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Abstract: In this study, an empirical algorithm is proposed to retrieve significant wave height (SWH)
from dual-polarization Sentinel-1 (S-1) synthetic aperture radar (SAR) imagery collected under
cyclonic conditions. The retrieval scheme is based on the well-known CWAVE empirical function
that is here updated to deal with multi-polarization S-1 SAR measurements collected using the
interferometric wide (IW) and the Extra Wide-Swath (EW) imaging modes, under cyclonic conditions.
First, a training dataset that consists of six S-1 SAR images collected under cyclonic conditions is
exploited to both tune the retrieval function and to check the soundness of the retrievals against the
co-located WAVEWATCH-III (WW3) numerical simulations. The comparison of simulation from
the WW3 model and measurements from altimeter Jason-2 shows a 0.29m root mean square error
(RMSE) of significant wave height (SWH). Then, a testing data-set that consists of two S-1 SAR
images is exploited to provide a preliminary validation. The results, verified against both WW3 and
European Centre for Medium-Range Weather Forecasts (ECMWF) data, show the soundness of the
herein approach.

Keywords: significant wave height; Sentinel-1 synthetic aperture radar; cyclone

1. Introduction

The tropical cyclone, which is a rapidly atmospheric rotating storm system characterized by
strong winds, central low-pressure, and heavy rainfall, is among the most dangerous and destructive
of natural phenomena. Although numerical models can predict and hindcast waves, the near real-time
wave is difficult to obtain. In this context, spaceborne active microwave sensors, e.g., the scatterometer
and synthetic aperture radar (SAR), are of paramount importance to monitor those phenomena due
to their almost all-weather and all-day capabilities. The SAR with a large swath coverage and a
fine-to-moderate spatial resolution can be used to directly monitor the position [1] and intensity of
storms [2], to analyze their morphology [3], and to observe hurricane-generated ocean swell [4] or the
rainfall rate [5,6].

Remote Sens. 2018, 10, 1367; doi:10.3390/rs10091367 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3693-6217
https://orcid.org/0000-0002-7514-3212
https://orcid.org/0000-0003-4567-0377
http://dx.doi.org/10.3390/rs10091367
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/9/1367?type=check_update&version=3


Remote Sens. 2018, 10, 1367 2 of 17

SAR receives the backscattering signal of the ocean surface and the measured data is defined as
the normalized radar cross section (NRCS). Ocean surface is determined by sea state and the basic
parameter of sea state is significant wave height (SWH). Therefore, it is important to exploit the
technology for deriving SWH from SAR-measured data, called the wave retrieval algorithm.

Ocean wave retrieval algorithms include theoretical-based retrieval schemes, e.g., the “Max-Planck
Institute” (MPI) [7–9], the Semi Parametric Retrieval Algorithm (SPRA) [10], the Partition Rescaling and
Shift Algorithm (PARSA) [11], and the Parameterized First-guess Spectrum Method (PFSM) [12–14],
as well as empirical models, e.g., CWAVE_ERS [15], CWAVE_ENVI [16], CWAVE_S1 [17],
CSAR_WAVE [18,19], and QPCWAVE_GF3 [20]. All these algorithms have been developed to exploit
SAR measurements collected at low and moderate sea states, due to the lack of SAR datasets collected
at high sea state conditions.

Theoretical-based ocean wave retrieval algorithms aim to invert an SAR intensity spectrum into
a wave spectrum based on the SAR wave mapping mechanism, e.g., tilt modulation, hydrodynamic
modulation [21], and non-linear velocity bunching [22]. They need prior information on wind in order
to produce a first-guess wave spectrum, which is used to sort out the modulation transfer function
(MTF) of velocity bunching. This wind information is typically extracted from the SAR image itself.
In fact, it is well-known that it is directly related to the NRCS of an SAR image. Hence, retrieval
schemes based on semi-empirical geophysical model functions (GMFs) have been proposed to deal
with co-polarization (vertical-vertical or horizontal-horizontal, VV or HH) imagery collected under
moderate wind conditions [23–27]. When dealing with extreme weather conditions, co-polarized
backscattering saturates, limiting the applicability of co-polarized GMFs. Hence, cross-polarization
(vertical-horizontal or horizontal-vertical, VH or HV) NRCS is usually preferred for wind retrieval
under cyclonic conditions through GMFs that typically result in a 3–5 m/s root mean square error
(RMSE) [28–31]. However, wave streaks are sometimes invisible in a coarse spatial resolution SAR
image, which is typically exploited for cyclone monitoring, resulting in a poor-quality SAR intensity
spectrum. Hence, theoretical-based ocean wave retrieval algorithms are of limited applicability to
retrieve waves for SAR imagery.

