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Abstract: The accurate retrieval of chlorophyll-a concentration (Chl-a) from ocean color satellite
data is extremely challenging in turbid, optically complex coastal waters. Ariake Bay in Japan is
a turbid semi-enclosed bay of great socio-economic significance, but it suffers from serious water
quality problems, particularly due to red tide events. Chl-a derived from the MODerate resolution
Imaging Spectroradiometer (MODIS) sensor on satellite Aqua in Ariake Bay was investigated,
and it was determined that the causes of the errors were from inaccurate atmospheric correction and
inappropriate in-water algorithms. To improve the accuracy of MODIS remote sensing reflectance
(Rrs) in the blue and green bands, a simple method was adopted using in situ Rrs data. This method
assumes that the error in MODIS Rrs(547) is small, and MODIS Rrs(412) can be estimated from
MODIS Rrs(547) using a linear relation between in situ Rrs(412) and Rrs(547). We also showed that
the standard MODIS Chl-a algorithm, OC3M, underestimated Chl-a, which was mostly due to water
column turbidity. A new empirical switching algorithm was generated based on the relationship
between in situ Chl-a and the blue-to-green band ratio, max(Rrs(443), Rrs(448)/Rrs(547), which was
the same as the OC3M algorithm. The criterion of Rrs(667) of 0.005 sr−1 was used to evaluate the
extent of turbidity for the switching algorithm. The results showed that the switching algorithm
performed better than OC3M, and the root mean square error (RMSE) of estimated Chl-a decreased
from 0.414 to 0.326. The RMSE for MODIS Chl-a using the recalculated Rrs and the switching
algorithm was 0.287, which was a significant improvement from the RMSE of 0.610, which was
obtained using standard MODIS Chl-a. Finally, the accuracy of our method was tested with an
independent dataset collected by the local Fisheries Research Institute, and the results revealed that
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the switching algorithm with the recalculated Rrs reduced the RMSE of MODIS Chl-a from 0.412 of
the standard to 0.335.

Keywords: turbid water; Ariake Bay; MODIS Chl-a; light absorption; switching in-water algorithm;
atmospheric correction

1. Introduction

Harmful algal blooms commonly known as red tides are distributed in coastal waters worldwide.
Very often, red-tide events are detrimental to coastal environmental health and cause a considerable
loss of marine resources [1]. However, red tides are difficult to monitor by conventional shipboard
sampling methods. Hence, local environmental health and fisheries agencies have shown great interest
in using satellite ocean color as a tool for detecting and monitoring red tides, as well as a means for
providing various stakeholders with early warnings.

Ariake Bay is a semi-enclosed bay (~20 km wide and 100 km long) located in western Japan.
Its average depth is about 15 m, and its deepest point is about 50 m (Figure 1). The tidal range is largest
along the Japanese coast, and is about 6 m in the inner part of the bay [2]. The bay is influenced by
large inputs of freshwater and suspended matter from the Chikugo River, where a well-established
turbidity maximum was formed in the area close to the mouth of the river [3]. At the head of the
bay, optical properties are strongly influenced by tidal motion and the resuspension of sediments [2].
From a socio-economic and cultural standpoint, Ariake Bay is significant as a source of seafood; it is
used for commerce and recreation, and is also intimately connected to the lifestyles and well-being of
the large coastal city communities of the Fukuoka, Saga, Nagasaki, and Kumamoto prefectures.
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Figure 1. Location of Ariake Bay, Japan and sampling stations for this study. Water depth of the bay
is shown in color. Station locations of data collected by Nagoya and Nagasaki universities, and Saga,
Kumamoto, and Fukuoka Fishery Research institutes (Table 1) are shown by color symbols.

Recently, recurrent and pervasive red tide blooms have emerged as a serious environmental
and socio-economic problem, in particular because of the damage that they inflict on seaweed, fish,
and shellfish culture farms [2,4]. One of the first attempts at monitoring red tides in Ariake Bay
using remotely sensed ocean color data is the study by Ishizaka et al. [4] who used Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) standard chlorophyll concentration (hereafter, Chl-a) product
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to monitor the onset and progress of a three-month red tide event of Rhizosolenia imbricata from early
December 2000 to the end of February 2001.

Table 1. Summary of in situ datasets. Chl-a: chlorophyll-a concentration, OC3M: standard MODIS
Chl-a algorithm, Rrs: remote sensing reflectance.

Location Dataset Time
Period

In Situ
Data Number

Match-Up
Data 1 Number

Purposes

1 2 3 4 5 6

Ariake Bay

Nagoya University 2015–2017 87 6 X X X X X X

Nagasaki University 2001–2010 341 30 X X X X X X

Fisheries
Research Institute

Saga Ariake Fisheries
Promotion Center 2011–2015 2256 177 X X

Fukuoka Fisheries and
Marine Technology

Research Center
2011–2014 465 6 X X

Kumamoto Prefectural
Fisheries

Research Center
2011–2015 481 13 X X

East China Sea ECS Nagoya University 2009–2016 151 - X X

Ise and
Mikawa Bay Ise Bay Nagoya University 2011–2015 249 - X

Purposes
1. Evaluate the standard Chl-a product of NASA OC3M.
2. Evaluate the standard Rrs product of MODIS-Aqua.
3. Evaluate the OC3M algorithm using in situ measurements.
4. Classify water properties.
5. Develop a new switching algorithm.
6. Validate the Rrs recalculation method and the switching algorithm.

While retrievals of satellite Chl-a from the open ocean are considered satisfactory, satellite
Chl-a retrievals in coastal waters continue to be hampered by two challenges. One is that the
atmospheric correction often fails for absorptive aerosols because standard atmospheric models
cannot be applied [5], and that the turbidity of the coastal water violates the assumption of no radiance
from seawater in near infrared wavelength [6]. Another challenge is that the Chl-a in-water algorithm
often fails in waters with high non-algal suspended and dissolved colored materials.

Regarding the first challenge, there have been many attempts to circumvent these problems
and take advantage of the superior radiometric data quality and the high spatial resolution of
contemporary ocean color sensors [7,8]. To improve remote sensing reflectance (Rrs) retrievals in
coastal turbid waters, more sophisticated correction schemes, such as the combined near-infrared
(NIR) and shortwave infrared (SWIR) bands (NIR–SWIR) algorithm [9,10], and the use of artificial
neural network algorithms have been introduced [11,12]. However, large errors in Rrs still persist [13];
in addition, those algorithms required complex and time-consuming calculations.

