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Abstract: We estimate global terrestrial gross primary production (GPP) based on models that
use satellite data within a simplified light-use efficiency framework that does not rely upon other
meteorological inputs. Satellite-based geometry-adjusted reflectances are from the MODerate-resolution
Imaging Spectroradiometer (MODIS) and provide information about vegetation structure and
chlorophyll content at both high temporal (daily to monthly) and spatial (∼1 km) resolution. We use
satellite-derived solar-induced fluorescence (SIF) to identify regions of high productivity crops and
also evaluate the use of downscaled SIF to estimate GPP. We calibrate a set of our satellite-based
models with GPP estimates from a subset of distributed eddy covariance flux towers (FLUXNET 2015).
The results of the trained models are evaluated using an independent subset of FLUXNET 2015 GPP
data. We show that variations in light-use efficiency (LUE) with incident PAR are important and can be
easily incorporated into the models. Unlike many LUE-based models, our satellite-based GPP estimates
do not use an explicit parameterization of LUE that reduces its value from the potential maximum under
limiting conditions such as temperature and water stress. Even without the parameterized downward
regulation, our simplified models are shown to perform as well as or better than state-of-the-art satellite
data-driven products that incorporate such parameterizations. A significant fraction of both spatial and
temporal variability in GPP across plant functional types can be accounted for using our satellite-based
models. Our results provide an annual GPP value of ∼140 Pg C year−1 for 2007 that is within the range
of a compilation of observation-based, model, and hybrid results, but is higher than some previous
satellite observation-based estimates.

Keywords: gross primary production; GPP; NDVI; vegetation indices; solar-induced fluorescence;
MODIS; light-use efficiency; satellite reflectance; NIRV

1. Introduction

Global terrestrial gross primary productivity (GPP), the amount of carbon dioxide (CO2) that
is assimilated by plants through photosynthesis, plays a critical role in the global carbon cycle as
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it can moderate the amount of CO2 from anthropogenic sources that remains in the atmosphere.
Despite the collection of ground-based data at hundreds of individual sites, as well as vast amounts of
remotely-sensed data from satellites and the development of sophisticated process-based models, there
still remains significant uncertainty in global GPP estimates including their global annual mean and
inter-annual variability (IAV) [1]. Estimation of the variability in the land sink for global carbon budget
assessments relies upon dynamic global vegetation models that are driven by observed environmental
changes [2]. Peters et al. [3] note that the understanding of the land sink is currently limited in
part by a dearth of spatially-explicit observations of vegetation changes and recommend systematic
benchmarking of the models, including productivity, for improvement.

GPP is not measured directly either at the ground or from satellite. Using the eddy covariance
technique, tower-based measurements of net ecosystem exchange (NEE) are partitioned into GPP
and ecosystem respiration using assumptions regarding the latter (e.g., [1,4,5] and references therein).
Despite the assumptions used in this approach, tower-based estimates are considered a standard
for GPP estimates. Approaches to scale up these measurements and extrapolate globally involve
first deriving relationships between tower-based GPP estimates and parameters from satellite-based
instruments and meteorological analyses and then applying these parameterizations globally (e.g., [6–10]).
Tramontana et al. [9] demonstrated that such approaches that use only remotely-sensed data perform
almost as well as the best model that also incorporates meteorological inputs.

Other data-driven approaches to estimate GPP globally use satellite data in combination with
models and various assumptions (see for comprehensive reviews [1,11]). Many of these are based on
the light-use efficiency (LUE) concept [12,13], i.e.,

GPP = LUE× FAPARchl × PARin, (1)

where PARin is photosynthetically-active radiation incident at the top of canopy and FAPARchl is
the fraction of PARin absorbed by chlorophyll. Several studies have used the LUE model with
space-based estimates of FAPARchl or a proxy such as from satellite-derived vegetation indices (VI),
PARin estimates from a data assimilation system or other measurements, and parameterizations of LUE
that use meteorological data as inputs to estimate GPP globally or on a smaller scale (e.g., [14–21]).

VIs are computed with a limited number of broad-band channels on satellite imagers. VIs that
have been used or considered for estimating GPP include the dual wavelength Normalized Difference
Vegetation Index (NDVI) [22] and the Near-Infrared Reflectance of terrestrial Vegetation (NIRV) [23]
that is defined as the product of NDVI and reflectance from the near-infrared channel used in the
NDVI. The potential benefit of using VIs for GPP estimation is that they can be simply derived from
satellite reflectances. In particular, an NDVI record is available for over three decades [24].

VIs have been used to compute GPP with an approximation to Equation (1), i.e.,

GPP = S×VI× PARin (2)

(e.g., [25]) or other similar forms (e.g., [26]) where VI is used as a proxy for FAPARchl. LUE, here
represented as S, may be treated a constant [27,28] or as a more complex function of VI itself [29,30]
or other parameters where S may vary with plant functional type (PFT) (e.g., [31]). Many of these
approaches use flux tower data to train or calibrate their models with a limited number of sites or PFTs
and have not been tested globally.

Some of the noted problems using VIs are (1) a decrease in sensitivity at high values, particularly
in managed croplands (e.g., [25,32]) and (2) a positive offset that occurs when photosynthetic activity
should be very low or zero (e.g., [20,26,33,34]) (i.e., these parameters have positive values when
photosynthesis is not occurring). Yuan et al. [35] found that LUE models in general tended to
overestimate GPP at low values and underestimate at high values and that most LUE models do not
account for the fact that LUE is higher on cloudy days with more diffuse radiation (e.g., and references
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therein [36]). However, some LUE model formulations have included the radiation effect on LUE
[37,38].

Gitelson et al. [39] and Peng et al. [40] found that the use of potential PAR (PARpot, i.e., the PAR at
top of canopy that would be present in a cloudless atmosphere) in a simple model, i.e.,

GPP ∝ VI× PARpot, (3)

produced superior results as compared with PARin in cropland vegetation. The improvement obtained
by the use of PARpot in place of PARin with constant LUE implicitly accounts for the diffuse radiance
effect on LUE by producing an effectively higher LUE at lower values of PARin. Peng et al. [40] notes
that this model does not account for variations in GPP produced by short time scale (minutes to
hours) stresses. They also suggested testing of this model at other geographic locations and for other
vegetation types.

Here, we expand on this approach by training and evaluating models based on Equations (2) and
(3) with available global GPP estimates from flux tower observations. We then test the satellite-based
trained model using independent global GPP from flux towers (i.e., not used in the training). This is
a simple and computationally-efficient method to estimate global GPP with a limited number of
remotely-sensed parameters with a focus of daily to monthly time scales. We specifically examine
whether a modified function of NDVI or a linear combination of band reflectances can accurately
represent FAPARchl to mitigate the above-mentioned shortcomings of VIs.

We further explore whether satellite measurements of chlorophyll solar-induced fluorescence (SIF)
may be used to improve estimation of global GPP. SIF originates from the photosynthetic machinery
inside leaves and has been measured with several satellite instruments [41–48]. The spectrum of
chlorophyll fluorescence is spread over a range of wavelengths with two broad peaks, centered near
685 and 740 nm, referred to as the red and far-red emissions, respectively. Radiative transfer and
physiological modeling suggests that canopy-level far-red SIF is strongly related to APAR [49].
Most satellite SIF studies have been conducted using far-red SIF, and henceforth, in this work, SIF
will refer to far-red SIF. Several studies have shown a highly linear relationship between far-red
canopy-level SIF and GPP on monthly time scales [32,46,50–54] that can be explained by modeling
results [55]. Far-red SIF also closely follows seasonal [33] and daily to diurnal [54,56] variations
in GPP. SIF measurements also alleviate the above-mentioned short-comings of VIs [32,33,57].
However, unlike VIs, SIF is a very small and difficult to measure signal. As a result, satellite SIF
measurements are relatively noisy, prone to systematic errors [44,50,58] and currently limited in terms
of both spatial and temporal resolution.

Here, we use attributes of both satellite-based reflectances and SIF in a computationally-efficient
way to estimate global GPP accurately at high temporal and spatial resolution. In doing so,
we seek to address the question: How much of the variance in GPP can be explained with
satellite-derived quantities using a simple observation-based approach, particularly in comparison
with more sophisticated approaches? To answer this question, we use GPP estimates derived at eddy
covariance flux tower stations from the FLUXNET 2015 database to both calibrate and evaluate our
satellite-based models. The results are examined at various temporal and spatial resolutions. We also
compare with other data-driven GPP estimates and proxies as benchmarks. This comparison provides
some insights into which parameters may be important for machine learning (ML) GPP estimates and
ultimately may be used to improve the ML results.
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2. Materials and Methods

2.1. MODIS Reflectances and Related Vegetation Parameters

The MODerate-resolution Imaging Spectroradiometer (MODIS) flies on the National Aeronautics
and Space Administration (NASA) Earth Observing System (EOS) Terra (morning overpass) and Aqua
(early afternoon overpass) polar-orbiting satellites. MODIS bandwidths for Channels 1–7 used here
are 620–670 (red), 841–876 (near infrared 1, NIR1), 459–479 (blue), 545–565 (green), 1230–1250 (NIR2),
1628–1652 (short-wave infrared 1, SWIR1) and 2105–2155 nm (SWIR2), respectively. We primarily
use the collection 6 MCD43D Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) on a high resolution grid of 0.00833◦ latitude × 0.00833◦ longitude. MCD43D uses
data acquired over a 16-day period at multiple angles for clear skies. Daily gridded reflectances are
based on the 16-day periods and weight the data as a function of quality, observation coverage and
temporal distance from the day of interest. These data are derived using a kernel-driven semi-empirical
BRDF model [59–61]. Other MODIS data products examined here, such as different reflectance datasets,
composited NDVI, FAPAR (or FPAR) and GPP estimates, are described in Appendix A.

