Area and the Precipitation Products

2.1. Study Area

This study focuses on two gauge-scarce river basins on the TP: the source regions of the Yellow
River (UYE) and Yangtze River (UYA) basins (Figure 1). The two basins are located on the northern TP
and have large spatial heterogeneities in the terrain and climate within each basin. The UYE and UYA
cover areas of 121,972 km2 and 137,704 km2, respectively. The total area of the two basins accounts
for ~10.4% of the TP. The elevations of the two basins range from 2776 to 6313 m a.s.l. The climate
conditions of the two basins are mainly dominated by the Asian monsoon [49]. The annual mean
precipitation decreases as the latitude increases, and more than 70% of the precipitation occurs during
the wet season (from May to September). The two basins have long-term daily streamflow records,
allowing us to evaluate the capacity of hydrological modeling for different satellite precipitation
products. The distribution of the meteorological stations in the two basins is very sparse and uneven.
There are only four and nine stations located in the UYA and the UYE basins, respectively (Figure 1).
Thus, it is difficult to characterize the realistic spatial–temporal variability in precipitation by using the
interpolated precipitation data from gauge observations.

The daily streamflow records were obtained from the Hydrological Bureau of the Ministry of
Water Resources of China. The daily meteorological data come from 21 national meteorological stations,
which have been subject to strict quality control by the China Meteorological Administration (CMA)
(http://data.cma.cn/).

2.2. Satellite Precipitation Products

In this study, five satellite precipitation products were employed, which are version 2.0 of
the Climate Hazards group Infrared Precipitation with Stations (CHIRPS v2.0), CMORPH v1.0,
PERSIANN-CDR, TMPA 3B42 v7, and version 2.0 of the Multi-Source Weighted-Ensemble Precipitation
(MSWEP v2.0) (see Table 1). All the products incorporate satellite precipitation information with
(a) gauge-based dataset(s) and have the same spatial resolution (i.e., 0.25◦ × 0.25◦), of which the
CHIRPS v2.0 and MSWEP v2.0 products also include the reanalysis data during the process of product
generation [39,50]. It is worth noting that the selected five precipitation products are not completely
independent: different satellite products may employ the same sensor as a data source and one product
may be merged into another product. More information on the data sources of different products are
given in Sun et al. (2018). The intercomparison and evaluation of these precipitation products were
performed over the period 1998–2012.

CHIRPS v2.0 is a quasi-global (−50◦ to 50◦) precipitation product that combines a pentadal
precipitation climatology, geostationary thermal infrared (TIR) observations, atmospheric reanalysis,
and rainfall fields and precipitation measurements from more than 20,000 gauges globally [50,51].
This product has been evaluated at a regional (e.g., Poméon, et al. [38]) and a global (e.g., Beck, et al. [39])

http://data.cma.cn/
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scale and showed reliable performance. CMORPH combines the advantages of the passive MW sensors
and IR sensors and utilizes the IR-derived motion vectors to propagate the spatial–temporal resolution
of the passive MW-derived precipitation estimates [23]. It has been shown to be superior to other
satellite precipitation products in many regions of the world, including China [52,53]. PERSIANN-CDR
uses the archive of Gridded Satellite (GridSat-B1) infrared radiation data as the input to the PERSIANN
model. The model outputs are then corrected by the monthly Global Precipitation Climatology
Project (GPCP) precipitation product to reduce the biases in the estimated precipitation [35,54].
PERSIANN-CDR was reported to be consistent with the ground-based precipitation product in
China [35]. TRMM aims to provide the “best” estimate of quasi-global precipitation, which is equipped
with multiple rainfall sensors, including a precipitation radar, a TRMM microwave imager, and a visible
and infrared radiometer [22,27]. It was developed originally for rainfall retrievals in the tropics and
has been extended to a quasi-global scale [38]. TRMM provides two forms of precipitation products: a
near real-time product with a delay of several hours from the observation time and a gauge-adjusted
product with a delay of 2–3 months from the observation time. In general, the near real-time product is
more useful than the gauge-adjusted product in hydrological and meteorological operations, while the
gauge-adjusted product is more accurate than the near real-time product in precipitation estimates
and is mainly used for scientific research. TMPA 3B42 v7 is one of the precipitation products obtained
from TRMM merged with other satellite estimates, which has wide applications at middle and low
latitudes [37,55,56]. MSWEP is a newly developed global merging precipitation product that takes
advantage of the strengths of gauge-, satellite-, and reanalysis-based data. This product merges five
satellite-based, three reanalysis-based, and two gauge-based precipitation products during the data
generation process [57]. A notable feature of the MSWEP is that it considers the gauge under-catch and
orographic effects on precipitation estimates using a Budyko-based framework and global-coverage
runoff observations. MSWEP has been evaluated on a global scale with 21 other precipitation products
and exhibited the best performance overall [39]. For comparison purposes, a China-wide gauge-based
precipitation dataset (namely, IGSNRR) was also used, aiming to test whether the satellite precipitation
products outperform gauge-based precipitation in hydrological modeling of gauge-scarce regions.
The IGSNRR dataset was interpolated using ~800 national meteorological stations (including the 21
stations showed in Figure 1) from the CMA [58].