Recently, Hayashi et al. [14] attempted to circumvent the persistent problem of aerosol-driven
underestimates of Rrs values at shorter wavelengths in Ise–Mikawa Bay, Japan. They found that
Rrs(547) was fairly accurate, while Rrs(412) was often underestimated, and this underestimation
caused an overestimation of Chl-a estimated from Rrs at the wavelengths between 412–547 nm.
They also found that there was an empirical correlation between in situ Rrs(412) and Rrs(547) for their
study area, and they used that correlation to recalculate Rrs(412) from Rrs(547). After calculating the
error in Rrs(412), which is the difference between standard Rrs(412) and recalculated Rrs(412), they
derived the error in Rrs between 412 nm and 547 nm based on the assumption of a linear error between
those two wavelengths. This simple recalculation of Rrs showed significant improvement in both Rrs
and the resulting Chl-a. The advantage of the method in Hayashi et al. [14] is that it does not rely on a
special complex atmospheric correction scheme, and the authors were able to improve the accuracy of
the derived Chl-a values by over 70% with this method.

For the other challenge, which is the in-water algorithm, the standard OC3M Chl-a algorithm for
the MODerate resolution Imaging Spectroradiometer (hereafter, MODIS), which uses max(Rrs(443),
Rrs(488))/Rrs(547) (hereafter, R) to estimate Chl-a, is affected by other water constituents, such as
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non-phytoplankton particles (NPP) and colored dissolved organic matter (CDOM), which are often
found in large quantities in the coastal and inland waters [15,16]. Many approaches have been
developed to reduce the influence of total suspended matter (TSM) and CDOM on the estimation of
Chl-a concentrations from satellite reflectance in these optically complex coastal waters. For instance,
Getelson et al. [17] proposed the near-infrared to the red band ratio for SeaWiFS and MODIS sensors,
whereas Le et al. [18] used the red-to-green band ratio for the same two sensors. Carder et al. [19]
introduced a semi-analytical algorithm for Chl-a retrieval from MODIS.

Recently, Siswanto et al. [20] developed an empirical algorithm (the Yellow Sea Large Marine
Ecosystem Ocean Color Working Group algorithm; YOC algorithm) for the East China Sea by tuning
the Chl-a algorithm of Tassan [21] for turbid waters, and recommended a combination of the YOC
algorithm and SeaWiFS standard OC4v4 for high and low turbid waters, respectively. Turbid waters
were indicated by a high normalized water-leaving radiance at 555 nm (nlw(555)). Yamaguchi et al. [22]
applied this switching of the YOC and OC4v4 algorithms with a linear transition in between, and
found that this switching algorithm could retrieve Chl-a well in low to high suspended sediment
waters of the East China Sea.

The objective of this study is to improve the accuracy of MODIS Chl-a over the turbid Ariake Bay
by addressing both the atmospheric correction and in-water algorithm. For this objective, we conducted
the following: (1) evaluate the standard MODIS Chl-a product in Ariake Bay; (2) evaluate and improve
MODIS Rrs using the recalculation method of Hayashi et al. [14]; (3) evaluate the standard OC3M
algorithm and develop a new switching algorithm for Chl-a based on water classification using inherent
optical properties; and (4) validate the corrected MODIS Chl-a produced using the recalculated MODIS
Rrs and the switching algorithm with the same dataset that was used in the switching algorithm
development, as well as with an independent dataset collected by the local Fisheries Research institutes,
which have been sampling regularly around Ariake Bay.

2. Materials and Methods

2.1. In Situ Data

The in situ bio-optical and biological data utilized in this study came from three different sources;
Nagoya University, Nagasaki University, and the Fisheries Research institutes located around Ariake
Bay (Table 1, Figure 1). We also used data from the East China Sea and Ise Bay (Table 1, Figure 1).
Datasets from the Nagoya and Nagasaki universities, the East China Sea, and Ise Bay comprise Chl-a,
Rrs, and spectral absorption of phytoplankton, non-phytoplankton particles, and CDOM.

In this study, different combinations of datasets (Table 1) were used to achieve our objective.
The Nagoya and Nagasaki universities datasets were used for the evaluation of Rrs and development
of the in-water algorithm. The two datasets represent the different water characteristics of the Ariake
Bay, as the Nagoya University dataset was collected from the northern part of the bay, whereas
the Nagasaki University dataset was mostly collected from the southern and inner parts of the bay.
Along with these two datasets, the Chl-a datasets from the local Fisheries Research institutes were used
to evaluate the standard MODIS Chl-a product and validate the new techniques that we developed.
To classify the waters of Ariake Bay into several classes based on the optical properties of its water
constituents, the datasets from Nagoya and Nagasaki universities, and those from the East China Sea
and Ise Bay datasets were used. The development of the switching algorithm relied on the Nagoya
and Nagasaki universities and East China Sea datasets. The East China Sea data, which included low
Chl-a concentrations, increased our Chl-a range.

2.1.1. Measurement of Chl-a

Water samples for Chl-a analysis were collected from the sea surface, filtered through 25-mm
glass-fiber filters (GF/F) under 0.01 kPa. Chl-a was extracted using N,N-dimethylformamide [23].
Samples collected by the Nagasaki and Nagoya universities in the Ariake Bay, and from the East
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China Sea and Ise Bay, were measured in a pre-calibrated Turner Designs Fluorometer 10-AU using
the method of Welschmeyer [24]. Chl-a concentrations in samples collected by other institutions were
measured using the fluorometric method with 90% acetone extraction [25].