2.1.1. Calculations of and Adjustments to Vegetation Indices

The NDVI and NIRV (Normalized Difference Vegetation or Infrared Indices) are computed from
MODIS Band 1 and 2 reflectances (ρ) using:

NDVI =
ρ2 − ρ1

ρ2 + ρ1
, (4)

and:
NIRV = (NDVI− C)× ρ2, (5)

where C is set to 0.08 as in Badgley et al. [23].
As noted above, the NDVI offsets at low values (denoted here as N0) are presumably the result of

non-chlorophyll-containing substances that produce a positive NDVI when photosynthesis or GPP is
at or near zero. The chlorophyll-containing vegetation fraction ( f ) occupying a given satellite pixel
increases during the growing season along with the NDVI. Therefore, subtracting a constant at all
values of NDVI to reduce the offset may produce a corresponding underestimate at high values.
Instead, we compute an adjusted NDVI according to NDVI′ = NDVI − NDVI0 where NDVI0 decreases
linearly with NDVI from N0 to zero as NDVI increases from N0 (at f = 0) to >N1 (at f = 1), i.e.,

NDVI0 =


NDVI NDVI < N0
(NDVI − N0)∗ − N0

(N1 − N0)
+ N0 N0 < NDVI < N1

0 NDVI > N1

(6)

An expectation is that N0 and perhaps N1 vary with location. Satellite SIF measurements are
near or at zero when GPP is near zero (e.g., [33]) and therefore offer the potential to map N0 globally.
We attempted to derive spatially-varying N0 using coincident observations of NDVI and satellite-based
SIF. SIF data are only available with good temporal resolution at fairly low spatial resolution (∼0.5◦).
We applied standard least-squares fitting for grid boxes with sufficient seasonal variability in f . In this
approach, we set N1 to an empirically-derived constant value of 0.75. In the end, we obtained improved
results using a constant value of N0 = 0.25 rather than site-specific N0 derived with SIF data. Therefore,
for the remainder of the paper, we use N0 = 0.25 and N1 = 0.75 to compute NDVI′ according to
Equation (6). It is hoped that improved results may be obtained in the future with higher spatial
resolution and higher quality SIF data.
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2.1.2. Use of Linear Combinations of Bands as an FAPARchl Proxy

In place of VIs or modified VIs in Equations (1) or (2), we alternatively use the form:

FAPARchl ∝ (A0 +
N

∑
i=1

Aiρi), (7)

where i is a particular reflectance band, N is the number of bands considered and ρi are combined
using weights Ai and an offset A0. Gentine and Alemohammad [62] similarly used a neural network to
estimate a SIF-based FAPARchl proxy using MODIS reflectances. We examine the results below applied
to GPP estimation for two different combinations of MODIS bands: (1) Bands 1 and 2 (red and NIR1)
that are used to compute NDVI and NIRV and (2) Bands 1–7 that are generally used for terrestrial
remote sensing. Note that from MODIS, the first two bands are measured at ∼250 m, while the second
group is measured at ∼500 m. Bands 1 and 2 or similar bands are also available on a number of other
satellite sensors, such as the Advanced Very-High Resolution Radiometer (AVHRR) dating back to the
early 1980s (albeit at lower spatial resolution than MODIS) and very high spatial resolution imagers
such as on the Landsat and Sentinel 2 satellites. The additional MODIS bands may be useful for further
removal of signals from non-chlorophyll-containing substances or atmospheric effects, as well as for
noise reduction in the case of redundant information.

2.2. FLUXNET 2015

FLUXNET 2015 is a collection of eddy covariance flux data from multiple regional networks [63]
that is an extension of the FLUXNET La Thuile dataset (2007). It includes improvements to the data
quality control protocols and the data processing pipeline and the use of reanalysis data to fill gaps in
micrometeorological variable records. Figure 1 shows maps of the flux tower sites used in this study
that include only Tier 1 data open and free for scientific use. A listing of each site used in this study is
provided in the Appendix B.
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Figure 1. Locations and vegetation types of the FLUXNET 2015 flux tower sites used in this study.
DBF: deciduous broadleaf forest; MF: mixed forest; ENF: evergreen needleleaf Forest; EBF: evergreen
broadleaf forest; CRO: cropland; OSH: open shrubland; SAV: savannah; CSH: closed shrubland; GRA:
grassland; WET: wetland; WSA: woody savannah; SNO: snow-covered.
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There are two main ways to estimate GPP (in units of g C m−2 d−1) by partitioning
of the NEE computed with the variable Ustar (u∗) threshold (VUT): (1) night-time method
(GPP_NT_VUT_REF) [5]; and (2) day-time method (GPP_DT_VUT_REF)[4]. All results shown here
use an average of night- and day-time partitioning methods. We repeated all analyses with each
method separately and found that the conclusions did not differ significantly depending on which
method was used. We use daily (DD, calculated from half-hourly data) and monthly (MM, average
from daily data) files. We also made use of the short-wave (SW) incoming (IN) flux (SW_IN_F) and
potential (top of atmosphere, SW_IN_POT), both in W m−2, provided in the dataset.

We apply quality control similar to that in previous works [10]. We use only daily or monthly
averages where 20% or less have come from gap-filled data. We also use only data where the NEE
uncertainties provided in the FLUXNET 2015 dataset are <3 g C m−2 d−1. Finally, we remove data
points where the day-time and night-time partitioning results in GPP estimates that differ by more
than 3 g C m−2 d−1. Data processing methods are described at http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/data-processing/.

Total uncertainty in derived GPP includes gap-filling, partitioning uncertainty, random
uncertainty and threshold friction velocity uncertainty [64]. Following Joiner et al. [33], we compute
uncertainties in 8-day GPP flux tower-derived data (σGPPtot) according to:

σGPPtot = 0.5085 e0.1088∗GPP8day . (8)

This formulation is based on a general fitting to data from the AmeriFlux network of flux
measurements spanning the Americas. For the sample of 8-day data that meet all the criteria, this
produces a mean uncertainty estimate of ∼0.86 g C m−2 d−1. Assuming that random uncertainties
can be reduced by averaging and that random uncertainty represents 50% of the total uncertainty
consistent with Schaefer et al. [64], the uncertainties for monthly and daily data will be ∼0.68 and
1.8 g C m−2 d−1, respectively.

2.3. Satellite SIF and SIF-Based Downscaled Products

We use Version 27 (v27) Level 3 (gridded) SIF derived from the Global Ozone Monitoring Experiment
2 (GOME-2) onboard the MetOp-A (GOME-2A) from February 2007–December 2016 [43,44]. MetOp-A is
in a polar orbit with an Equator crossing time of 09:30. The native spatial resolution of the GOME-2A data
from launch to the middle of July 2013 was 40 × 80 km. From that time until the present, the resolution
has been 40 × 40 km. GOME-2A provides global coverage in approximately 1–3 days. Here, we use
SIF derived from the far-red fitting window: 734–758 nm. SIF is a very small signal (typically < a
few mW/m2/nm/sr). Spatial and temporal averaging is employed to increase SIF signal-to-noise
ratios (SNRs).

The quality control filters for GOME-2 Level 3 SIF are described in Joiner et al. [44]. GOME-2 SIF
data with effective cloud fractions <30% are gridded monthly at 0.5◦ × 0.5◦ resolution. This cloud
screening is less rigorous as compared with that applied to MODIS data. GOME-2 retrievals of
canopy-level SIF, which utilize the filling-in of solar Fraunhofer lines, are themselves not as greatly
affected by clouds as are vegetation indices such as the NDVI [65]. However, top-of-atmosphere
(TOA) SIF is affected by clouds in that it is sensitive to both the amount of solar radiation reaching
the surface, as well as the amount of SIF that reaches the satellite. Therefore, TOA SIF should be
reduced by approximately the square of the cloud transmittance as compared with the value in clear
skies assuming that SIF yield remains constant with cloud conditions. Frankenberg et al. [66] showed
that a substantial fraction of the canopy SIF can be detected by satellite for small to moderate cloud
optical thicknesses.

Duveiller and Cescatti [67] implemented a method to downscale SIF with higher resolution
MODIS data. Their approach used NDVI, as well as land surface temperature and evapotranspiration
derived from MODIS to downregulate how much SIF is related to NDVI (or FAPAR). This product,

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
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referred to here as SIF*, is provided from 2007–2013 at a monthly timescale on a 0.05◦ × 0.05◦ grid.
Version 1 (v1) SIF* uses GOME-2 SIF Version 25 as an input. It should be noted that since v1 was
produced, there have been two updates to the GOME-2 SIF data culminating in v27. These later versions
used the same first step retrievals, but addressed various biases as identified by Köhler et al. [58]
by applying posterior adjustments [44]. To obtain a monthly full-day estimate of SIF* from the
original observations near 09:30 local time, we first divide each monthly grid box value of SIF* by the
monthly-averaged top-of-atmosphere PAR (PARTOA) at 09:30, then multiply by monthly-averaged
daily PARTOA [68].

2.4. State-of-the-Art Satellite-Derived GPP Estimates

As benchmarks for comparison, we use two state-of-the-art data-driven global GPP estimates.
FLUXCOM-RS is based on the global upscaling of flux tower data using satellite remotely-sensed (RS)
data (no meteorological data) with a machine learning approach [6,7,10]. The product is generated at
0.0833◦ × 0.0833◦ spatial and 8-day temporal resolution. It uses flux tower GPP with an ensemble of
machine learning-based models and over 200 explanatory variables.