Table 1. The information of one gauge-based and five satellite precipitation products. Note that
all these products have a spatial resolution of 0.25◦ × 0.25◦; the IGSNRR dataset is a gauge-based
precipitation dataset across China; the abbreviation NRT in the temporal coverage column means near
real time.

Short Name Spatial Coverage Temporal Coverage Data Sources

IGSNRR China 1952–2012 http://hydro.igsnrr.ac.cn/public/vic_forcings_4vars.html
CHIRPS v2.0 [−50◦–50◦] 1981–NRT ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0

CMORPH v1.0 [−60◦–60◦] 1998–NRT ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/daily_025deg
PERSIANN–CDR [−60◦–60◦] 1983–NRT http://chrsdata.eng.uci.edu/
TMPA 3B42 v7 [−50◦–50◦] 1998–NRT https://pmm.nasa.gov/data-access/downloads/trmm
MSWEP v2.0 Global 1979–NRT http://gloh2o.org/

3. Methodology

3.1. Hydrological Model

Model choices may influence the results of a hydrological evaluation. Compared with a lumped
model, a distributed hydrological model can reflect the influences of spatial variability in precipitation
on hydrological simulations and thus is more sensitive to the errors in precipitation inputs than a
lumped model [59]. Here, the hydrological evaluation was performed via a grid-based distributed
hydrological model, namely, the Hydro-Informatic Modeling System (HIMS) [10,60,61]. The HIMS
model is a conceptual, process-based hydrological model that includes key hydrological processes in
both the vertical and horizontal directions, including snow accumulation melt, evaporation from soil

http://hydro.igsnrr.ac.cn/public/vic_forcings_4vars.html
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0
ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/daily_025deg
http://chrsdata.eng.uci.edu/
https://pmm.nasa.gov/data-access/downloads/trmm
http://gloh2o.org/
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and plants, infiltration, water exchange between soil layers, and groundwater recharge and baseflow
(Figure 2). The model runs on a daily scale and has a variable spatial resolution. The current version
of the HIMS incorporates a temperature-based snow-accounting model, namely, CemaNeige [62],
to calculate the snow accumulation and melt. The CemaNeige model has been compared with six
other snow-accounting models on a large set of catchments and exhibited the best performance [62].
The HIMS model uses a physical-based Peman–Monteith (PM) equation to calculate the evaporation
from soil and plants. Multiple forms of the PM equation have been developed, and the difference
between them lies mainly in how to parameterize the surface conductance (i.e., the inverse of the surface
resistance). In the HIMS model, the surface conductance formula developed by Leuning, et al. [63] was
used, which has been reported to be superior to the empirical evaporation equation for hydrological
modeling [64,65]. The model includes three runoff components: surface runoff, interflow, and baseflow.
The surface runoff is calculated using a power-function infiltration equation. This equation contains
both infiltration excess and saturation excess runoff mechanisms and has wide applicability [66].
The interflow and baseflow are computed via the linear reservoir method. The model has two
interconnected storage units that contribute to the vertical water transfer balance: an unsaturated layer
and a saturated layer. The interactions between the unsaturated and saturated layers are represented
by a moving boundary in response to the groundwater storage dynamics. The horizontal water transfer
is calculated based on a unit-based routing equation. The HIMS model includes 12 free parameters,
which are calibrated using the observed streamflow data based on a Monte-Carlo-based calibration
method [67]. The model was calibrated for each precipitation product using 10,000 parameter sets
from the Monte Carlo random sampling. The observed streamflow data from 1998 to 2005 were used
for the calibration, and the data from 2006 to 2012 were used for validation. The forcing data of the
HIMS model mainly include the conventional meteorological variables (precipitation, temperature,
relative humidity, wind speed, and sunshine duration) and land surface information (digital elevation
model (DEM), land use data, leaf area index (LAI)).