2.1.2. Remote Sensing Reflectance (Rrs)

Rrs values in the Ariake and Ise–Mikawa bays were obtained using a hyperspectral radiometer
RAMSES (TriOS, Germany) equipped with two radiance (ARC-VIS) sensors and one irradiance
(ACC-VIS) sensor. In order to avoid the direct reflectance of the sunlight at the sea surface,
the dome-cover method designed by Tanaka et al. [26] was used for one of the radiance sensors.
To correct the self-shading error caused by the dome, we used the double dome-cover method by
Kobayashi et al. [27]. In this method, two radiometers with different sizes of domes were placed
just above the water surface to measure water-leaving radiances, and the influence of the shadows
was estimated and subtracted. RAMSES provides hyperspectral water-leaving radiance (Lw(λ)) and
downwelling irradiance (Ed(λ)) at wavelengths from 350 nm to 900 nm at 2-nm intervals. Rrs(λ) was
calculated as Rrs(λ) = Lw(λ)/Ed(λ), where λ is the wavelength. Rrs at 443 nm, 488 nm, and 547 nm
were used for Chl-a algorithm development. Since 443 nm and 547 nm are not included in this
sensor, the Rrs at these two wavelengths were obtained by the interpolation of Rrs at two adjacent
wavelengths. We also used a set of RAMSES with onboard irradiance, above water radiance, and sky
radiance sensors for some of the Nagasaki University datasets. For these datasets, the dome-cover
method of Tanaka et al. [26] was adopted. The self-shading error was not corrected for those datasets
because we could not evaluate the influence of the self-shading error on the Rrs data with only one
size of dome was used. However, when we overlapped those datasets with other in situ datasets in the
plot of Chl-a versus R, we found that they overlapped. Accordingly, the influence of self-shading error
is probably not much. In some of the clearer waters of Ariake Bay and the East China Sea, we also
used an underwater profiling reflectance radiometer (PRR-800) with an onboard irradiance meter,
PRR-810 [28]. We assume that the Rrs data estimated from PRR-800/810 and RAMSES are equivalent
for this study, although these estimations are not strictly equivalent.

2.1.3. Absorption by CDOM, Phytoplankton, and NPP

For measurements of absorption coefficients (ay(λ)) of CDOM, water samples were filtered
sequentially through 47-mm Whatman GF/F and 47-mm of 0.2-µm pore size Nuclepore membrane
filters to remove the large and small particles, respectively. The absorbance of the filtered water was
measured over the wavelength range of 300–800 nm with 1-nm intervals using a Shimadzu MPS-2400
spectrophotometer with a 10-cm path length quartz cell. Absorbance values were converted to the
absorption following the equation [29]:

ay(λ) =
2.303

l
[[ODs(λ)− ODbs(λ)]− ODnull], (1)

where l is the path length of the quartz cell, ODs(λ) is the optical density of the filtered water sample,
ODbs(λ) is the optical density of purified water, and ODnull(λ) is the apparent residual optical density
at a long visible or near infrared wavelength where absorption by dissolved materials is assumed to
be zero.

Measurements of the absorption coefficients of phytoplankton (aph(λ)) and NPP (anpp(λ)),
and absorption coefficients of total particles (ap(λ)) were undertaken using the filter-pad technique [30].
Water samples were filtered through a 25-mm Whatman GF/F. The filtered volume was decided by
visual inspection of the color of the filter. Filters were stored in the liquid nitrogen before measurement
of the absorbance of particles using a Shimadzu MPS-2400 spectrophotometer with a scan range
of 350–750 nm and 1-nm intervals. This provided an estimate of the absorption by total particles,
ap(λ). ap(λ) was calculated from the absorbance after correcting for the path length amplification [31].
Then, all of the pigments on this filter paper were extracted using methanol, and the absorption
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measured again provided the absorption coefficient of all of the non-phytoplankton particles (anpp(λ)).
To derive aph(λ), absorption by only phytoplankton pigments, anpp(λ) was subtracted from ap(λ).

2.1.4. Measurements of Total Suspended Matter

For total suspended matter (TSM), 100 mL or 200 mL of seawater was filtered through prewashed
47-mm Nuclepore membrane filters with 0.2-µm pore size, which were then washed using Milli-Q
water, and immediately frozen prior to further processing in the lab where they were dried in the
oven at 60 ◦C. The dried filters were moved to a desiccator and weighed after they reached room
temperature. To calculate the concentration of TSM, the average weight of blank filters was subtracted
from the weight of the sample filter to derive the weight of TSM, which was then normalized to the
volume of filtered water.

2.2. Satellite Data

MODIS reprocessed 2014 L2 data were obtained from the NASA Ocean Biology Processing Group
(OBPG) data portal at http://oceancolor.gsfc.nasa.gov. For validation of the satellite data, a maximum
time difference of 3 h between in situ sampling and satellite measurements was allowed. The value
of the nearest pixel to the location of an in situ station from the 3 × 3 window was used. Data were
discarded if they were flagged for LAND, HIGLINT, HILT, HISATZEN, CLDICE, HISOLZEN, LOWLW,
MAXAERITER, and NAVFAIL. Descriptions of those flags are illustrated in the following website;
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/.

2.3. Recalculation of Rrs

The standard MODIS Rrs products often suffer from significant atmospheric correction errors.
Atmospheric corrections in coastal waters are challenging, because often, absorptive aerosols are
present in the atmosphere [5]. Furthermore, large errors are expected in waters that are turbid [9].
As it is known that Ariake Bay is turbid, especially in the northern region, and sometimes influenced
by anthropogenic aerosols [32], we anticipated that MODIS Rrs measurements would be problematic.

In order to improve the atmospherically corrected standard MODIS Rrs, we used the method
of Hayashi et al. [14]. This method assumes that the error in MODIS Rrs(547) is negligible, and that
Rrs(412) can be estimated based on a linear relationship between in situ Rrs(412) and Rrs(547).
The method also assumes that Rrs errors decrease linearly from the blue (412 nm) to green (547 nm)
bands. Then, the error in MODIS Rrs at λ between 412 nm and 547 nm was derived based on the error
at Rrs(412) using the following relationship:

Error of Rrs(λ) = Error of Rrs(412)× 547 − λ

547 − 412
, (2)

This method was developed for a small semi-enclosed bay similar to Ariake Bay. Hayashi et al. [14]
suggested that the method is applicable to other areas where there is a linear relationship between
Rrs(412) and Rrs(547), although the parameters of the linear relationship could vary with areas.

Hayashi et al. [14] recalculated Rrs(λ) only when MODIS Rrs(412) was less than Rrs(412) estimated
from Rrs(547). However, in this study, Rrs(λ) was also recalculated when MODIS Rrs(412) was greater
than Rrs(412) estimated from Rrs(547).