The Vegetation Photosynthesis Model (VPM) V20 [15,21,69–71] is based on the LUE approach and
utilizes many remotely-sensed and climate reanalysis datasets. Different from the MODIS MOD17
GPP product, it uses a linear transformation of the Enhanced Vegetation Index (EVI) as a proxy of
FAPARchl (i.e., FAPARchl=1.25 [EVI-0.1]); the maximum LUE only differs for C3 and C4 plants, which
is supported by a convergence of LUE when using this FAPARchl [72]. VPM provides data at various
resolutions. Here, we use monthly gridded data at 0.05◦ × 0.05◦ resolution.

2.5. Sampling the FLUXNET 2015 Datasets for Training and Evaluation

In this work, we examine how well global GPP estimated from flux towers can be explained
using simple relationships with satellite-based observations. Here, we use flux tower-derived GPP
estimates to both calibrate and evaluate a variety of models. We use half of the available observations
for calibration (i.e., deriving slopes between various satellite-based products and GPP) and the other
half (independent) for evaluation of the derived relationships. We split the data alphabetically, i.e.,
according to the flux site name (even- or odd-numbered flux tower sites). In this way, half the sites are
used for training and the other half for independent evaluation. This sorting selects sites such that if
there are two (or more) sites per country, one site will be used for training and the other for evaluation.
It also eliminates the possibility of data from a single site being included in both training and evaluation
samples. This leads to more independence between the training and evaluation datasets. We find that
results are similar, although not identical, depending on which half is used for training and that all
general conclusions hold no matter which half of the sites is used for training.

In order to test GPP models on a wide range of conditions and plant functional types, we use all
flux tower sites except for 23 identified by Zhang et al. [21] as having incompatibility with MODIS
pixels and a few more additional sites at coastlines where FLUXCOM-RS did not produce good values.
Each site was checked visually with MODIS 5km data. Sites were retained if the land cover and
vegetation condition within the flux tower footprint (assumed 250-m radius) was similar (≥80%)
to that within the overlapping MODIS data. All analyses are conducted for years 2003–2014 when
FLUXNET 2015 and high quality MODIS data from both the Terra and Aqua satellites are available.

2.6. Statistical Parameters Used for Evaluation of Models

We evaluate different models on the basis of various statistical parameters including the root-mean
squared error (RMSE) of the fit to the flux tower-based GPP, the variance explained (r2), and the bias.
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As in Tramontana et al. [10], we use the model efficiency factor (MEF), a measure of how well our
model reproduces independent data as compared with the mean value of observations, defined as:

MEF = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(yi − y)2 , (9)

where yi and xi are the observed and fitted values, respectively, and y is the mean of yi. Values of
MEF > 0 indicate that the model used is better than the mean, and a value of unity would indicate a
perfect model. We also use the metric λ developed by Duveiller et al. [73], defined as:

λ = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 + ∑n

i=1(yi − y)2 + n(x− y) + κ
(10)

where κ = 0 if r ≥ 0 and κ = 2|∑n
i=1(xi − x)(yi − y)| if r < 0. This index is equal to the correlation

coefficient r when r ≥ 0 and there is no additive or multiplicative bias and will be less than r in the
presence of a bias. λ has the advantage of summarizing the agreement in a single metric irrespective of
whether any disagreement is due to lack of correlation or to a bias.

2.7. Data Processing Flow

A basic flow diagram of the training and evaluation using the various datasets is shown in Figure 2.
The details involved in each of the processing steps will be described in more detail below. The datasets,
with spatial and temporal resolutions listed in Table 1, may be grouped into several distinct subsets: (1)
reflectances used to compute VIs (MCD43); (2) radiation, TOA short-wave (SWTOA); (3) FLUXNET 2015
eddy covariance GPP estimates, half used for training and the other half for evaluation; (4) SIF (used
to delineate highly productive regions) or downscaled SIF (SIF* used as a GPP proxy); (5) independent
satellite data-driven GPP estimates used as benchmarks (VPM and FLUXCOM-RS). Further details on
other datasets examined are given in Appendix A.

MODIS
BRDF-adjusted

reflectances
(MCD43D)

FLUXCOM-RS or VPM  
GPP (driven by MODIS 

and other data)

GOME-2 
SIF

SIF downscaled 
with MODIS 

(SIF*)

FLUXNET 2015 
GPP Tier 1 odd 
numbered sites

(for training)

FLUXNET 2015 
GPP Tier 1 even 
numbered sites
(for evaluation)

Top-of-
atmosphere 

(TOA) shortwave 
(SW) 

irradiance

Our satellite-
based GPP 
estimates

Compare 
statistically

(END)

Train/calibrate 
satellite data to 
estimate GPP

Multiply TOA 
SW and FAPAR 

proxies 

Use SIF and 
NDVI to 

identify high 
productivity 

areas 
(optional)  

Calibrate FAPAR 
proxies OR 

compute VIs 
(NDVI, NIRV )

Add LUE 
parame-
terization
(optional) 

Figure 2. Flow of data used in training and evaluating simple satellite-based GPP models. SIF,
solar-induced fluorescence; GOME-2, Global Ozone Monitoring Experiment 2; VPM, Vegetation
Photosynthesis Model; LUE, light-use efficiency; FLUXCOM-RS, machine learning upscaling of flux
data using remote sensing (RS) data.
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Table 1. Summary of input datasets used for GPP estimation and evaluation with their native spatial
and temporal resolutions (Res.).

Input Dataset Temporal Res. Spatial Res.

MCD43D reflectances a daily 0.0083◦ × 0.0083◦

GOME-2 SIF * b monthly 0.05◦ × 0.05◦

GOME-2 SIF c monthly 0.5◦ × 0.5◦

VPM GPP d monthly 0.05◦ × 0.05◦

FLUXCOM GPP d 8 day 0.083◦ × 0.083◦

NIRV × SWTOA
b,e any of the above any of the above

NDVI × SWTOA
b,e any of the above any of the above

FLUXNET 2015 GPP f daily, monthly site footprint
a Used to compute FAPAR proxies such as NDVI, NIRV and linear combinations of channels; b used as a GPP
proxy with optional LUE parameterization; c used to identify highly productive regions optionally; d used for
benchmark evaluation; e computed using MCD43D reflectance dataset; f half of sites used for training, the
other half used for independent evaluation.

3. Results and Discussion

Using the approach shown in Figure A1, we tested a variety of products and models using
GPP derived from a consistent sample of eddy covariance sites to both train GPP satellite-driven
models and evaluate them. A particular satellite data-driven model is given by GPP = bx, where a
model parameter x, such as NDVI × SWTOA, is used to predict flux tower estimates of GPP and b is
determined by fitting to a subset of flux tower data.

We investigated the impact of using different MODIS datasets in Appendix A. Generally, MCD43D
provided superior results as compared to most other datasets. Our results in the remainder of this
paper focus on the MCD43D reflectances that can be used at their highest resolution (∼1 km) or
degraded to be comparable to the resolution of other datasets used for benchmarking.

We also tested the use of different radiation datasets in Appendix C. The use of top-of-atmosphere
shortwave (SWTOA), computed as being proportional to cosine of the solar zenith angle (SZA)
integrated over a day, as compared with the satellite-derived all-sky SW produced the best results
with Equation (2) where LUE was assumed constant. These results are consistent with those of
Gitelson et al. [39] and Peng et al. [40], who used a limited number of flux tower sites. Those studies
found that GPP did not follow PARin, but rather that other factors affect GPP, and that the use of PARpot

reduces some of the variability resulting from the dependence of LUE on cloudiness. This would occur
if LUE is not constant, but rather anti-correlated with PARin (or correlated with cloudiness), such that
various combinations of PARin and LUE produce a relatively constant GPP over a range of cloud
conditions and for a given fixed value of FAPARchl. It is well known that LUE is higher in situations
with more diffuse light (e.g., [36]) (i.e., cloudy conditions) as compared with clear-sky conditions.
One exception is very low light conditions where LUE saturates.

For following comparisons between models and flux tower data, results are typically shown
in terms of scatter diagrams or 2D histograms with accompanying statistics. For completeness, we
also provide probability distribution functions in Appendix D. These show the degree to which the
differences follow a normal distribution that is assumed in statistical significance tests. While the
differences deviated somewhat from normal distributions, the number of samples was large enough in
most cases that the significance tests (when p-values were very small) were assumed to be valid.

3.1. The Use of Downscaled SIF to Estimate GPP

Duveiller and Cescatti [67] showed that SIF* agreed better with flux tower GPP as compared
with MOD17 GPP (see Appendix A for a description of MOD17). Here, we further evaluate SIF* by
comparing it consistently with the results of our models. We first verified that all of our models also
outperformed MOD17 GPP on eight-day to monthly time scales in all statistical measures. Note that
because SIF depends upon incident radiation, we did not explicitly use PAR in SIF-based models (other
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than to normalize it appropriately as described above); here, we simply applied a single scaling factor
to SIF* at monthly time-scales to estimate GPP globally. The assumption of a single scaling factor
to relate SIF to GPP, at least encompassing many plant functional types, has been suggested [53,74];
however, the use of a single scaling factor was not generally supported by previous studies (e.g., [46]).

We examine monthly SIF* along with NDVI′ and NIRV results in more detail in Figure 3 by
comparison with tower-derived GPP for years 2007–2013 when GOME-2 SIF v25 data were available.
Note that the resolution for SIF* was 0.05◦, while the MCD43D reflectances had been resampled to
0.083◦; note that the MCD43D results were degraded as compared with the ∼1 km2 results in Table A5,
which were much closer to the footprint of the eddy covariance technique [34]. While the positive
SIF* bias was clearly seen at GPP values near zero, SIF* was shown to have a more dynamic range as
compared with the NDVI′-based GPP estimates; NDVI′-based GPP estimates tended to saturate at
around 10 g C m−2 d−1; while SIF* and NIRV-based estimates reached values close to 15 g C m−2 d−1.
SIF* appeared somewhat noisier than the NDVI′- or NIRV-based GPP estimates. This was expected as
the downscaled SIF was directly tied to the more coarsely-gridded GOME-2 SIF that was inherently
noisy due to the very small SIF signal. Correlations were significantly different between all three
models (i.e., null hypothesis rejected) with p-values < 0.0001.