Empirical-based algorithms have also been proposed to deal with ocean wave retrieval from SAR
imagery. When dealing with high sea states, an empirical algorithm has been proposed to retrieve
ocean waves from SAR imagery [32]. The algorithm is based on the peculiar effects of hurricane
waves on ENVISAT-ASAR and RADARSAT-1 SAR data in HH-polarization. Interestingly, it reveals
a linear relationship between sea state and co-polarized NRCS at a sub-resolution scale. In fact,
the variance of the NRCS (herein called CVAR) is also linearly related with SWH, as shown in [33].
The advantage of the algorithm is that wave parameters (basically SWH) are retrieved from the SAR
image without calculating the complex MTF of each mapping modulation and using SAR-derived
wind. When dealing with SAR microwave sensors, the Doppler history is distorted due to the orbital
motion of gravity waves. This phenomenon, which makes longer waves, can be described by an SAR
azimuth cut-off wavelength. The latter, together with other SAR-based parameters, e.g., wavelength
and direction of the SAR image spectrum, have been used to retrieve SWH under low-to-moderate
states using empirical algorithms [34–37].

In this work, we aim to retrieve SWH under cyclonic conditions using an empirical model
function that includes both spectral parameters, i.e., wavelength and direction of the SAR image
spectrum, CVAR, azimuth cut-off wavelength, and dual-polarimetric (VV/VH) NRCS. Hence, first the
relationship between SWH simulated by the WAVEWATCH-III (WW3) model and the above-mentioned
SAR parameters is investigated using Sentinel-1 (S-1) SAR dual-polarimetric imagery collected under
extreme weather conditions. Then, an empirical model function, based on the well-known CWAVE
model, is proposed which is tuned using a dataset of six S-1 images collected under cyclonic conditions
and verified against co-located SWH predicted using the third-generation numeric wave WW3 model.
To check the accuracy of the WW3 simulations, independent altimeter measurements are exploited.
Finally, the new CWAVE model function is verified using a dataset of two S-1 SAR images. SAR-based
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retrieval is contrasted with both WW3 simulations and European Centre for Medium-Range Weather
Forecasts (ECMWF) data, and shows a remarkable performance.

The remainder of the paper is organized as follows: S-1 SAR imagery and ancillary data are
described in Section 2; in Section 3, the validation of the WW3-simulated SWH simulations with
altimeter data and moored buoys is described and then the dependence of WW3-simulated SWH
on the SAR-derived parameters is discussed; the proposed SWH retrieval algorithm is described in
Section 4; the validation is presented in Section 5; and conclusions are drawn in Section 6.

2. Data Description

The SAR dataset consists of eight dual-polarimetric S-1 SAR images acquired in extra wide-swath
(EW) and interferometric wide-swath (IW) mode. These S-1 SAR images with visible cyclone eyes
were collected in the period 27 August–23 September 2016. Typhoon Lionrock, Hurricane Lester,
Hurricane Hermine, Hurricane Gaston, and Hurricane Karl were imaged. Detailed information of S-1
SAR imagery and the corresponding observed cyclones are listed in Table A1 of the Appendix A.

Since wave measurements during a cyclone are very hard to perform, the WW3 model (the latest
version 5.16) developed by the National Centers for Environmental Prediction (NCEP) of the NOAA
is adopted to simulate wave fields [38]. The forcing fields are the winds from ECMWF, which has
been used for developing and validating wind [25,26] retrieval algorithms. Topography data consists
of the General Bathymetric Chart of the Oceans (GEBCO) from the British Oceanographic Data
Centre (BODC).