2.4. Statistical Analysis

To evaluate the error in retrieved data, the coefficient of determination r2, the slope of retrieved
data (Y) on in situ data (X), bias, and root mean square error (RMSE) were used. Bias is a
systematic error indicating overestimation or underestimation. RMSE is an indicator of average
model performance. The formula of bias and RMSE for Rrs and Chl-a were expressed as [15]:

http://oceancolor.gsfc.nasa.gov
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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Relative Rrs_Bias(%) =
1
N

N

∑
i=1

xi × 100, (3)

Relative Rrs_RMSE(%) =

√√√√ 1
N

N

∑
i=1

(xi)
2 × 100, (4)

and:
x =

ERrs − IRrs
IRrs

, (5)

where N is the data number; and ERrs and IRrs represent MODIS and in situ Rrs, respectively.

Log(Chl − a)_Bias =
1
N

N

∑
i=1

yi, (6)

Log(Chl − a)_RMSE =

√√√√ 1
N

N

∑
i=1

(yi)
2, (7)

and:
y = log10 EC − log10 IC, (8)

where EC and IC represent estimated and in situ Chl-a, respectively.
We also used absolute relative error:

Absolute_RE(%) =

N
∑

i=1
abs( ECi−ICi

ICi
)

N
× 100. (9)

3. Results

3.1. Evaluation of Standard Satellite Chl-a

Standard MODIS OC3M derived Chl-a was validated using in situ datasets from Nagoya and
Nagasaki universities and local Fisheries Research institutes (Table 1). The results showed that the
errors in MODIS Chl-a were large (Figure 2). The scatter was large, and some data were either highly
overestimated or underestimated (outside of Y = 2X and Y = X/2 lines, respectively). Statistically, the
large errors were indicated by the low slopes of the regression line, low r2, large bias, and high RMSE,
suggesting the need for improvement in MODIS Chl-a retrievals.
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3.2. Validation and Recalculation of Rrs

To examine the sources of the large errors in MODIS Chl-a, we began by investigating errors in
MODIS Rrs values (Figure 3). The values at shorter wavelengths, especially at 412 nm, were often
negative, and the standard atmospheric correction algorithm was inadequate to provide accurate
MODIS Rrs retrievals for Ariake Bay. The correlation between MODIS and in situ Rrs was statistically
insignificant (r2 = 0.282, 0.654), and the bias (110%, 37.9%) and RMSE (616%, 219%) were large at
443 nm and 488 nm. In contrast, MODIS Rrs(547) showed a strong correlation (r2 = 0.793) with in
situ Rrs(547) and smaller bias (2.57%) and RMSE (69.2%) (Figure 3d). Consequently, the correlation
between MODIS and in situ R, for a standard MODIS OC3M algorithm, was also weak (r2 = 0.121),
and the bias (4.49%) and RMSE (54.7%) were large. These observations indicate that MODIS Rrs at 443
nm and 488 nm needed to be improved for the accurate retrieval of MODIS Chl-a.

In order to apply the improvement method of Hayashi et al. [14], we had to take into account
several assumptions and steps, which are described in Section 2.3. First of all, the error in MODIS
Rrs(547) should be small to apply this method. As described above, the error in MODIS Rrs(547) was
smaller than the error in Rrs from shorter wavelengths (Figure 3), so MODIS Rrs(547) could be directly
used for the improvement of Rrs at shorter wavelengths. Secondly, it should be possible to estimate
Rrs(412) from Rrs(547), and the strong correlation between in situ Rrs(412) and Rrs(547) for Ariake Bay
data (r2 = 0.892) fulfilled this condition (Figure 4). Furthermore, a comparison of Rrs(547) and Rrs(488)
showed Rrs(547) to be mostly larger than Rrs(488) (cf. Figure 4). Thus, this relationship could be used
to improve MODIS Rrs(412) from MODIS Rrs(547) in cases when Rrs(547) was greater than Rrs(488).

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 20 

 

3.2. Validation and Recalculation of Rrs 

To examine the sources of the large errors in MODIS Chl-a, we began by investigating errors in 
MODIS Rrs values (Figure 3). The values at shorter wavelengths, especially at 412 nm, were often 
negative, and the standard atmospheric correction algorithm was inadequate to provide accurate 
MODIS Rrs retrievals for Ariake Bay. The correlation between MODIS and in situ Rrs was 
statistically insignificant (r2 = 0.282, 0.654), and the bias (110%, 37.9%) and RMSE (616%, 219%) were 
large at 443 nm and 488 nm. In contrast, MODIS Rrs(547) showed a strong correlation (r2 = 0.793) 
with in situ Rrs(547) and smaller bias (2.57%) and RMSE (69.2%) (Figure 3d). Consequently, the 
correlation between MODIS and in situ R, for a standard MODIS OC3M algorithm, was also weak 
(r2 = 0.121), and the bias (4.49%) and RMSE (54.7%) were large. These observations indicate that 
MODIS Rrs at 443 nm and 488 nm needed to be improved for the accurate retrieval of MODIS 
Chl-a.  

In order to apply the improvement method of Hayashi et al. [14], we had to take into account 
several assumptions and steps, which are described in Section 2.3. First of all, the error in MODIS 
Rrs(547) should be small to apply this method. As described above, the error in MODIS Rrs(547) 
was smaller than the error in Rrs from shorter wavelengths (Figure 3), so MODIS Rrs(547) could be 
directly used for the improvement of Rrs at shorter wavelengths. Secondly, it should be possible to 
estimate Rrs(412) from Rrs(547), and the strong correlation between in situ Rrs(412) and Rrs(547) for 
Ariake Bay data (r2 = 0.892) fulfilled this condition (Figure 4). Furthermore, a comparison of Rrs(547) 
and Rrs(488) showed Rrs(547) to be mostly larger than Rrs(488) (cf. Figure 4). Thus, this relationship 
could be used to improve MODIS Rrs(412) from MODIS Rrs(547) in cases when Rrs(547) was 
greater than Rrs(488). 

 
Figure 3. Scatter diagrams of in situ Rrs versus MODIS Rrs for (a) 412 nm, (b) 443 nm, (c) 488 nm, (d) 
547 nm, (e) 667 nm, and (f) an OC3M band ratio. Triangles and circles in (a–c,f) represent cases 
where the standard MODIS Rrs(412) was smaller or larger than the Rrs(412) estimated from Rrs(547), 
respectively. Unfilled and filled symbols in (a–c,f) represent standard and recalculated data, 
respectively. Dashed black line is Y = X. 