The apparent noise in SIF* may also have resulted from the effects of vegetation structure on
the escape of SIF through the canopy [75,76]. We attempted to account for the variations in canopy
escape as suggested by Yang and van der Tol [76] using MODIS Band 2 (near infrared) reflectance for
normalization. However, we did not find improvement in the global statistics. One explanation is that
the approach may not work well when bare soil contributes significantly to the observed reflectance
and/or because the wavelengths of the MODIS reflectances are not optimal for this purpose.

While the SIF* results were noisy as compared with reflectance-based approaches, we were
encouraged by these initial SIF* results given that only a single scaling factor was applied. We expect
improvements in subsequent versions of SIF* that will use more recent datasets for SIF, as well as the
high spatial resolution variables employed for downscaling. In addition, we expect progress to be
made in developing methods to account for the effects of vegetation structure on SIF escape from the
canopy globally.
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Figure 3. Two-dimensional histograms (density or heat map) of the monthly-averaged and scaled
(a) SIF*, (b) NDVI′× SWTOA and (c) NIRV× SWTOA, all at approximately 0.05◦ resolution, versus
GPP from the FLUXNET 2015 dataset. The colors represent the number of individual data points in a
particular bin. Single points within a bin are represented as a dot rather than a color-filled box. Data
are from 47 individual sites with 2065 individual data points for years 2007–2013. The statistics for the
fit are listed in the lower right corner with the linear fit at the top. The solid line is the 1:1 line. Units of
GPP are g C m−2 d−1. MEF, model efficiency factor.
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3.2. Use of Linear Combinations of Bands Rather Than VIs

Figure 4 shows results at an eight-day temporal resolution and the highest spatial resolution
used here (0.0083◦) for two- and seven-band models where linear combinations of bands were used
as FAPARchl proxies according to Equation 7. Both band models provided improved dynamic range
in estimated GPP as compared with the NDVI′-based model, and the correlation improvements
were statistically significant with p-values < 0.025. The seven-band and two-band models were not
statistically distinguishable. All models underestimated GPP at the highest GPP values.
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Figure 4. Similar to Figure 3, but showing two-dimensional histograms of the eight-day averaged
results for (a) two-band, (b) seven-band and (c) NDVI′-based GPP estimates at 0.00833◦ resolution,
versus GPP from the FLUXNET 2015 dataset. Data are from 64 individual sites with 13,592 individual
observations. Units of GPP are g C m−2 d−1.

3.3. Use of SIF to Delineate Highly Productive Agricultural Areas

One vegetation type for which GPP was not well predicted by our global linear regression models
is croplands with GPP >∼15 (see Figures 3b and 4). An examination of these points shows that they
are primarily from three sites in the U.S. Corn Belt (US-Ne1, US-Ne-2 and US-Ne3) that are frequently
planted with maize, a C4 plant. Zhang et al. [21] used various datasets to compute grid box fractions
of C4 plants (natural and agricultural) for the VPM and defined different maximum efficiencies for C3
and C4 plants within their LUE formulation. The datasets used to compute C4 fractions were static
(i.e., no interannual variability) and at lower spatial resolution than the VPM datasets.

Here, we explore an alternative approach that uses satellite-based SIF to delineate highly
productive regions. Guanter et al. [32] demonstrated that SIF was more highly correlated with GPP
than EVI at flux tower sites located in the U.S. Corn Belt because EVI, like NDVI, displays saturation at
high values. They also showed that data-driven models, such as the predecessors of FLUXCOM-RS,
did not produce the very high values of GPP derived from flux towers in this region. Global maps
of SIF show very high values in summer in these same regions, while NDVI and EVI do not [32].
Here, we test the use of SIF observations, albeit at low spatial resolution (0.5◦), to identify these
regions of high productivity not prominent in the NDVI that may be related to large fractions of highly
productive crops that are not well captured by the reflectances alone.

Using collocated GPP, SIF and NDVI data, we found that the FLUXNET 2015 sites with high
maximum GPP values that were not well fit using our single linear regression models displayed the
following criteria of high NDVI and a large ratio of SIF to NDVI when normalized appropriately
by PAR: specifically, NDVIt > 0.76 and SIFt/(NDVIt × cos (θ)) > 3.0, where t is the month with
the highest climatological value of NDVI and θ is the average solar zenith angle for that month
corresponding to the GOME-2 SIF observations. The climatological monthly means are computed
over the years 2007–2016. Figure 5 shows a map of the areas detected with this approach. Adjusting
the thresholds upwards resulted in somewhat less flagging over areas outside the U.S. Corn Belt (e.g.,
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Eurasia) and vice versa. Additional flux tower sites in high productivity agricultural regions may help
to further constrain the thresholds.

To improve GPP estimates with the simple linear regression approaches, we separated the flux
tower data into two different samples, one meeting the above criteria for high GPP and SIF and the
other not. We then performed separate linear fits to the GPP data for these two subsets. The designated
high productivity sites included in the training set were US-Ne1, US-Ne3 and DK-Fou, and the only
site in the validation dataset was US-Ne2.

Table 2 shows the results of the validation from this dual fit approach, henceforth referred to as
NDVI′2 or 7band2. The statistics shown here are for daily data. We note significant improvement in
metrics with flux tower GPP with dual fit as compared with the single fit models (null hypothesis
rejected). These results demonstrate a clear capability of the satellite data to estimate GPP down to
a daily time scale. Note that for the band models, the coefficients for each band in the calculation of
FAPARchl proxies in Equation (7) were estimated using all flux tower training data. Only the slopes
between GPP and the product of FAPAR and PAR proxies were computed using the two different
samples.

Even though the results using SIF were positive, there is room for improvement. The use of a
low-resolution static SIF dataset has obvious limitations. We do not account for the fact that only
a fraction of our identified high productivity grid boxes was covered by highly productive crops.
Improved SIF datasets are expected in the near future that will address some of these concerns as
explained below.

  

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

-60

-30

0

30

60

 

Figure 5. Locations where SIF and NDVI data have been flagged as high productivity, requiring a
different slope between GPP and NDVI. Blue diamonds represent the flux tower locations used to
define the flagging criteria.

Table 2. Statistical comparison between daily-averaged GPP estimates using MCD43D data at 0.00833◦

resolution from satellite data at 64 independent unique flux tower sites from FLUXNET 2015 with a
total of 10,3671 individual collocated observations.

GPP Estimate r2 Bias RMSE MEF λ

NIRV × SWTOA 0.694 0.018 2.19 0.695 0.824
NDVI′ × SWTOA 0.693 −0.306 2.21 0.691 0.806
NDVI′2 × SWTOA 0.718 −0.249 2.16 0.707 0.814
7band × SWTOA 0.700 −0.262 2.20 0.696 0.818
7band2 × SWTOA 0.725 −0.238 2.11 0.720 0.831
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3.4. Further Parameterization of LUE

Bauerle et al. [77] found that photoperiod explained more seasonal variation in leaf photosynthetic
capacity (related to LUE) than temperature. Zhang et al. [78] also derived a seasonally-varying
photosynthetic capacity from satellite SIF and other measurements and showed that using this seasonal
variation within a canopy transport model improved estimates of GPP and LUE. Functions of NDVI
have been used to account for these seasonal variations in LUE [29,30].

We tested various expressions of seasonal variation of LUE in an attempt to further improve our
satellite-based GPP estimates. We found that a small portion of the remaining variance in LUE can
best be modeled as a simple polynomial expression of NDVI. In this model, we have for each of the
two separate fits within the dual fit approach,

GPP = FAPAR′ × SWTOA×(a + bNDVI + cNDVI2), (11)

where FAPAR′ is an FAPAR proxy such as NDVI′ or multi-band proxies. Other LUE parameterizations
tested included second order polynomials in SWTOA, SWTOA/max(SWTOA), or NDVI/max(NDVI) for
each location as proxies for photoperiod or products of these predictors. However, the straight NDVI
parameterization provided the best results.

Figure 6 shows results for our dual fit seven-band variable LUE (Equation (11)) models that
we will refer to as FluxSat-7, the dual fit NDVI′-based variable LUE model (FluxSat-N), as well as
NIRV-based results at eight-day temporal resolution. At the 0.00833◦ spatial resolution of MCD43D,
both FluxSat-7 and FluxSat-N were more centered about the 1:1 line than the NIRV-based model, and
correlation differences between FluxSat and the NIRV-based models were statistically significant with
very low p-values. The FluxSat-7 correlation improvement over FluxSat-N was significant with a
p-value of 0.05. Improvements were obtained with the NDVI-dependent LUE as compared with the
results in Figure 4.
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Figure 6. Similar to Figure 4 (same data sample), but showing two-dimensional histograms of eight-day
averaged GPP estimates with the (a) FluxSat-7, (b) NIRV-based, and (c) FluxSat-N models using the
highest spatial resolution MCD43D dataset (0.0083◦) versus collocated FLUXNET 2015 GPP estimates.
Units of GPP are g C m−2 d−1.