Six out of the eight S-1 scenes are considered to train the SWH retrieval algorithm (see Figure 1);
the remaining two images are used for validation purposes (see Figure 2). The WW3-simulated SWH
maps are shown in Figures 3 and 4, in which the black rectangles represent the spatial coverage of the
S-1 images in Figures 1 and 2, respectively. The tracks of all cyclones provided by the National Oceanic
and Atmospheric Administration (NOAA) Historical Hurricane Tracks Dataset are shown in Figure 5,
in which the black rectangles represent the spatial coverages of S-1 SAR images. The maximum wind
speed of the cyclones during the SAR acquisition is greater than 33 m/s and the range of SWH is up
to 7 m. To discuss the sensitivity of SAR NRCS to SWH, the whole S-1 SAR image is divided into
sub-scenes whose size is 128 × 128 pixels. The sub-scenes covering the WW3 grids are considered
as a collocated dataset which is exploited to analyze the effects of WW3-simulated SWH on the SAR
imagery. These matchups are used to analyze the dependence of WW3-simulated SWH on SAR.

Unfortunately, there are no in-situ buoys in the region of interest (ROI). The wave measurements
obtained from altimeter Jason-2 measurements performed during the five cyclones are employed in
order to study the accuracy of WW3 model simulations, i.e., a model which is commonly used for
regional wave analysis [39]. The footprints of altimeter Jason-2 from 27 August to 6 September 2016
are available for the Typhoon Lionrock, as seen in Figure 6, where the footprints of altimeter Jason-2
overlay the water depth map. The simulated SWH from the WW3 model is also validated against
National Data Buoy Center (NDBC) buoys of the NOAA. The locations of collected NDBC buoys in
eastern U.S. coastal waters are marked by red spots, which are shown in Figure 5c.

We also use the ECMWF wave with a 0.125◦ × 0.125◦ resolution performed from a real-time
dataset for validating the proposed SWH retrieval algorithm. So far, the ECMWF wave has been
widely employed and validated in several previous studies [40–42]. In this study, ECMWF waves
were acquired on 2 September 2016 at 00:00 Universal Time Coordinated (UTC) and acquired on
24 September 2016 at 00:00 UTC for Hurricane Hermine and cyclone Karl, respectively.
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Figure 1. VV-polarization S-1 SAR images collected during four cyclones and used to develop the
retrieval algorithm. (a) The image from Typhoon Lionrock acquired in EW mode on 27 August 2016
at 20:53 Universal Time Coordinated (UTC). (b) The image from Hurricane Lester acquired in EW
mode on 30 August 2016 at 14:46 UTC. (c) The image from Hurricane Gaston acquired in EW mode
on 1 September 2016 at 20:30 UTC. (d) The image from Hurricane Lester acquired in IW mode on
4 September 2016 at 16:31 UTC. (e) The image from Hurricane Hermine acquired in EW mode on
4 September 2016 at 22:32 UTC. (f) The image from Hurricane Hermine acquired in EW mode on
5 September 2016 at 10:33 UTC.

Figure 2. VV-polarization S-1 SAR images collected during two cyclones and used to verify the retrieval
approach. (a) The image from Hurricane Hermine acquired in IW mode on 1 September 2016 at 23:44
UTC. (b) The image from Hurricane Karl acquired in EW mode on 23 September 2016 at 22:23 UTC.
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Figure 3. SWH simulated using the WW3 model. (a) The image from Typhoon Lionrock taken on
27 August 2016 at 21:00 UTC. (b) The image from Hurricane Lester taken on 30 August 2016 at 14:29
UTC. (c) The image from Hurricane Gaston taken on 1 September 2016 at 20:29 UTC. (d) The image from
Hurricane Lester taken on 4 September 2016 at 16:30 UTC. (e) The image from Hurricane Hermine taken
on 4 September 2016 at 22:30 UTC. (f) The image from Hurricane Hermine taken on 5 September 2016
at 10:30 UTC. The black rectangles represent the S-1 SAR frames related to the images of Figure 1a–f.
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22:30 UTC. The black rectangles represent the S-1 SAR images in Figure 2a,b.
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Figure 5. Information of cyclone tracks. (a) The track image from Hurricane Lester. (b) The track image
from Typhoon Lionrock. (c) The track image from Hurricane Gaston, Hermine, and Karl. The black
rectangles represent the S-1 SAR frames related to the images of Figures 1a–f and 2a,b.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 17 