Figure 3. Scatter diagrams of in situ Rrs versus MODIS Rrs for (a) 412 nm, (b) 443 nm, (c) 488 nm,
(d) 547 nm, (e) 667 nm, and (f) an OC3M band ratio. Triangles and circles in (a–c,f) represent cases
where the standard MODIS Rrs(412) was smaller or larger than the Rrs(412) estimated from Rrs(547),
respectively. Unfilled and filled symbols in (a–c,f) represent standard and recalculated data, respectively.
Dashed black line is Y = X.

Thirdly, in order to apply this method, the error in Rrs(λ) should decrease linearly with the
wavelengths from 412 nm to 547 nm. For most of the match-up data this assumption held true,
although for some match-up cases, the magnitude of errors in Rrs(412) and Rrs(547) was nearly equal.
Fourthly, Hayashi et al. [14] only recalculated MODIS Rrs when the standard MODIS Rrs(412) was
smaller than the Rrs(412) estimated from the Rrs(547) because they assumed that the error arises
mostly from absorptive aerosols. In Ariake Bay, errors may arise not only from absorptive aerosols,
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but also from the turbidity of water as well as for other reasons, such as the adjacency effect of the
coast. After checking the entire match-up dataset, we decided to use this recalculation method also in
cases where MODIS Rrs(412) was greater than the estimated values (from the Rrs(412) versus Rrs(547)
relationship) because other assumptions were correct.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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Rrs(412).

After recalculation of Rrs, the negative Rrs values at 412 nm and 443 nm disappeared (Figure 3),
and the RMSE of these recalculated MODIS Rrs versus in situ data showed a reduction of 38.3%, 29.4%,
and 23.7% for Rrs(412), Rrs(443), and Rrs(488), respectively (Figure 3). Bias in Rrs(412), Rrs(443), and
Rrs(488) also decreased by 24.2%, 21.7%, and 13.7%, respectively. The improvement in Rrs data also
resulted in an improvement of the RMSE of R by 30.0%, although the bias of the ratio increased slightly.
Thus, it is clear that the recalculation method of Hayashi et al. [14] effectively improved the MODIS
Rrs and Rrs band ratio, and consequently Chl-a retrievals.

MODIS Rrs(488) was either underestimated or overestimated when compared to the recalculated
Rrs(488) (Figure 5). We compared Rrs(488) because Rrs(488) is mostly used in the OC3M algorithm
and our switching algorithm, which will be described later. MODIS Rrs(488) was lower than the
recalculated Rrs(488) for the whole study area on 14 May 2010. In contrast, Rrs(488) was lower
near the coast and higher in the middle bay on 6 August 2003 and 10 February 2016. The spectra
from the match-up points indicate that the error in recalculated Rrs arose from an underestimation of
MODIS Rrs(547) as well as Rrs(412), as shown in the comparison of Rrs spectra in Figure 5. Despite this,
when compared to in situ data, the recalculated Rrs was more accurate than the MODIS Rrs. In addition,
the normalized Rrs was also processed for easier comparison among the Rrs spectra. The error in
MODIS Rrs may be caused by aerosols, which gives rise to underestimation at short wavelengths and a
covered large area of the study area, or by the coastal turbidity, which also gives rise to underestimation
at the short wavelengths. From the Rrs spectra corresponding to the four images, only one data showed
overestimation of Rrs(547); moreover, the cause of the error was more likely to be stray light. On the
other hand, Rrs(488) was higher on 10 August 2004, when a large part of the data was missing because
of cloud cover. The Rrs spectra also showed an irregular shape with relatively higher Rrs at the shorter
wavelengths and abnormal variation between Rrs(412) and Rrs(547). The NASA flag indicated that the
influence of the stray light as well as the large cloud coverage may have caused this irregular shape.
It is encouraging that in spite of the above-mentioned discrepancies, in most cases, the error in Rrs(488)
and R was reduced using the recalculation method of Hayashi et al. [14].
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3.3. Validation and Improvement of In-Water Algorithm

To further improve MODIS Chl-a, the MODIS standard in-water algorithm, OC3M [33],
was evaluated using in situ Rrs and Chl-a from the datasets of Nagoya and Nagasaki universities
(Figure 6a). In the earlier version of the current OC3M algorithm that obtained Chl-a from Rrs,
O’Reilly et al. [33] showed that R ranged between 0.1–10. Our current observations in the Ariake Bay
showed a narrower range of R between 0.5–0.9 and the absence of low Chl-a values (<1 mg m−3). It is
clear that most of the data was significantly underestimated by OC3M (Figure 6a).

The deviations in data from the line of fit between Chl-a and R were examined in relation to
in-water constituents of Chl-a, TSM, and CDOM (ay(412)) measured in the Ariake Bay (Table 2).
What was immediately apparent was that the average and range of Chl-a, TSM, and CDOM were
higher than those encountered in the open ocean. The variations were especially large for Chl-a and
TSM. We also examined the relationship of in situ Chl-a, TSM, and CDOM, with the inherent optical
properties, aph(443), anpp(443), and ay(443), respectively, and found that they were correlated (r2 = 0.673,
0.027, and 0.991, respectively). Thus, the proportion of each index to the total absorption can be used
as the proportion of each water constituent. The mean of the proportions of the absorptions showed
that the contributions of anpp(443) (37.5%) and aph(443) (36.0%) were larger than the contribution of
ay(443) (26.5%); however, the proportions were essentially very close to each other, indicating that the
optical property was of Case 2 water, where phytoplankton is not dominant [34].
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Figure 5. Spatial distributions of the difference between recalculated and standard MODIS Rrs(488),
and comparison of Rrs and normalized Rrs for in situ, standard, and recalculated data indicated
by blue, red, and green color, respectively; (a) 6 August 2003, (b) 10 August 2004, (c) 14 May 2010,
and (d) 10 February 2016. Right panels showed the examples of the spectra of match-up locations;
(e,f) 6 August 2003, (g,h) 10 August 2004, (i,j) 14 May 2010, and (k,l) 10 February 2016. The black
symbol in (a–d) represents the locations from where the Rrs spectra was derived.
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The correspondence of the high TSM water with a high slope for Chl-a versus R (Figure 7b), 
and the observation that the high TSM was responsible for the underestimation of Chl-a in the 
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Table 2. Statistics of Chl-a, total suspended matter (TSM), colored dissolved organic matter (CDOM),
and proportions of aph(443), anpp(443), and ay(443) of the total of absorptions.