3.5. Comparison with Other Satellite Data-Driven GPP Estimates

Next, we compare FluxSat-7 and NIRV-based GPP with that from state-of-the-art data-driven
FLUXCOM-RS and VPM. Figure 7 shows 2D histograms of FluxSat-7, NIRV-based and FLUXCOM-RS
eight-day GPP estimates at 0.0833◦ resolution versus independent FLUXNET 2015 data. At this spatial
resolution, all three generally overestimated GPP at low values and underestimated at high values.
FluxSat-7 had the best performance at the highest values of FLUXNET 2015 GPP. All correlations
were statistically different (p-values < 0.0001). FluxSat-7 showed the highest overall correlations with
respect to FLUXCOM 2015. As shown above, comparisons with FLUXCOM 2015 at the full spatial
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resolution of MCD43D (0.0083◦, Figure 6) provided superior results as compared with results at the
spatial resolution of FLUXCOM-RS (0.083◦).

We note that FLUXCOM-RS was not trained with FLUXNET 2015 data, but rather with a different
processing of an overlapping subset of eddy covariance flux tower data from the La Thuile dataset [10].
This may explain the bias of FLUXCOM-RS with respect to FLUXNET 2015 that was not present with
respect to the La Thuile training dataset [10]. The bias may be easily removed using a linear regression
with respect to FLUXNET 2015. When this was done, we obtained statistics that were similar to the
single fit models presented in Section 3.2 applied at the same spatial resolution; the highest GPP values
from the US-Ne3 site were still not well matched with FLUXCOM-RS after this adjustment.
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Figure 7. Similar to Figure 4 (same data sample), but showing two-dimensional histograms of eight-day
averaged satellite datasets (a) FluxSat-7, (b) NIRV-based, and (c) FLUXCOM-RS at a lower spatial
resolution (0.0833◦) versus collocated FLUXNET 2015 GPP estimates. Units of GPP are g C m−2 d−1.

Figure 8 similarly shows 2D histograms for monthly GPP averages for VPM, FluxSat-7
and NIRV-based versus FLUXNET 2015. Again, all models reproduced the tower-based GPP estimates
reasonably well. As expected, results were improved as compared with those at lower spatial and
higher temporal resolution in Figure 7. FluxSat-7 showed a somewhat lower spread and a bit less
underestimation at high GPP values with statistically-significant improvements in correlations over
the other two models.
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Figure 8. Similar to Figure 7, but showing two-dimensional histograms of monthly averaged GPP
estimates with the (a) FluxSat-7, (b) NIRV-based and (c) VPM models, with VPM at 0.05◦ spatial
resolution and others at 0.083◦ resolution versus collocated FLUXNET 2015 GPP estimates. Results are
for 64 sites and 3702 individual data points. Units of GPP are g C m−2 d−1.
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3.6. Comparison of Interannual Variations (IAVs)

Figures 9 and 10 show 2D histograms similar to Figures 7 and 8, but this time of normalized GPP
differences from the climatology (also known as anomalies or IAVs). To compute the normalized IAVs,
the seasonal cycle of GPP was first removed, then the remaining differences were normalized by the
range of observed climatological values from the FLUXNET 2015 data for each individual location
(known as the min-max normalization). For example, a normalized value of 0.5 means that a positive
difference is 50% of the range of observed GPP. If the min-max normalization was not performed, then
analyses suggested that the models did not capture IAVs well.
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Figure 9. Similar to Figure 7, but showing two-dimensional histograms of the normalized GPP
interannual variations in eight-day averages at 0.0833◦ resolution computed using (a) FluxSat-7, (b)
NIRV-based, and (c) FLUXCOM-RS versus FLUXNET 2015 GPP. Units of GPP are g C m−2 d−1.
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Figure 10. Similar to Figure 9, but showing two-dimensional histograms of the normalized GPP
interannual variability in monthly averages at 0.0833◦ for (a) FluxSat-7 and (b) NIRV and 0.05◦

resolution for (c) VPM versus FLUXNET 2015 GPP. Units of GPP are g C m−2 d−1.

All models were able to reproduce GPP IAVs well. FluxSat-7 provided improved results as
compared with the other models. This was the case particularly for the points with the largest IAVs
(both positive and negative). All correlations were different with high statistical significance.
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3.7. Comparison of Spatio-Temporal Variation in GPP

Figure 11 examines the spatio-temporal variation in annual GPP produced by the different satellite
data-driven models. Each point on the scatter diagrams represents a mean annual value for a particular
site and year where only the independent sites (i.e., not used in training of either NIRV or FluxSat-7)
are shown and all datasets are at 0.0833◦ resolution. Only complete or nearly complete years (i.e., a few
missing eight-day segments) are shown, and the same sampling was done for all datasets (i.e., if there
was a missing data point for one dataset, it was eliminated for all datasets). The metrics were best for
FluxSat-7, but the model differences were not statistically distinguishable in this case.
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Figure 11. Scatter diagrams comparing the mean annual GPP for each site for (a) FluxSat-7, (b)
NIRV-based, and (c) FLUXCOM-RS, all computed at 0.0833◦ resolution versus FLUXNET 2015 GPP.
Units of GPP are g C m−2 d−1.

3.8. Comparisons across PFTs

Scatterplots of satellite data-driven GPP estimates (FluxSat-7, NIRV-based and FluxSat-N at the
highest MCD43D resolution of 0.0083◦ for eight-day data) versus flux-tower estimates are displayed
for different PFTs in Figures 12 and 13. All three models showed good performance and relatively
low biases across PFTs. On the whole, FluxSat-7 outperformed the other two models with higher
correlations and slopes generally closer to unity. NIRV-based had the most dynamic range for
deciduous broadleaf forest (DBF) + mixed forest (MF), followed by FluxSat-7; FluxSat-N showed the
smallest range for this type. However, FluxSat-7 and FluxSat-N better reproduced the very high values
of GPP found in some cropland sites as shown above.

Figures 14 and 15 similarly compare IAVs across PFTs. Again, all three models effectively
capture IAVs across PFTs. The models perform particularly well in capturing IAVs for savannas
and grasslands. Upon further investigation of the EBF anomalies, we found two distinct clusters of
points. The first cluster was for the Australian sites. The anomalies of these sites were well captured
by the satellite data-driven models. The second cluster was for two European EBF sites (FR-Pue
and IT-Cpz); anomalies from these sites in FLUXNET 2015 were not well captured by our satellite
data-driven models.
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Figure 12. Scatter diagrams of (a) FluxSat-7, (b) NIRV-based, and (c) FluxSat-N (columns) versus
GPP from FLUXNET 2015 (all in g C m−2 d−1) for different plant functional types (rows) with the
1:1 line (black line), linear fit (red dashed line and red fit) along with number of observations n and
r2. All satellite-driven estimates use MCD43D reflectances at 0.0083◦ spatial and eight-day temporal
resolutions.
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Figure 13. Similar to Figure 12, but for different plant functional types. All units are g C m−2 d−1.
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Figure 14. Similar to Figure 12, but showing interannual variations normalized by the FLUXNET 2015
climatological ranges (unitless) for different plant functional types.
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Figure 15. Similar to Figure 14, but showing normalized interannual variations (unitless) for different
plant functional types.

3.9. Comparison of Globally Mapped GPP

Figure 16 shows globally mapped FluxSat-7 and FLUXCOM-RS GPP for two eight-day periods in
2007. As expected based on Guanter et al. [32], large differences are shown in the U.S. Corn Belt and
other highly productive agricultural areas identified with the SIF data. GPP values near the peak of the
northern hemisphere growing season (for the eight-day period starting at 193) are seen to be generally
higher with FluxSat-7 as compared with FLUXCOM-RS; this may be related in part to the different
training datasets used. Differences in the winter hemispheres are more similar. FluxSat-7 provided
mostly higher values in the tropics as compared with FLUXCOM-RS.
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Figure 16. Maps of GPP (eight-day average) estimated with remote sensing data trained on eddy
covariance flux tower data for Days 193–200 (left panels) and Days 1–8 (right panels) of 2007; top
panels: FluxSat-7, bottom panels: FLUXCOM-RS. Averages are listed in the lower left for all grid
boxes (Mean all), along with subsets from the tropics (latitudes < 20◦, denoted Mean trop), Northern
Hemisphere extra tropics (latitudes > 20◦N, denoted Mean NHET) and Southern Hemisphere extra
tropics (latitudes below 20◦S, denoted Mean SHET).

Figure 17 shows maps of annual averaged GPP from FluxSat-7 and VPM. The average values in
the Southern Hemisphere extra tropics were similar. However, mean values in both the tropics and
Northern Hemisphere extra tropics were higher in FluxSat-7.

Figure 17. Maps of annual averaged GPP estimated with remote sensing data for the year 2007; left
panel: FluxSat-7; right panel: VPM.

To check our results in the tropics, we ran an experiment where half the sites were used for
training, but the one tropical station with high GPP values from FluxSat-7, BR-Sa3, was withheld from
the training set and was instead used for evaluation. Figure 18a shows that the high GPP values for
this site produced by FluxSat-7 were supported by the flux tower values. This is an important finding
because this region is frequently cloudy and satellite-derived GPP values have large uncertainties
owing to few ground-based training sites.
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Figure 18. Evaluation using monthly data at 0.05◦ resolution for independent sites: (a) tropical BR-Sa3
site and (b) sites above 60◦N, DK-ZaF (WET), FI-Hyy (ENF), FI-Lom (WET) and US-Prr (ENF). In (b),
ENF sites are shown as purple (VPM) and green (FluxSat-7) and wetland (WET) sites are shown in
blue (VPM) and red (FluxSat-7).