 

 

Figure 5. Information of cyclone tracks. (a) The track image from Hurricane Lester. (b) The track 

image from Typhoon Lionrock. (c) The track image from Hurricane Gaston, Hermine, and Karl. The 

black rectangles represent the S-1 SAR frames related to the images of Figure 1a–f and Figure 2a,b. 

 

Figure 6. The footprints of altimeter Jason-2 from 27 August to 6 September 2016 co-located with 

Typhoon Lionrock and overlaid with a water depth map. Figure 6. The footprints of altimeter Jason-2 from 27 August to 6 September 2016 co-located with
Typhoon Lionrock and overlaid with a water depth map.



Remote Sens. 2018, 10, 1367 7 of 17

3. Dependence of SWH on SAR-Derived Parameters

In [39,43,44], WW3 simulations were contrasted with in-situ buoys, showing remarkable
agreement. Moreover, the WW3 model is useful for wave analysis in typhoons [45]. In this section,
SWH, simulated using the WW3 model, is validated against measurements of altimeter Jason-2
collected under cyclonic conditions. Then, we present the data processing and analyze the relationship
between SWH and several SAR-derived parameters.

3.1. Validation of SWH Simulated Using WW3 Model

For WW3-simulated SWH, the WW3 model is forced using 0.125◦ gridded ECMWF winds and
bathymetry data from 30 arc-second BODC GEBCO. The open boundary is forced by wave simulations
at a 1◦ grid using the WW3 model over global seas, in which the ECMWF winds and GEBCO
bathymetric data are bilinear interpolated to be 1◦. The simulated two-dimensional wave spectrum
is default resolved into 24 regular azimuthal directions and the frequency bins are logarithmically
ranged from 0.04118 to 0.7186 at an interval of ∆f/f = 0.1. The time step of spatial propagation is set to
300 s in both the longitude and latitude directions. The simulated wave fields including the coverage
of cyclones have a 0.2◦ grid spatial resolution and 30-min temporary scale, in which the ECMWF
winds and GEBCO bathymetric data are bilinear interpolated to be 0.2◦. Therefore, the time difference
between SAR acquisition time and WW3 outputs is within 15-min. Although the model-running
switches are default settled, it should be pointed out that the package of the non-linear term for
four wave components’ (quadruplets) wave-wave interactions, named Generalized Multiple Discrete
Interaction Approximation (DIA), is implemented for the WW3 model in the four cyclones [45].

In total, we generated more than five thousand footprints of altimeter Jason-2 in order to validate
the simulations of the WW3 model during the period from 27 August to 6 September 2016 in Typhoon
Lionrock. The measured SWH from altimeter Jason-2 was up to 7 m. Independent analyses showed
that WW3-simulated SWH agrees well with measurements undertaken using altimeter data collected
by altimeter Jason-2, resulting in an RMSE equal to 0.29 m with a 0.24 scatter index (SI), as shown in
Figure 7. We also present the validation against NDBC buoys of NOAA in Figure 8, showing a 0.11 m
RMSE of SWH with a 0.23 SI. Under these circumstances, the simulated SWH by the WW3 model is
reliable for this study.
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Figure 8. Simulated WW3 SWH against National Data Buoy Center (NDBC) buoys of the National
Oceanic and Atmospheric Administration (NOAA).