3.2. Evaluation Method and Criteria

The precipitation in mountainous regions usually presents strong spatial variability [2,31]. It is
difficult for an interpolated precipitation dataset from a sparse gauge network to represent the realistic
spatial pattern of precipitation at the basin scale. Thus, the validations of the precipitation products
were not performed at the basin scale due to a lack of reliable references. In this study, the evaluations of
the precipitation products were conducted in two steps. First, a point-to-pixel validation was conducted
by comparing precipitation estimates and gauge observations on a daily scale. Then, the gauge-based
dataset and the five precipitation products were separately used as the precipitation forcing of the
hydrological model to further assess their capacity in hydrological modeling. Four statistical metrics
were selected, namely, the Pearson correlation coefficient (CC, −1 ≤ CC ≤1), percent bias (PBIAS, -∞<
PBIAS < +∞), root-mean-square error (RMSE, 0 ≤ RMSE < ∞), and Kling–Gupta efficiency (KGE, −∞
< KGE ≤ 1) [68]. The CC is a measure of the strength and direction of the linear relationship between
simulations and observations. The PBIAS and RMSE were used to demonstrate the error and bias
between the precipitation (streamflow) estimates and gauge observations. The KGE measures the
overall goodness of fit between the observations and simulations. The expressions of these performance
statistics are given as:

CC =

N
∑

i=1
(yobs,i − yobs)(ysim,i − ysim)√

N
∑

i=1
(ysim,i − ysim)

2 N
∑

i=1
(yobs,i − yobs)

2

(1)
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RMSE =


N
∑

i=1
(yobs,i − ysim,i)

2

N


1/2

(2)

PBIAS =

N
∑

i=1
(yobs,i − ysim,i)

N
∑

i=1
yobs,i

× 100% (3)

KGE = 1 −
√
(1 − r)2 + (1 − α)2 + (1 − β)2 with α = αs/αo and β = µs/µo (4)

where ysim and yobs are the simulations and observations, respectively, and N is the sample size. µs and
σs are the mean and standard deviation of the simulations, respectively; µo and σo are the mean and
standard deviation of the observations, respectively; and r is the correlation coefficient between the
observations and simulations. The optimal values for the four statistical metrics are CC = 1, RMSE = 0,
PBIAS = 0%, and KGE = 1. Note that a negative value of PBIAS indicates the observations being
overestimated by the simulations, and vice versa [69].
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Figure 2. Schematic diagram of the single cell water balance in the Hydro-Informatic Modeling System
(HIMS) model.
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4. Results

4.1. Inter-Comparison of Precipitation Products

The inter-comparison of satellite precipitation products with each other can help to identify the
consistency and discrepancy in precipitation estimates among the satellite products. Figure 3 shows
the spatial–temporal distributions of the five precipitation products. Overall, the spatial patterns of
the mean annual precipitation from these products are similar to each other, showing a decreasing
trend with increasing latitude and an increasing trend with increasing longitude (Figure 3). However,
the mean annual precipitation from the five precipitation products demonstrates large differences over
the study area. In the UYA basin, the mean annual precipitation from the TMPA 3B42, CMORPH,
PERSIANN-CDR, MSWEP, and CHIRPS is 311, 268, 306, 327, and 307 mm/yr, respectively; the values
for the UYE basin are 396, 392, 438, 406, and 399 mm/yr, respectively. In addition, the time series of
the basin-average annual precipitation derived from these products are also significantly different
from each other (Figure 4). At a given year, in the UYA basin, the gauge-based precipitation generally
has the largest values, followed by MSWEP, and CMORPH has the lowest values, while in the UYE
basin, the PERSIANN precipitation generally has the largest values, and TMPA 3B42 has the lowest
values in most years. In many years, the maximum difference in annual precipitation between two
products is larger than 100 mm/yr. The seasonal variations in the precipitation from the five products
are overall consistent with each other, except for the CMORPH product in the wet season (Figure 5).
The CMORPH values are lower than the values of the other products in July and August in the UYA
basin, while they are higher than the values of the other products in June in the UYE basin.
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Figure 5. Seasonal variability in precipitation from a gauge-based dataset (IGSNRR) and five satellite
precipitation products.