We similarly compare GPP values at four independent high latitude sites (above 60◦N) in
Figure 18b where two sites were ENF and two were wetland. We see that both FluxSat-7 and VPM
underestimated GPP at the higher values for ENF sites, while FluxSat-7 somewhat overestimated for
wetland sites and lower GPP values at ENF sites. VPM had a more consistent underestimation

The annual GPP values from FluxSat-7, VPM and FLUXCOM-RS were 140.8, 125.0 (in agreement
with that reported by Zhang et al. [21]) and 111.6 Pg C y−1, respectively for 2007. If SIF was not used
for delineation of high productivity areas, and a single fit to the flux tower data was used for all areas,
then FluxSat-7 reduced to 139.4 Pg C y−1. It has been noted that VPM has an underestimation for ENF
and EBF that is possibly related to higher light use efficiency for diffuse radiation [21]. It is therefore
not surprising to see higher values from FluxSat-7 as compared with VPM for those PFTs that occupy
a significant fraction of the vegetated land surface.

FluxSat-7 is within the range of a compilation of observation-based, model, and hybrid results [1],
but outside the high range of values from previously reported observation-based diagnostic models [79].
Discussing the evaluation of global annual GPP produced by Earth system models with an earlier
version of FLUXCOM (that produced a value of 119 ± 6 Pg C y−1), Anav et al. [80] noted that higher
estimates of 150–175 and 146 ± 19 Pg C y−1 were reported by Welp et al. [81] and Koffi et al. [82],
respectively, though there were large uncertainties associated with those estimates. How our
observation-based GPP values are interpreted within the context of the land sink and budget imbalance
in global carbon budget estimates that rely upon dynamic global vegetation models [2] will be a topic
for future investigation.

4. Conclusions

Here, we have presented a suite of satellite data-driven models based on the LUE concept to
estimate GPP globally. The models were trained (or calibrated) using a subset of eddy covariance flux
tower data and evaluated using a set of independent flux tower data. The models did not have any
explicit dependence upon PFT; they were trained and evaluated with data across all PFTs with the
exception of sites with high SIF relative to NDVI that were trained separately and generally coincided
with high fractions of C4 maize crops. These areas represent only a few percent of the total land surface.
Our best satellite data-driven models outperformed more complex state-of-the-art data-driven models
that may or may not also incorporate ancillary information such as meteorological data.

We find that using SWTOA (similar to clear-sky SW radiation) with constant or slowly varying (on
seasonal time scales) LUE effectively accounts for the dependence of LUE on incident (cloudy-sky)
radiation; specifically, light use efficiency increases with cloudiness index or diffuse radiation fraction
in such a way as to produce a relatively constant GPP over a wide range of cloud conditions, and
our model effectively accounts for this. This may explain why our GPP estimates are higher than
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other satellite-based estimates, particularly in the cloudy tropics. Our high derived GPP values in
the tropics agree well with the one available tropical Tier 1 FLUXNET 2015 site that has high values.
Higher values of estimated GPP in the tropics and also in the extra-tropical Northern Hemisphere
lead to higher annual estimated values of GPP (140.8 Pg C y−1 for 2007) with our best model. This is
higher than other state-of-the-art satellite-based GPP estimates and on the high end of values from
both prognostic and diagnostic models.

We applied a relatively simple adjustment to NDVI data to mitigate the NDVI offset. Models that
use NDVI or the two NDVI bands have the advantage that they can be applied to satellite data that
date back to the early 1980s from the Advanced Very-High Resolution Radiometer (AVHRR) such as
from Tucker et al. [24] or to field-scale imagery from Landsat, Sentinel 2 or other commercial satellites.
The linear combination of either two or seven bands provides more dynamic range than the NDVI that
tends to saturate at high values.

We find that inclusion of an LUE parameterization in terms of a second order polynomial function
of NDVI helps to further explain some variability in GPP. This formulation presumably accounts for
variations in the maximum carboxylation rate tied to the photoperiod.

For available input VI-related satellite datasets, we find that better results are obtained when
using BRDF-adjusted data as compared with non-adjusted data. We obtained improved results using
NDVI computed from averaged reflectances or albedos rather than composited “best-value” NDVI
data. We also confirm that in general, better statistical comparisons with the flux tower data were
achieved when satellite data are used at high spatial resolution similar to the typical footprint of eddy
covariance data (∼1 km2) as compared with (5–8 km)2. In terms of temporal resolution, the best results
were obtained at monthly temporal resolution, as expected. However, results at eight-day or daily
resolution were only marginally degraded as compared with monthly averages.

The best results were obtained when our models took advantage of satellite-based SIF data to
identify areas of high productivity. These models also outperformed the NIRV for estimation of global
GPP. The results overall with downscaled SIF were encouraging given that only a single scaling factor
was used and considering that the input datasets have since been updated. However, to be further
improved, it is likely that variations in fluorescence escape from the canopy and fluorescence yield
will have to be better accounted for.

The reflectance-based models were able to take advantage of high fidelity imager reflectance data
with low noise and consequently high spatial resolution and frequent revisit. Our results suggest
that machine learning or other similar approaches may benefit from the use of these data along with
SIF. While our approach of using a static low resolution SIF dataset to detect high productivity areas
is not optimal and can be improved, the number of grid boxes with high SIF relative to NDVI was
only approximately 2–3% of all land grid boxes, excluding Antarctica. Therefore, small errors due to
temporal variability or the fact that only a fraction of those grid boxes may contain high productivity
crops are unlikely to have a significant impact on our global annual GPP estimates. The results
obtained here may be further improved using higher spatial resolution SIF data ideally taken over
several years, such as from the recently launched TROPOspsheric Monitoring Instrument (TROPOMI)
with ground footprints ∼7 km × 3.5 km at nadir and complete daily global coverage [65].

Author Contributions: Conceptualization, J.J. Formal analysis, J.J., Y.Y., Y.Z., G.D., M.J., A.L. and Y.W. Investigation,
J.J., Y.Y., Y.Z., G.D., M.J. Methodology, J.J., Y.Y., Y.Z., G.D., M.J. Software, J.J., Y.Y., Validation, J.J, Y.Y., Y.Z., G.D., M.J.
Visualization, J.J. and Y.Y. Writing, original draft preparation, J.J. Writing, review and editing, all.

Funding: This research was funded by NASA.



Remote Sens. 2018, 10, 1346 24 of 38

Acknowledgments: We are grateful to EUMETSAT for providing the GOME-2 data and NASA for providing the
MODIS, CERES and GMAOdatasets used in this study. Funding for this work was provided by the NASA Earth
Science U.S. Participating Investigator program. We also thank Arlindo da Silva for helpful discussions. We thank
all investigators who provided data as part of the FLUXNET 2015 Tier 1 dataset. This work used eddy covariance
data acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux,
CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux,
LBA, NECC, OzFlux-TERN, TCOS-Siberia and USCCC. The ERA-Interim reanalysis data are provided by ECMWF
and processed by LSCE. The FLUXNET eddy covariance data processing and harmonization were carried out by
the European Fluxes Database Cluster, AmeriFlux Management Project the and Fluxdata project of FLUXNET,
with the support of CDIACand ICOSEcosystem Thematic Center and the OzFlux, ChinaFlux and AsiaFlux offices.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

Appendix A. Additional MODIS Reflectance and Higher Order Products Examined

In addition to MCD43D, we examined the following MODIS products that are summarized
in Table A1: (1) daily Terra MODIS reflectances provided in the MOD09 climate modeling grid
(CMG) (0.05◦ latitude × 0.05◦ longitude resolution) product [83–86] for MODIS Bands 1–7; these
data have been adjusted to remove the effects of atmospheric gases and aerosol; data for each grid
box were selected on the basis of the low solar zenith angle, minimum Band 3 (blue) reflectance
and absence of cloud from Level-3 intermediate files; (2) daily Terra and Aqua MODIS MCD43C4
view angle-corrected nadir BRDF-adjusted reflectances (NBAR) on the CMG; MCD43C4 data were
generated similar to MCD43D products described above [87]; (3) angle-adjusted reflectances from the
multi-angle implementation of atmospheric correction (MAIAC) applied to Aqua and Terra MODIS
(MCD19) and averaged daily on the CMG [88,89]; Collection 6 MCD19 data on the CMG over Australia
are not yet available; (4) monthly NDVI composite (MOD13C2) on the CMG [90]; (5) The MCD15A2H
Version 6 MODIS Level 4 fraction of photosynthetically-active radiation (FPAR), product; this is an
eight-day composite dataset with 500-m resolution [91,92]; (6) the MOD17A2H GPP product is an
eight-day composite at 500-m resolution based on the LUE concept [14,93]. We examined each of these
datasets in terms of their use to predict GPP as derived from eddy covariance flux tower data, as will
be explained in detail below.

Figure A1 shows a flowchart similar to the one in the main manuscript, but containing all datasets
examined in Table A1 in addition to the ones described in the main manuscript.

MODIS
reflectances

(MCD43, 
MOD09, or 

MCD19) 

MODIS
MOD13 NDVI or 
MOD15 FAPAR

FLUXCOM-RS, MOD17, 
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productivity 
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Add LUE 
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terization
(optional) 

Figure A1. Flowchart of all datasets examined in training and evaluating satellite-based GPP models.
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Table A1. Summary of additional MODIS Collection 6 input datasets examined for GPP estimation
with their native spatial and temporal resolutions.

Input Dataset Temporal Res. Spatial Res.

MOD09 reflectances a daily 0.05◦ × 0.05◦

MOD19 (MAIAC) reflectances a,b daily 0.05◦ × 0.05◦

MCD43C4 reflectances a,b daily 0.05◦ × 0.05◦

MOD13 NDVI × SWTOA
c monthly 0.05◦ × 0.05◦

MOD15A2H FPAR × SWTOA
c 8 day 500 m

MOD17A2H GPP d 8 day 500 m
a Used to compute FAPAR proxies such as NDVI, NIRV , and linear combinations of channels; b accounts for
angular effects; c used as a GPP proxy; d used for benchmark evaluation.