3.2. Data Processing

The processing consists of partitioning S-1 SAR scenes into tails whose size is 128 × 128 pixels.
This results in a linear size of 1 × 1 km2 and 4 × 4 km2 when S-1 EW and IW mode scenes are
considered. Non-linear phenomena induced by velocity bunching are more pronounced at extreme
weather conditions. This makes short waves undetectable. In addition, the contamination of rainfall
on SAR also affects the radar signature of cyclones. Under this circumstance, the inhomogeneous
sub-scenes calling for a poor-quality SAR intensity spectrum are excluded. For each sub-scene, the SAR
image spectrum is calculated and the peak wavelength and direction for a given range ϕ are extracted.

To make the processing clearer, a meaningful showcase is depicted in Figure 9. The sub-scene
extracted from the SAR scene collected on 4 September 2016 at 16:31 UTC is shown in Figure 9a.
The corresponding two-dimensional SAR spectrum is shown in Figure 9b. From this spectrum,
the wavelength and direction of the peak at a given range are extracted. To estimate the azimuth
cut-off wavelength, the one-dimensional SAR spectrum is fitted with a Gaussian function (whose
mathematical formula is of the type exp(π(kx/kc)), with kx being the azimuthal wavenumber and kc

being the azimuthal cutoff wavenumber (=2π/λc). The Gaussian fitted result corresponding to the
sub-scene in Figure 9a is illustrated in Figure 9c.
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Figure 9. Meaningful showcase to clarify the proposed processing steps. (a) The sub-scene
extracted from the VV-polarized SAR imagery collected on 4 September 2016 at 16:31 UTC. (b) The
two-dimensional SAR spectrum. (c) The Gaussian fit.

3.3. Relationship between SWH and SAR-Derived Parameters

To investigate the relationship between SAR-derived parameters and WW3-simulated SWH,
the six S-1 SAR images of Figure 1 are used. The scenes are within the WW3 model grid and result in
more than 30 matchups. SAR-derived parameters consist of azimuth cutoff wavelength normalized by
β, i.e., the satellite range-to-velocity parameter, CVAR, and VV and VH-polarized NRCS in Decibel (dB),
wavelength λ, and direction ϕ of the SAR image spectrum relative to a given range. The SAR-based
parameters are depicted versus WW3-simulated SWH in Figure 10a–f, respectively. Note that, for each
picture, color coding represents the incidence angle that ranges in the [20◦,50◦] interval with a step size
equal to 5◦. By visually inspecting Figure 10, one can note that there is a slight correlation between λc/β
and WW3-simulated SWH, especially at incidence angles lower than 35◦. The correlation improves
at larger incidence angles. As expected, WW3-simulated SWH exhibits a linear relationship with
VV-polarized NRCS and CVAR [33] for incidence angles larger than 25◦ for CVAR. Moreover, it seems
that the relationship is good at an incidence angle equal to 40–45◦. With respect to the VH polarization,
although there is a non-negligible correlation with WW3-simulated SWH, the results are worse than
the VV-polarized case, especially at higher incidence angles. With respect to λ and ϕ, although they
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are related to the ocean-wave SAR mapping mechanism [34], there is no explicit relationship with
WW3-simulated SWH, according to Figure 10e,f. This can be explained by the complicated nature of
the ocean wave spectrum under cyclonic conditions [46]. In fact, for instance, the right- and left-hand
side of the wave spectrum are dominated by wind-sea and cross-swell, respectively.
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Figure 10. WW3-simulated SWH versus parameters retrieved from S-1 scenes of Figure 1. λc/β (a),
CVAR (b), VV NRCS (dB) (c), VH NRCS (d), λ (e), and ϕ (f). Note that the color coding refers to an
incidence angle spanning from 20◦ to 50◦ with a step size of 5◦.