4.2. Point-to-Pixel Validation

A point-to-pixel validation was performed for the five precipitation products using the daily
precipitation observations from 21 meteorological stations (see Figure 1). The results are shown in
Figure 6 with boxplots and Table 2. The precipitation products and gauge observations show poor linear
correlations: the CC values for all products are below 0.50 at the 21 station sites. Overall, MSWEP performs
better than the other products, with a median CC = 0.32, while the median CC values for the other products
are similar to each other, ranging from 0.17 to 0.18. In terms of the PBIAS, CHIRPS performs the best,
followed by TMPA 3B42 and MSWEP. PERSIANN-CDR tends to overestimate precipitation compared
to the gauge observations, with a median PBIAS = −11.3%, whereas the CMORPH precipitation shows
systematic underestimations, with a median PBIAS = 4.5%. These products show the same performance
rankings in RMSE and KGE metrics: MSWEP has the highest rank, followed by CMORPH, TMPA 3B42,
CHIRPS, and PERSIANN-CDR. Overall, all products cannot efficiently reproduce the temporal variability
in the gauge precipitation at the daily scale. Among the five products, MSWEP has the best consistency
with the gauge observations, achieving the best performance in three out of the four metrics.
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Figure 6. Evaluation of precipitation products at a daily time step using 21 gauge observations from
the period 1998–2012. In the boxplots, the whiskers represent the minimum and maximum values
of the model performance statistics. The outer edges of the boxes and the horizontal lines within
the boxes represent the 25th, 75th, and 50th percentiles of the model performance statistics. (a) CC,
Pearson correlation coefficient; (b) PBIAS, percent bias; (c) RMSE, root-mean-square error; (d) KGE,
Kling–Gupta efficiency.

Table 2. The median performance statistics for each satellite precipitation product against the daily
precipitation observations from 21 rain gauges. The values in bold indicate the best performance
statistic among the five precipitation products.

Products CC PBIAS (%) RMSE (mm/d) KGE

TMPA 0.18 1.3 4.8 0.14
CMORPH 0.17 4.5 4.5 0.15

PERSIN-CDR 0.18 −11.3 5.4 0.10
MSWEP 0.32 −3.9 3.6 0.26
CHIRPS 0.17 0.3 5.1 0.11

4.3. Hydrological Evaluation

To evaluate the capacity of the streamflow simulations of the precipitation products, the HIMS
model was separately calibrated using gauge-interpolated precipitation and satellite precipitation
products by maximizing the KGE between the observed and simulated streamflows. Figures 7 and 8
demonstrate the simulated and observed daily streamflows in the two basins during the calibration
period (1998–2005) and validation period (2006–2012). Given that the model performance during
the validation period better reflects the actual predictive ability of the hydrological model, hereafter,
we only present the model performance during the validation period. Overall, all products used as
the precipitation forcing of the HIMS model can well-reproduce the streamflow observations in the
two basins. The KGE values obtained by the precipitation products are larger than 0.83 in the UYA
basin and 0.84 in the UYE basin. Although significant differences in precipitation estimates exist in
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these products, the model performance statistics driven by the precipitation products are similar to
each other. For example, in the UYA basin, the CC values obtained from TMPA 3B42, CMORPH,
PERSIANN-CDR, MSWEP, and CHIRPS are 0.94, 0.90, 0.92, 0.95, and 0.92, respectively; the KGE values
from these products are 0.89, 0.83, 0.85, 0.88, and 0.85, respectively. In general, no single product
consistently produces the best performance among the five products. Comparatively, TMPA 3B42
and MSWEP perform better than the other products in the UYA basin. Both of them achieve the best
performance in two out of the four statistical metrics. MSWEP outperforms the other products in the
UYE basin, which produces the best performance in three out of the four statistical metrics.
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Figure 7. Observed and simulated streamflow hydrographs at the outlet of the UYA basin during the 

calibration (1998–2005) and the validation (2006–2012) periods using gauge observations (IGSNRR) 