Parameters Mean Standard Deviation Coefficient Variation Min Max

Chl-a 17.1 18.2 1.06 1.36 149
TSM 10.8 9.52 0.885 0.333 62.5

CDOM 0.384 0.173 0.451 0.142 0.834
aph/(aph + anpp + ay) at 443 nm 0.360 0.163 0.453 0.050 0.818
anpp/(aph + anpp + ay) at 443 nm 0.375 0.172 0.458 0.017 0.831
ay/(aph + anpp + ay) at 443 nm 0.265 0.119 0.450 0.027 0.895

In order to understand the relationship between Chl-a and R, the water types of Ariake Bay,
the East China Sea, and Ise Bay were separated by the proportions of aph(443), anpp(443), and ay(443),
as in Prieur and Sathyendranath [35] (Figure 7a). The analysis separated the data into seven water
types. Most of the data from Ariake Bay belonged to the TSM-dominated water type, while a small
amount of data belonged to phytoplankton-dominated or mixed water types. Furthermore, the data
from the TSM-dominated water type were mostly from Ariake Bay. In addition, the relationship
between Chl-a and R in TSM-dominated waters from Ariake Bay showed a higher slope than that from
other waters (Figure 7b).

The correspondence of the high TSM water with a high slope for Chl-a versus R (Figure 7b),
and the observation that the high TSM was responsible for the underestimation of Chl-a in the northern
Ariake Bay, made it possible to develop an algorithm that could be switched between non-turbid and
turbid waters. For this study, we relied on same approach as that of Robinson et al. [36], in which
Rrs(670) is used as an index of turbidity to separate turbid and non-turbid waters. Based on the strong
relationship between Rrs(667) and the proportion of anpp(443) (Figure 7c), we confirmed that Rrs(667)
could be used as an indicator of turbidity in Ariake Bay.



Remote Sens. 2018, 10, 1335 12 of 20
Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 20 

 

 
Figure 7. (a) Ternary plot of aph(443), ay(443), and anpp(443) for data from Ariake Bay, the East China 
Sea, and Ise Bay. The value on each side represents the ratio of the corresponding water constituents 
of absorption to the total absorption. (b) Relation between Chl-a and OC3M band ratio. (c) Relation 
between in situ Rrs(667) and anpp(443). Red, green, dark blue, yellow, light blue, purple, and black 
symbols represent the waters of TSM-dominated, phytoplankton-dominated, CDOM-dominated, a 
mixture of TSM-dominated and phytoplankton-dominated water, a mixture of 
phytoplankton-dominated and CDOM-dominated water, a mixture of CDOM-dominated and 
TSM-dominated water, and a mixture of TSM-dominated, phytoplankton-dominated, and 
CDOM-dominated water, respectively. Circles and triangles represent the Ariake Bay dataset and 
combined data from Ise Bay and the East China Sea, respectively. 

As stated earlier, Rrs(667) was used to separate the non-turbid water from turbid water. For 
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log(R), whereas a linear function was fitted to the turbid datasets using type II regression (Figure 8). 
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Rrs(667) ≤ 0.005 and Rrs(667) > 0.005 corresponded to non-turbid and turbid waters, respectively. 
The fitted algorithms are the following: 

Log(Chl-a) = 1.49*(Log(R))2 − 3.34*Log(R) + 0.337, (10) 

for non-turbid water and: 

Log(Chl-a) = −13.9*Log(R) − 1.07, (11) 

for turbid water. 

Figure 7. (a) Ternary plot of aph(443), ay(443), and anpp(443) for data from Ariake Bay, the East
China Sea, and Ise Bay. The value on each side represents the ratio of the corresponding water
constituents of absorption to the total absorption. (b) Relation between Chl-a and OC3M band
ratio. (c) Relation between in situ Rrs(667) and anpp(443). Red, green, dark blue, yellow, light
blue, purple, and black symbols represent the waters of TSM-dominated, phytoplankton-dominated,
CDOM-dominated, a mixture of TSM-dominated and phytoplankton-dominated water, a mixture
of phytoplankton-dominated and CDOM-dominated water, a mixture of CDOM-dominated
and TSM-dominated water, and a mixture of TSM-dominated, phytoplankton-dominated, and
CDOM-dominated water, respectively. Circles and triangles represent the Ariake Bay dataset and
combined data from Ise Bay and the East China Sea, respectively.

As stated earlier, Rrs(667) was used to separate the non-turbid water from turbid water.
For non-turbid water, a second order polynomial was fitted to the relationship between log(Chl-a) and
log(R), whereas a linear function was fitted to the turbid datasets using type II regression (Figure 8).
A threshold was chosen to make the higher r2 and lower RMSE for both regressions. In other words,
Rrs(667) ≤ 0.005 and Rrs(667) > 0.005 corresponded to non-turbid and turbid waters, respectively.
The fitted algorithms are the following:

Log(Chl-a) = 1.49*(Log(R))2 − 3.34*Log(R) + 0.337, (10)

for non-turbid water and:
Log(Chl-a) = −13.9*Log(R) − 1.07, (11)

for turbid water.
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represent the subsets of non-turbid and turbid waters, respectively, from Ariake Bay. The dashed
lines with lower and higher slope represents the regression for non-turbid waters and turbid waters,
respectively. The equations of the second order polynomial and linear regressions represent the
switching algorithm for non-turbid and turbid waters, respectively.

The error of the switching algorithm was smaller than the error of the OC3M algorithm for both
non-turbid and turbid waters (Figure 8). The estimated Chl-a was also closer to the in situ data from
Ariake Bay, as well as from the subsets, than it was to estimates from OC3M in terms of slope, r2, bias,
and RMSE (Table 3).

Table 3. Statistics of OC3M and the new switching algorithm.