4. Methodology

The analysis of the relationship between SAR-derived parameters and WW3-simulated SWH
showed that, to some extent, a linear relationship is seen between SAR-derived parameters and
WW3-simulated SWH under cyclonic conditions. Hence, in this section, this relationship is exploited
to design an empirical function that allows SAR-derived SWH to be determined from a set of
SAR-based parameters Si (i = 1, . . . , n) once tuning coefficients Ai are known. This function, hereinafter
termed CWAVE, also includes second-order terms that are related to non-linear combinations among
SAR-derived parameters. The non-linearity is accounted for by using the coefficients Ai,j (i ≤ j ≤ n).
The basic model of the CWAVE function, which has been successfully used to deal with SAR
measurements collected by ERS [15], ENVISAT-ASAR [16], S-1 [17], and the Chinese Gaofen-3 [19],
is given by:

SWH = A0 +
n

∑
i=1

Ai × Si +
n

∑
i,j=1

Ai,j × Si × Sj (1)

The analyses discussed in the previous section suggest choosing an S vector that consists of the
following SAR-derived parameters: λc/β, CVAR, VV- and VH- NRCS, and sinθ. The matchup dataset
is used to determine the 21 coefficients A by using the least-squares method. It should be noted that



Remote Sens. 2018, 10, 1367 11 of 17

the subscripts (1, . . . , 7) represent the corresponding variables (NRCS_VV, CVAR, sinθ, NRCS_VH,
λc/β). As an example, A23 is the coefficient for the term of CVAR × NRCS_VV. In order to obtain the
best result, the coefficients are tuned for S-1 images in EW and IW mode respectively, which have a
different spatial resolution. The coefficients are shown in Table A2 of the Appendix A.

The model (1) is fitted using the training set of six S-1 SAR images of Figure 1 and the result of
the fitting is depicted in Figure 11, where the retrieved SWH is contrasted with the WW3 simulations,
in which the red line represents the statistical result using a linear regression function. It can be noted
that SAR-derived SWH and WW3-simulated SWH result in a remarkable correlation (COR) equal
to 0.83 with a 0.15 bias. The SI of SWH is 0.18 with a 0.35 m RMSE of SWH. This performance is
better than the one obtained using the single-polarization method [33] that resulted in COR = 0.5.
This implies that dual-polarized S-1 SAR imagery results in added-value to SAR-derived SWH under
cyclonic conditions.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 17 

 

best result, the coefficients are tuned for S-1 images in EW and IW mode respectively, which have a 

different spatial resolution. The coefficients are shown in Table A2 of the Appendix A. 

The model (1) is fitted using the training set of six S-1 SAR images of Figure 1 and the result of 

the fitting is depicted in Figure 11, where the retrieved SWH is contrasted with the WW3 simulations, 

in which the red line represents the statistical result using a linear regression function. It can be noted 

that SAR-derived SWH and WW3-simulated SWH result in a remarkable correlation (COR) equal to 

0.83 with a 0.15 bias. The SI of SWH is 0.18 with a 0.35 m RMSE of SWH. This performance is better 

than the one obtained using the single-polarization method [33] that resulted in COR = 0.5. This 

implies that dual-polarized S-1 SAR imagery results in added-value to SAR-derived SWH under 

cyclonic conditions. 

 

Figure 11. The comparison between simulated results and SWH from the WW3 model for the two 

cases in Figure 2, in which the red line represents the statistical result using a linear regression 

function and the black dashed line is the reference line. 

5. Validation 

To validate the new CWAVE retrieval scheme, the SAR dataset of Figure 2 is used. The SAR-

derived SWH map of Hurricane Hermine acquired in IW mode on 1 September 2016 at 23:44 UTC 

and Hurricane Karl acquired in EW mode on 23 September 2016 at 22:23 UTC are shown in Figure 

12a,b respectively. Since the proposed methodology relies on the SAR intensity spectrum being 

accurate enough, sub-scenes where significant inhomogeneity was present have been excluded 

(about 20% of the total). It can be noted that the wave field pattern over the whole image is consistent 

with simulations from the WW3 model shown in Figure 4. Due to the finer spatial resolution of the 

SAR intensity image, wave field details are also observed, especially around cyclone eyes and coastal 

waters. 

Figure 11. The comparison between simulated results and SWH from the WW3 model for the two
cases in Figure 2, in which the red line represents the statistical result using a linear regression function
and the black dashed line is the reference line.