The poorest results were obtained using either the MOD17A2H GPP product or the MCD15A2H
FPAR (FAPAR) product that drives MOD17A2H. Noted problems in MOD17 GPP, including, but not
limited to cloud contamination in MOD15, and proposed solutions have been documented [94–97].
We obtained significant improvements using the MOD13 composite NDVI product.

Further improvements were obtained when we processed reflectances using a mean compositing
approach [98] as compared with picking a single observation based on a set of criteria, as is common
in composite datasets. We found that results with MOD09 reflectances were highly dependent on the
quality control filters that were selected. For example, excellent results were achieved when stringent
quality control checks were applied including filters for clouds, cloud shadows and fires. However,
these checks eliminated data completely from several flux tower sites. Results were degraded using
only the basic cloud filtering that appears not to catch all cloud-contaminated pixels. Improvements
were possible using MAIAC MCD19 data (where available) as an additional quality filter.

MAIAC daily results were much more sparse as compared with MCD43 products that are filled
in with the 16-day window for data processing. Results with MAIAC and MCD43D angle adjusted
reflectances were comparable at the same spatial resolution. The current MAIAC gridded data are at
a lower resolution than MCD43D and do not yet have Australia included. We may expect MAIAC
MCD19 to perform better at sites with a high probability of cloud and aerosol contamination, such as
those in and around Amazonia. There are few of these sites available in FLUXNET 2015 Tier 1. After
this initial evaluation, we decided to focus primarily on one reflectance product, MCD43D, as it
provides straight-forward quality control and excellent, complete results in a high spatial resolution
gridded format.

Appendix B. FLUXNET2015 Sites Used in This Study

Tables A2–A4 list the flux tower sites used in this study along with corresponding information.

Table A2. Listing of flux tower sites used in this study along with ancillary data such as the vegetation
(Veg.) type. The first two letters of the Code are a country code.

Code Name Latitude Longitude Veg.Type Year Start Year End

AR-SLu San Luis −33.4648 −66.4598 MF 2009 2011
AT-Neu Neustift 47.1167 11.3175 GRA 2002 2012

AU-ASM Alice Springs −22.2830 133.249 ENF 2010 2013
AU-Ade Adelaide River −13.0769 131.118 WSA 2007 2009
AU-Cpr Calperum −34.0021 140.589 SAV 2010 2014
AU-Cum Cumberland Plains −33.6133 150.723 EBF 2012 2014
AU-DaP Daly River Savanna −14.0633 131.318 GRA 2007 2013
AU-DaS Daly River Cleared −14.1593 131.388 SAV 2008 2014
AU-Dry Dry River −15.2588 132.371 SAV 2008 2014
AU-Emr Emerald, Queensland −23.8587 148.475 GRA 2011 2013
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Table A2. Cont.

Code Name Latitude Longitude Veg. Type Year Start Year End

AU-Fog Fogg Dam −12.5452 131.307 WET 2006 2008
AU-GWW Great Western Woodlands −30.1913 120.654 SAV 2013 2014

AU-Gin Gingin −31.3764 115.714 WSA 2011 2014
AU-How Howard Springs −12.4943 131.152 WSA 2001 2014
AU-Rig Riggs Creek −36.6499 145.576 GRA 2011 2014
AU-Rob Robson Creek, Queensland −17.1175 145.630 EBF 2014 2014
AU-Stp Sturt Plains −17.1507 133.350 GRA 2008 2014
AU-TTE Ti Tree East −22.2870 133.640 OSH 2012 2013
AU-Tum Tumbarumba −35.6566 148.152 EBF 2001 2014
AU-Wac Wallaby Creek −37.4259 145.188 EBF 2005 2008
AU-Whr Whroo −36.6732 145.029 EBF 2011 2014
AU-Wom Wombat −37.4222 144.094 EBF 2010 2012
AU-Ync Jaxa −34.9893 146.291 GRA 2012 2014
BE-Bra Brasschaat 51.3092 4.52060 MF 1996 2014
BE-Vie Vielsalm 50.3051 5.99810 MF 1996 2014
BR-Sa3 Santarem-Km83-Logged Forest −3.01800 −54.9714 EBF 2000 2004

CA-Man Manitoba - Northern Old Black Spruce 55.8796 −98.4808 ENF 1994 2008
CA-NS1 UCI-1850 burn site 55.8792 −98.4839 ENF 2001 2005
CA-NS2 UCI-1930 burn site 55.9058 −98.5247 ENF 2001 2005
CA-NS3 UCI-1964 burn site 55.9117 −98.3822 ENF 2001 2005
CA-NS4 UCI-1964 burn site wet 55.9117 −98.3822 ENF 2002 2005
CA-NS5 UCI-1981 burn site 55.8631 −98.4850 ENF 2001 2005
CA-NS6 UCI-1989 burn site 55.9167 −98.9644 OSH 2001 2005
CA-NS7 UCI-1998 burn site 56.6358 −99.9483 OSH 2002 2005
CA-Qfo Quebec, E. Boreal, Mature Black Spruce 49.6925 −74.3421 ENF 2003 2010
CH-Dav Davos-Seehorn forest 46.8153 9.85590 ENF 1997 2014
CH-Lae Laegeren 47.4781 8.36500 MF 2004 2014

Table A3. Listing of flux tower sites used in this study (cont.).

Code Name Latitude Longitude Veg. Type Year Start Year End

CN-Cha Changbaishan 42.4025 128.096 MF 2003 2005
CN-Dan Dangxiong 30.4978 91.0664 GRA 2004 2005
CN-Din Dinghushan 23.1733 112.536 EBF 2003 2005
CN-Du2 Duolun_grassland (D01) 42.0467 116.284 GRA 2006 2008
CN-Ha2 Haibei Shrubland 37.6086 101.327 WET 2003 2005
CN-HaM Haibei Alpine Tibet site 37.3700 101.180 GRA 2002 2004
CN-Qia Qianyanzhou 26.7414 115.058 ENF 2003 2005
CN-Sw2 Siziwang Grazed (SZWG) 41.7902 111.897 GRA 2010 2012
CZ-BK1 Bily Kriz forest 49.5021 18.5369 ENF 2004 2008
CZ-BK2 Bily Kriz grassland 49.4944 18.5429 GRA 2004 2006
CZ-wet CZECHWET 49.0247 14.7704 WET 2006 2014

DE-Akm Anklam 53.8662 13.6834 WET 2009 2014
DE-Geb Gebesee 51.1001 10.9143 CRO 2001 2014
DE-Gri Grillenburg 50.9495 13.5125 GRA 2004 2014
DE-Hai Hainich 51.0792 10.4530 DBF 2000 2012
DE-Kli Klingenberg 50.8929 13.5225 CRO 2004 2014
DE-Lkb Lackenberg 49.0996 13.3047 ENF 2009 2013
DE-Obe Oberbärenburg 50.7836 13.7196 ENF 2008 2014
DE-RuR Rollesbroich 50.6219 6.30410 GRA 2011 2014
DE-Seh Selhausen 50.8706 6.44970 CRO 2007 2010
DE-Spw Spreewald 51.8923 14.0337 WET 2010 2014
DE-Tha Tharandt 50.9636 13.5669 ENF 1996 2014
DK-Fou Foulum 56.4842 9.58720 CRO 2005 2005
DK-Sor Soroe 55.4859 11.6446 DBF 1996 2014
DK-ZaF Zackenberg Fen 74.4814 −20.5545 WET 2008 2011
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Table A3. Cont.

Code Name Latitude Longitude Veg. Type Year Start Year End

ES-LgS Laguna Seca 37.0979 −2.96580 OSH 2007 2009
FI-Hyy Hyytiala 61.8475 24.2950 ENF 1996 2014
FI-Jok Jokioinen 60.8986 23.5135 CRO 2000 2003

FI-Lom Lompolojänkkä 67.9972 24.2092 WET 2007 2009
FR-Fon Fontainebleau-Barbeau 48.4764 2.78010 DBF 2005 2014
FR-LBr Le Bray (after 6/28/1998) 44.7171 −0.769300 ENF 1996 2008
FR-Pue Puechabon 43.7414 3.59580 EBF 2000 2014
GF-Guy Guyaflux (French Guiana) 5.27880 −52.9249 EBF 2004 2014
IT-Col Collelongo-Selva Piana 41.8494 13.5881 DBF 1996 2014
IT-Cpz Castelporziano 41.7052 12.3761 EBF 1997 2009
IT-Lav Lavarone 45.9562 11.2813 ENF 2003 2014
IT-MBo Monte Bondone 46.0147 11.0458 GRA 2003 2013
IT-PT1 Parco Ticino forest 45.2009 9.06100 DBF 2002 2004
IT-Ren Renon 46.5869 11.4337 ENF 1998 2013
IT-Ro1 Roccarespampani 1 42.4081 11.9300 DBF 2000 2008
IT-Ro2 Roccarespampani 2 42.3903 11.9209 DBF 2002 2012

Table A4. Listing of flux tower sites used in this study (cont.).