Figure 7. Observed and simulated streamflow hydrographs at the outlet of the UYA basin during the
calibration (1998–2005) and the validation (2006–2012) periods using gauge observations (IGSNRR)
and five satellite precipitation products as the forcing. In each panel, precipitation values (right Y axis)
are shown from top to bottom.
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In the UYA basin, the streamflow prediction capacity using the precipitation products was similar
to or even better than that using the gauge-based precipitation dataset (i.e., IGSNRR). The KGE values
obtained from the five products except for the CMORPH are larger than those obtained from IGSNRR.
However, in the UYE basin, gauge-based precipitation performs better in streamflow simulations than
the precipitation products, which obtains the best performance in all statistical metrics. A possible
reason for the inconsistent results between the two basins is that the number of stations within the
UYE basin is larger than that within the UYA basin (nine versus four); another possible reason is that
the topography in the UYA basin is more complex than that in the UYE basin (Figure 1). The two
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reasons may result in the interpolated precipitation data in the UYE basin being more reliable than
those in the UYA basin.

5. Discussion

5.1. Validation of the Satellite Precipitation Products

In this study, a point-to-pixel validation was performed by comparing the precipitation products
and gauge observations directly at 21 grid boxes. The results showed that no single product agrees
well with the daily gauge observations, indicating that the precipitation products are subject to larger
uncertainties in daily precipitation estimates. This result is consistent with the results of previous
studies by Gao and Liu [46], Tong, et al. [30], Wang, et al. [47], and Miao, et al. [35]. Several studies
also found that the satellite precipitation products have larger uncertainties on the TP than in other
places [36,39,53]. This is partly because few stations on the TP were involved in the calibration
process of satellite precipitation products [27,36]. In addition, both IR-based and MW-based methods
are tricky over high elevations and cold surfaces and suffer from the error associated with virga,
i.e., precipitation evaporating before reaching the ground, which is common over arid mountainous
areas. These limitations cause precipitation retrievals on the TP to be generally less accurate in
capturing orographic precipitation and solid precipitation [27,36]. This may also be a reason for the
poor agreement between precipitation products and gauge observations on the TP. Among these
products, MSWEP generally provides the best validation results. This is probably because the
MSWEP directly incorporates global-scale daily gauge data and accounts for gauge under-catch
and orographic influences using larger numbers of runoff observations during the process of data
generation [39]. The results also indicated that PERSIANN-CDR tends to overestimate precipitation
compared with the gauge observations in the UYE basin, while systematic underestimations were
found in CMORPH in the UYA basin. Similar results were also achieved by Tong, et al. [30],
Gao and Liu [46], and Miao, et al. [35] for PERSIANN-CDR and CMORPH.

Note that although the validation method of the point-to-pixels has commonly been used for
precipitation products [9,33,39,42,70,71], it has an inevitable deficiency due to the scale mismatch and
wind-induced precipitation under-catch between the precipitation products and gauge observations.
It is difficult for a single station to represent grid-wide (0.25◦ × 0.25◦, ~625 km2) average precipitation,
particularly in gauge-sparse regions, since the precipitation over complex mountainous terrain is highly
variable in space. Moreover, the conventional gauge observations are also subject to the under-catch of
solid precipitation under windy conditions. Under-catch errors in precipitation gauge observations
can be as large as 20–90%, as reported by Yang, et al. [72], in Greenland. These deficiencies in the
validation method might result in some degree of uncertainty in the validation results.