Ariake Data Whole Non-Turbid Water Turbid Water

OC3M Switching Algorithm OC3M Switching Algorithm OC3M Switching Algorithm

Data number 183 183 137 137 46 46
Slope 0.443 0.518 0.446 0.522 0.108 0.457

r2 0.372 0.331 0.375 0.373 0.204 0.209
Bias −0.261 −0.001 −0.199 0.001 −0.444 2 × 10−7

RMSE 0.414 0.326 0.348 0.296 0.568 0.402
Absolute RE 29.9% 28.0% 27.0% 27.2% 38.5% 30.3%

3.4. Evaluation of the Improved MODIS Chl-a

To assess the improvement in MODIS Chl-a retrievals, the recalculation method of Rrs described
above was first applied to MODIS Rrs. The improved MODIS Rrs were then used to obtain refined
MODIS Chl-a data using the standard OC3M algorithm (Figure 9a,b). After our Rrs recalculation,
MODIS Chl-a improved significantly (r2 = 0.614, RMSE = 0.484) compared with the standard Chl-a
(r2 = 0.039, RMSE = 0.610; Figure 2a) when compared to the in situ dataset of Nagoya and Nagasaki
universities. However, the slopes were still low (0.478; Figure 9a), and some data were either greatly
underestimated or overestimated. In order to further improve MODIS Chl-a, our switching algorithm
was then used, and the new MODIS Chl-a values showed not only an improved slope (0.675) and
bias (−0.028), but also a higher r2 (0.622) and a lower RMSE (0.287) (Figure 9c). Besides, the scatter
in the data was also greatly reduced, and most of the data were within a factor of 2 and 1/2 of the in
situ data.

The improvement in MODIS Chl-a was further validated by the independent dataset collected
by the Fisheries Research institutes from not only the inner parts of the bay, but also the southern
region. Using the OC3M algorithm and the recalculated Rrs, the Chl-a retrievals improved considerably
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(r2 = 0.329, RMSE = 0.387; Figure 9b) compared to retrievals using MODIS Rrs (r2 = 0.285, RMSE = 0.412;
Figure 2b). Additionally, when the OC3M algorithm was replaced by the new switching algorithm, the
estimated MODIS Chl-a improved further (r2 = 0.404, RMSE = 0.335; Figure 9d).
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In addition to the validation of MODIS Chl-a using in situ data, new MODIS Chl-a images were
generated using the recalculated MODIS Rrs and the standard and switching algorithms (Figure 10).
The turbid-water algorithm was applied only for the water where Rrs(667) > 0.005 and in the range
of −0.095 > log(R) > −0.223, because our algorithm development and verification dataset covered
only this range of log(R). The MODIS Chl-a images indicated that the standard MODIS Chl-a values
were high in coastal areas with some values even over 100 mg m−3, but decreased in the middle of
the bay and reduced even further offshore. Using the recalculated Rrs, the Chl-a with OC3M showed
that the very high Chl-a disappeared, and the change of Chl-a mostly happened in the coastal areas
rather than the offshore areas. A comparison of satellite-derived Chl-a using OC3M and the switching
algorithm showed that Chl-a derived using the latter algorithm were higher. This is consistent with
the underestimation by OC3M that we describe in Section 3.3 (cf. Figure 5). The difference between
standard and improved MODIS Chl-a were shown in the supplementary materials (Figure S1).
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4. Discussion

4.1. Improvement of Chl-a

Our study revealed the large error in the standard MODIS Chl-a product as demonstrated by the
significant negative or positive deviations when compared with in situ Chl-a (Figure 2). The desired
absolute error for ocean color Chl-a by NASA is 35% for coastal waters [37,38]. In this section,
we discuss the improvement of MODIS Chl-a with respect to the absolute error using recalculated Rrs
and our switching algorithm.

When compared to the in situ Chl-a dataset collected by Nagasaki and Nagoya universities,
the standard NASA MODIS Chl-a yielded an absolute relative error of 51.7%, which was much larger
than the desired value. Our study showed that the major sources of error in the retrievals of Chl-a from
MODIS were; (1) the inaccuracy of the standard atmospheric correction [5,10] and (2) the shortcoming
of the standard OC3M in the water algorithm for deriving Chl-a [33].

To overcome these shortcomings in the usage of MODIS Chl-a, we utilized all of the available
in situ Rrs values from the Nagasaki and Nagoya universities dataset and the approach by
Hayashi et al. [14] to first reduce the errors associated with MODIS Rrs. This recalculation helped
reduce the absolute error in MODIS Chl-a to within 30.1%. To account for the errors associated with
the standard OC3M algorithm especially in the turbid waters at the head of Ariake Bay, a switching
algorithm was developed. Using this algorithm reduced the absolute error of the Chl-a to 24.9%.
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When compared to the match-up dataset, the error in MODIS Chl-a was reduced, and the accuracy
was improved above the desired value. Thus, a simple and effective approach that combines the Rrs
recalculation method with a locally tuned switching algorithm allowed much more accurate retrievals
of satellite Chl-a from this turbid and semi-enclosed bay.

When using the independent and larger Chl-a validation datasets of the Fisheries Research
institutes, which covered a wider area of Ariake Bay was compared to the standard MODIS Chl-a,
the absolute relative error was 84.0%. After improving the Rrs using the recalculation method of
Hayashi et al. [14], the error in Chl-a retrievals was reduced to 57.3%. However, when using our
switching algorithm, the error in Chl-a retrievals increased slightly by 1.1%, although various statistical
tests showed improved Chl-a estimations. Considering that our optical data was limited for such a
complex optical system, this is a satisfactory improvement, even though we did not attain the accuracy
in Chl-a retrievals that is recommended by NASA. Further discussion of the atmospheric correction
and in-water algorithm follow.

4.2. Atmospheric Correction

To investigate the spatial distribution of MODIS Rrs error, we processed satellite images to obtain
the difference between the standard and recalculated MODIS Rrs(488). The images showed that the
error in the coastal areas was negative, suggesting that this underestimation of MODIS Rrs could be
caused by turbidity, which is high in those areas (Table 2). It is expected that the turbidity of Ariake
Bay contributed to the error in MODIS Rrs. Turbidity is one of the important causes for the failure
of the atmospheric correction algorithm because the black pixel assumption breaks down in turbid
waters [6]. Specifically, the radiance of the atmosphere in the bands shorter than the near-infrared
region is often overcorrected because of the near-infrared reflectance from the ocean; thus, the Rrs will
be underestimated, especially at shorter wavelengths [6,39]. Negative values of Rrs(412) and Rrs(443)
were consistently encountered in MODIS data, especially at locations closer to the head of Ariake
Bay, reinforcing the idea that the effectiveness of atmospheric correction algorithms in turbid waters
is limited.