Code Name Latitude Longitude Veg. Type Year Start Year End

JP-MBF Moshiri Birch Forest Site 44.3869 142.319 DBF 2003 2005
JP-SMF Seto Mixed Forest Site 35.2617 137.079 MF 2002 2006
NL-Hor Horstermeer 52.2404 5.07130 GRA 2004 2011
NL-Loo Loobos 52.1666 5.74360 ENF 1996 2013
NO-Adv Adventdalen 78.1860 15.9230 WET 2011 2014
RU-Fyo Fyodorovskoye 56.4615 32.9221 ENF 1998 2014
SD-Dem Demokeya 13.2829 30.4783 SAV 2005 2009
SN-Dhr Dahra 15.4028 −15.4322 SAV 2010 2013
US-AR1 ARMUSDA UNLOSUSwitchgrass 1 36.4267 −99.4200 GRA 2009 2012
US-AR2 ARM USDA UNL OSU Switchgrass 2 36.6358 −99.5975 GRA 2009 2012
US-ARb ARM Southern Great Plains burn - Lamont 35.5497 −98.0402 GRA 2005 2006
US-ARc ARM Southern Great Plains control - Lamont 35.5465 −98.0400 GRA 2005 2006
US-Blo Blodgett Forest 38.8953 −120.633 ENF 1997 2007
US-Cop Corral Pocket 38.0900 −109.390 GRA 2001 2007
US-Ha1 Harvard Forest EMSTower (HFR1) 42.5378 −72.1715 DBF 1991 2012
US-KS2 Kennedy Space Center (scrub oak) 28.6086 −80.6715 CSH 2003 2006

US-MMS Morgan Monroe State Forest 39.3232 −86.4131 DBF 1999 2014
US-Me1 Metolius-Eyerly burn 44.5794 −121.500 ENF 2004 2005
US-Me2 Metolius-intermediate aged Ponderosa pine 44.4523 −121.557 ENF 2002 2014
US-Me6 Metolius Young Pine Burn 44.3233 −121.608 ENF 2010 2014
US-NR1 Niwot Ridge Forest (LTER NWT1) 40.0329 −105.546 ENF 1998 2014
US-Ne1 Mead-irrigated continuous maize 41.1651 −96.4766 CRO 2001 2013
US-Ne2 Mead-irrigated maize-soybean rotation 41.1649 −96.4701 CRO 2001 2013
US-Ne3 Mead-rainfed maize-soybean rotation 41.1797 −96.4397 CRO 2001 2013
US-ORv Olentangy River Wetland Research Park 40.0201 −83.0183 WET 2011 2011
US-Prr Poker Flat Research Range 65.1237 −147.488 ENF 2010 2013

US-SRG Santa Rita Grassland 31.7894 −110.828 GRA 2008 2014
US-SRM Santa Rita Mesquite 31.8214 −110.866 WSA 2004 2014
US-Syv Sylvania Wilderness Area 46.2420 −89.3477 MF 2001 2014
US-Ton Tonzi Ranch 38.4316 −120.966 WSA 2001 2014
US-Tw1 Twitchell Wetland West Pond 38.1074 −121.647 WET 2012 2014
US-Tw3 Twitchell Alfalfa 38.1159 −121.647 CRO 2013 2014
US-Tw4 Twitchell East End Wetland 38.1030 −121.641 WET 2013 2014
US-Twt Twitchell Island 38.1087 −121.653 CRO 2009 2014

US-UMB Univ.of Mich.Biological Station 45.5598 −84.7138 DBF 2000 2014
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Table A4. Cont.

Code Name Latitude Longitude Veg. Type Year Start Year End

US-UMd UMBS Disturbance 45.5625 −84.6975 DBF 2007 2014
US-Var Vaira Ranch-Ione 38.4133 −120.951 GRA 2000 2014

US-WCr Willow Creek 45.8059 −90.0799 DBF 1999 2014
US-Whs Walnut Gulch Lucky Hills Shrub 31.7438 −110.052 OSH 2007 2014
US-Wi3 Mature hardwood (MHW) 46.6347 −91.0987 DBF 2002 2004
US-Wi4 Mature red pine (MRP) 46.7393 −91.1663 ENF 2002 2005
US-Wi9 Young Jack pine (YJP) 46.6188 −91.0814 ENF 2004 2005
US-Wkg Walnut Gulch Kendall Grasslands 31.7365 −109.942 GRA 2004 2014
ZA-Kru Skukuza −25.0197 31.4969 SAV 2000 2010

ZM-Mon Mongu −15.4378 23.2528 DBF 2000 2009

Appendix C. Comparison of Results Using Different Radiation Input Datasets

Estimates of the global monthly SW flux at the surface under all-sky conditions are provided
in the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
dataset at a 1◦ × 1◦ spatial resolution. The CERES temporal sampling is enhanced with the use of
geostationary data. We used the Edition 2.8 CERES EBAF data.

We also used daily-averaged surface all-sky incoming shortwave flux (SWGDN), as well as
clear-sky shortwave flux (SWGDNCLR) from the NASA Global Modeling and Assimilation Office
(GMAO) Modern-Era Retrospective analysis for Research and Applications 2 (MERRA-2) data
assimilation reanalysis system [99]. These are two-dimensional fields from the radiation diagnostics.
In addition, we computed daily TOA SW flux (SWTOA) as being proportional to the cosine of the solar
zenith angle (SZA) integrated over a day.

To compare results with different radiation input datasets, we used monthly averaged GPP
estimates provided in the FLUXNET 2015 dataset to train models of the form of Equation (2),
where NDVI and NIRV computed from the MCD43D reflectances were used as simple proxies
for FAPARchl. Here, we assume that S (or LUE) is a constant. The NIRV is defined here
as NIRV = (NDVI−0.08)×ρ2 and is also evaluated without multiplication by radiation as in
Badgley et al. [23].

We first compare results using two different radiation input datasets: (1) surface short-wave flux
from CERES (SWCERES) in all-sky conditions and (2) SWTOA. Note that corresponding PAR values are
simply proportional to these quantities; the latter is an approximation of PARpot, defined as clear-sky
PAR at the top-of-canopy, to be used in Equation (3). The main difference between SWTOA and incident
SW (or PAR) at top of canopy is the effect of the clouds.

Table A5 shows that improved results are achieved using SWTOA as compared with all-sky SWCERES
for both NDVI- and NIRV-based GPP estimates. These improvements are statistically significant.
Similar improvements are obtained on daily results using MERRA-2 clear-sky SW (SWGDNCLR) as
compared with all-sky estimates (SWGDN). We also compared the use of SWGDNCLR to SWTOA;
note that SWGDNCLR accounts for clear-sky atmospheric scattering and absorption (but not clouds),
while SWTOA does not. Results using SWTOA or SWGDNCLR were similar. Finally, we note that the use
of NDVI′ has a lower bias as compared with NDVI.
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Table A5. Statistical comparison between various monthly-averaged GPP estimates from MCD43D
reflectances (0.00833◦ resolution) at 64 unique independent flux tower sites from FLUXNET 2015
(models were trained using data from 64 other sites) with a total of 3702 individual collocated
observations including the variance explained (r2), bias (mean of flux tower GPP minus the
satellite-derived GPP), root mean squared error (RMSE) of the model, model efficiency factor (MEF)
(Equation (9)) and λ (Equation (10)); units for bias and RMSE are g C m−2 d−1; all others are unitless.

Model Predictor x r2 Bias RMSE MEF λ

NIRV 0.692 −0.347 2.17 0.679 0.799
NIRV × SWCERES 0.696 0.194 2.12 0.692 0.811
NIRV × SWTOA 0.776 0.045 1.82 0.775 0.878
NDVI × SWCERES 0.554 −0.145 2.58 0.544 0.681
NDVI × SWTOA 0.773 −0.389 1.94 0.744 0.837
NDVI′ × SWTOA 0.776 −0.167 1.78 0.783 0.875

Appendix D. PDFs of Differences between Model- and Flux Tower-Derived GPP

For completeness, all figures in this Appendix relate to figures from the main manuscript, but
show probability distribution functions of differences rather than scatter plots or 2D histograms.
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Figure A2. Probability distribution functions (PDFs) of modeled minus FLUXNET 2015 GPP
corresponding to data in Figure 3 at 0.05◦ resolution, where n is the number of data points, and a and
b refer to a linear fit of the data: FLUXNET 2015 GPP = a× satellite data-driven GPP + b. Data are
monthly averages from 47 individual sites for years 2007–2013. Units of GPP are g C m−2 d−1.
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Figure A3. Similar to Figure A2, but with eight-day data corresponding to Figure 4 at 0.00833◦

resolution. Data are from 64 individual sites. Units of GPP are g C m−2 d−1.



Remote Sens. 2018, 10, 1346 30 of 38

 

-10 -5 0 5 10
Model - FLUXNET 2015 GPP

0.00

0.05

0.10

0.15

0.20

0.25

N
 (

fr
a
c
)

n =
r2 =
a =
b =

 13592
 0.798
 0.981
-0.004

 13592
 0.747
 0.963
 0.150

 13592
 0.789
 1.015
-0.143

FluxSat-7
NIRV * SWTOA

FluxSat-N

Figure A4. Similar to Figure A2 (same data sample, eight-day at 0.00833◦ resolution at 64 sites), but
with data corresponding to Figure 6. Units of GPP are g C m−2 d−1.
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Figure A5. Similar to Figure A2 (same data sample, eight-day), but with data corresponding to Figure 7
at lower spatial resolution (0.0833◦). Units of GPP are g C m−2 d−1.
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Figure A7. Similar to Figure A2, but with eight-day anomalies corresponding to Figure 9 at 0.0833◦

resolution. Data are from 64 individual sites. Units of GPP are g C m−2 d−1.
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Figure A8. Similar to Figure A2, but with monthly anomaly data corresponding to Figure 10. Data are
from 64 individual sites. Units of GPP are g C m−2 d−1.
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Figure A10. Similar to Figure A2, but with eight-day data at 0.00833◦ resolution corresponding to
Figures 12 and 13. Units of GPP are g C m−2 d−1.
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Figure A11. Similar to Figure A2 but with eight-day data at 0.00833◦ resolution corresponding to
Figures 14 and 15. Units of GPP are g C m−2 d−1.
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