5.2. Hydrological Evaluations of the Satellite Precipitation Products

For hydrology models, errors in precipitation inputs can lead to large uncertainties in streamflow
simulations and predictions [73–75]. The hydrological evaluations of the precipitation products are
just based on the hypothesis that errors in the precipitation inputs can propagate into the hydrological
simulations [26,59]. Compared with the point-to-pixel validation, evaluating precipitation products
based on their predictability of streamflow is attractive, as it is performed at the basin scale and
avoids the scale discrepancy problem using gauge observations for validation [38]. In this study,
we compared the model performances for streamflow simulations driven by a gauge-based dataset
and five precipitation products. Although there are considerable differences among these products
(see Sections 4.1 and 4.2), all products are able to accurately reproduce the observed streamflow in
the study basins. A possible explanation is that the large differences in the precipitation inputs were
buffered inside the hydrological model via parameter calibration. The parameter calibration based on
only streamflow simulations leads to model parameters that are “falsely adjusted” to maximize the
streamflow simulation performances [76], thereby compensating for the efficiency loss in the runoff
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simulations caused by different precipitation inputs. It should be noted that this compensation may be
only valid within a certain threshold of precipitation error. Beyond this threshold, model calibration
may be limitedly resistant to error propagation of precipitation products to runoff simulations.
Moreover, larger basins tend to be more tolerant of the effect of precipitation error on runoff simulations
than the smaller basins [16]. Nevertheless, according to the principle of water balance, the large
differences in the precipitation inputs should be reflected by the simulated water balance components,
except for runoff. To confirm this deduction, we compared the simulated evapotranspiration (ET),
runoff (R), and water storage change (Delta_S) driven by the different precipitation (P) inputs at an
annual scale (Figures 9 and 10). As shown in Figures 9 and 10, the changes in R, ET, and Delta_S are
dominated by the changes in P; a larger P generally produces a larger ET and Delta_S. For example,
the mean annual ET of IGSNRR is approximately 1.5-fold higher than that of CMORPH in the UYA
basin; the maximum difference in the annual ET between PERSIANN-CDR and TMPA 3B42 reaches
83.6 mm in the UYE basin. The Delta_S values demonstrate smaller differences than the ET values
between these products, and the magnitude of change varies from −30 to 30 mm in the two basins.
The spatial patterns of ET and relative soil water storage (SWS/SWSC, see the caption of Figure 11) are
also similar to those of precipitation (Figures 11 and 12). The above results confirm that the parameter
calibration greatly offsets the influences of different precipitation inputs on streamflow simulations by
adjusting the ET and Delta_S. Thus, hydrological evaluations of the precipitation products regarding
only the streamflow simulations are less meaningful. In contrast, an efficient hydrological evaluation
for precipitation products should focus on both streamflow simulations and the simulations of other
hydrological variables, such as evaporation and soil moisture. Similarly, the calibration of hydrological
models should also include additional constrains in addition to runoff to improve the physical realism
of hydrological models [76].
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Figure 9. Annual water balance modeling by the HIMS model driven by a gauge-based precipitation
dataset (IGSNRR) and five satellite precipitation products in the UYA basin. The abbreviations P, R, ET,
and Delta_S on the Y-axis label represent precipitation, runoff, evapotranspiration, and water storage
change, respectively. Note that the sums of R, ET, and Delta_S are equal to P at the annual scale.
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Figure 11. Spatial pattern of the mean annual evaporation (ET) simulated by the HIMS model
during the period 1998–2012 using a gauge-based precipitation dataset ((a) IGSNRR) and five satellite
precipitation products (b–f) as the forcing. In each panel, the ET_UYA and ET_UYE indicate the mean
annual evaporation in the UYA and UYE basins, respectively.
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Figure 12. Same as Figure 11 but for relative soil water storage (SWS/SWSC). The SWS/SWSC describes
the dryness of the soil and equals the actual soil water storage (SWS) divided by the soil water storage
capacity (SWSC).

6. Conclusions

The ground-based precipitation observation networks are extremely sparse over the TP, which is
challenging for hydrological studies and applications in this region. In this study, five satellite
precipitation products were evaluated through gauge observations and the accuracy of streamflow
simulations. The main conclusions are summarized as follows:

1. The used precipitation products showed similar spatial patterns but considerable differences in
the precipitation amount estimates, and suffer from large uncertainties in the daily precipitation
estimates compared to the rain gauge observations. Among the five products, MSWEP shows the
best consistency with the gauge observations. We thus recommend this product as the preferred
choice for applications among the five products.

2. All used precipitation products are able to accurately reproduce the observed streamflow
hydrographs by parameter calibration of the hydrological model. However, the differences
in precipitation inputs inevitably reflect on the simulations of other hydrological variables other
than runoff, e.g., evaporation and water storage, leading to significantly different estimates for
these variables.

3. Evaluation of precipitation products regarding only the accuracy of streamflow simulations
will mask the differences between these products, since the hydrological models have the
ability to buffer the influences of different precipitation inputs on streamflow simulations by
parameter calibration.

Similarly, the calibration of hydrological models using streamflow data alone is likely insufficient
to well-simulate the hydrological variables in addition to runoff. This calibration strategy is like a
“double-edged sword”, which may cause other hydrological variables other than runoff to be incorrectly
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simulated while improving the accuracy of runoff simulations. In addition, although the satellite
precipitation products have limitations in the accuracy of precipitation estimates, they demonstrated
good potential for hydrological studies and applications in our case study on the TP. The future
development of satellite precipitation products should combine the advantages of the satellite and
ground-based observations and reanalysis data.
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