In addition, the image showing the difference between the standard and recalculated MODIS
Rrs(488) for 14 May 2010 showed an underestimation of Rrs for the whole Ariake Bay. This indicates
that there was another possible cause for the underestimation of Rrs in this area. It has been suggested
that Kosa (Yellow Sand Dust) and other aerosols influence the western part of Japan, including Ariake
Bay [32,40–42]. The larger underestimation was probably related to one of the atmospheric events.
Large improvements in Rrs retrievals by the Hayashi et al. [14] method showed the effectiveness of
this method in mitigating the shortcomings of current standard atmospheric correction. What makes
the recalculation method of Hayashi et al. [14] particularly attractive is that it is simple; it requires no a
priori information of the aerosols, and no tweaking of the standard atmospheric correction models
for local use. Even if prior information is available on the type and quantity of absorbing aerosols,
parameterizing atmospheric correction models and running these models is computationally intensive
and particularly challenging given the highly dynamic nature of atmospheric aerosols.

For the recalculation method of Hayashi et al. [14], the linear relationship between in situ Rrs(412)
and Rrs(547) was used to recalculate Rrs(412). They observed the relationship in Ise–Mikawa Bay
where is another semi-enclosed bay in Japan [14]. The linear relationship was also observed in Ariake
Bay, although the slope of the relationship was different from the Ise–Mikawa Bay. In our study,
we found that the correlation was strong for the data under the condition that Rrs(488) was less than
Rrs(547), which indicated that the water was not very clear. We expect the relationship between in situ
Rrs(412) and Rrs(547) in other similar optical waters.

Hayashi et al. [14] found that an overestimation of MODIS Chl-a coincided with negative MODIS
Rrs(412), which was to be expected because of absorptive aerosols. This led them to use the Rrs
recalculation method, which reduced the MODIS Rrs underestimation. In Ariake Bay, we found not
only underestimation, but also an overestimation of Rrs(412), both of which produce errors in Chl-a.
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One cause for the overestimation of Rrs could be stray light. However, it is more likely that errors
were caused by the wrong atmospheric model selection, especially in turbid waters, and for a small
semi-enclosed sea [43]. In this study, we applied the method not only for underestimations, but also
overestimations of MODIS Rrs, and our results show that Rrs improved in both cases (Figure 3).
This study thus shows that the simple method of Hayashi et al. [14] is of great utility to improve the
underestimation of Rrs caused by absorptive aerosols and high turbidity as well as the overestimation
of Rrs, the reasons of which are unclear to us.

It is worth mentioning two other factors that cause the error of the Rrs. One is the “adjacency
effect”, which is defined as the spatial mixing of radiance among nearby pixels [44]. Since Ariake Bay
is a relatively small semi-enclosed bay, the reflectance from the coast is likely to affect the reflectance
from the waters. The other one is the degradation of MODIS, especially for the shorter wavelength [45].
Lee et al. [45] revealed that the degradation already started from 2005, and the calibration bias could
be up to 1.8% at 412 nm.

4.3. In-Water Algorithm

Satellite Chl-a retrievals from the Ariake Bay using the standard OC3M in-water algorithm
severely underestimated Chl-a comparing to in situ data, especially when Chl-a was over 10 mg m−3

(Figure 6). It is well-known that the empirical OC3M algorithm was developed using data mostly
from the open ocean, and hence OC3M is not suitable for coastal waters. In addition, OC3M uses R,
and was developed for Case 1 waters, in which water constituents are dominated by phytoplankton
and their associated materials [34,46]. However, in coastal waters, CDOM and NPP, which absorb
and scatter light, do not co-vary with phytoplankton, resulting in an overestimation of Chl-a [47,48].
Our validation of OC3M in Ariake Bay showed that the OC3M algorithm often underestimates
Chl-a. Therefore, our regional algorithm for Ariake Bay is of great utility for both researchers and
resource managers.

The water constituents of Ariake Bay were analyzed using the ternary diagram similar to that
in Prieur and Sathyendranath [35] before we developed the regional algorithm, and we found that
underestimates by OC3M were mostly from anpp-dominated and TSM-dominated waters. We also
know that the waters in the southern part of the bay and outside of the bay were less turbid. Therefore,
we separated the data into two groups based on the turbidity of the water using Rrs(667) as criteria.
For each group, we developed a separate empirical algorithm based on R.

Rrs is relatively higher in turbid waters, and the different slope from the relationship of Chl-a to
R is probably caused by the high scattering of the light by NPP at the shorter wavelengths, although
we do not have light scattering data to substantiate this hypothesis. Our switching algorithm for
non-turbid water showed a good correlation; however, for turbid water, the error is still large. Chl-a
estimated from the R will be inaccurate, because TSM absorbs and scatters light in blue and green
bands [49]. To avoid the influence of TSM, we tried a red-to-green band ratio such as Rrs(678)/Rrs(547)
or Rrs(678)/Rrs(488) to estimate Chl-a for turbid waters [18]. However, the estimation by red-to-green
band ratio was worse than the estimation from our switching algorithm. Therefore, we decided to use
the blue-to-green band ratio in the turbid water algorithm.

5. Conclusions

Our results showed that a combination of the simple Rrs recalculation method and the switching
algorithm for both non-turbid and turbid waters effectively reduces the error in Chl-a that arises when
the standard OC3M is used in the turbid and semi-enclosed Ariake Bay. The improvement in Chl-a
values that is obtained through this approach offers the potential for its use in other coastal ecosystems
plagued by similar problems. Our Rrs recalculation method is much simpler and computationally
less intensive than a complex alternative atmospheric correction. Therefore, we recommend the
application of this Rrs recalculation method to deal with the atmospheric correction problems in other
similar regions.
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Our results also showed that the in-water algorithm could be improved by separating the complex
coastal waters into different water types before fitting the data using Chl-a against the blue-to-green
band ratio (R). The failure of the standard OC3M algorithm in Ariake Bay was mainly due to turbidity
of the water; therefore, we separated the data into non-turbid and turbid water. For non-turbid water,
the correlation between Chl-a and R was significant; however, the correlation for turbid water was not
statistically significantly. So, it is necessary that we continue to work on improving the Chl-a algorithm
for turbid water.

Supplementary Materials: The followings are available online at http://www.mdpi.com/2072-4292/10/9/1335/s1,
Figure S1: Difference between standard MODIS Chl-a and corrected Chl-a by OC3M or switching algorithm.
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