5. Validation

To validate the new CWAVE retrieval scheme, the SAR dataset of Figure 2 is used.
The SAR-derived SWH map of Hurricane Hermine acquired in IW mode on 1 September 2016 at
23:44 UTC and Hurricane Karl acquired in EW mode on 23 September 2016 at 22:23 UTC are shown
in Figure 12a,b respectively. Since the proposed methodology relies on the SAR intensity spectrum
being accurate enough, sub-scenes where significant inhomogeneity was present have been excluded
(about 20% of the total). It can be noted that the wave field pattern over the whole image is consistent
with simulations from the WW3 model shown in Figure 4. Due to the finer spatial resolution of
the SAR intensity image, wave field details are also observed, especially around cyclone eyes and
coastal waters.
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1 September 2016 at 23:44 UTC and (b) Karl imaged in EW mode on 23 September 2016 at 22:23 UTC.

Unfortunately, there are no available moored buoys and footprints of altimeter Jason-2 within
the areas covered by the two S-1 SAR scenes. Hence, to verify the accuracy of the SAR-derived
SWH, WW3 simulations are used. Figure 13 shows SAR-derived SWH retrieved from the two S-1
SAR images collected under cyclonic conditions versus simulated WW3 SWH, in which the red line
represents the statistical result using a linear regression function. The SAR-derived SWH results
in an RMSE of 0.3 m with a −0.05 bias. However, this good result is related to the fact that the
same dataset is used to both tune the empirical parameters and verify the retrieval performance.
To obtain an independent validation, ECMWF real-time ocean wave data are used, whose spatial grid
is 0.125◦ [38]. The results shown in Figure 14 indicate that a remarkable performance is achieved.
In fact, the SAR-derived SWH results in an RMSE and a bias equal to 0.28 m and −0.12, respectively.
It should be noted that the time difference between the SAR imaging time and the ECMWF interval
data is within 2 h. It is not surprising that a 0.82 COR is achieved in Figure 13, which is better than
the 0.76 COR in Figure 14, due to the unique background of WW3-simulated SWH for tuning and
validating the proposed algorithm. The SI of SWH is around 0.18, which is close to an around 0.2 SI
when comparing SAR-derived SWH from a C-band SAR image with measurements from buoys or
altimeters [11,16,34] at a low-to-moderate sea state. However, validation of the proposed algorithm
against observations, e.g., moored buoys and an altimeter, is still needed through more images under
typhoon and hurricane conditions.

It is necessary to appreciate that most S-1 SAR images used here are located at coastal waters
around the U.S. We think that the applicability of the proposed algorithm at open seas may need to be
further studied, e.g., Western Pacific Ocean, Indian Ocean, and Atlantic Ocean, because wave property
between coastal waters and open seas is different. For instance, wave reflection, wave diffraction,
and wave breaking caused by bathymetric change likely exist in coastal waters.
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6. Conclusions

At present, wave retrieval algorithms for SAR, e.g., theoretically-based and empirical wave
retrieval algorithms, have been well studied over the last few decades. These algorithms work at
low-to-moderate conditions. Several typhoons and hurricanes have been captured by various C-band
SARs, e.g., RADARSAT-2 [46], S-1 [1], and GF-3 [33] during their missions. Therefore, wave retrieval
under cyclonic conditions is a topic of general interest in the field of SAR application. Our work
presents the possibility of cyclone wave retrieval from S-1 SAR images with a wide swath coverage
(>200 km).

In this study, an empirical algorithm is proposed to retrieve SWH from S-1 dual-polarization
SAR imagery collected under cyclonic conditions. The algorithm is based on the CWAVE empirical
model function that is updated here to include both spectral-based features, namely the azimuth
cutoff wavelength and the sea surface spectrum peak wavelength and direction, homogeneity
features (CVAR), and both VV- and VH-polarization NRCS. First, a sensitivity analysis aimed at
investigating the relationship between SAR-derived parameters and WW3-simulated SWH is carried
out to demonstrate the sensitivity of SAR-based parameters to WW3-simulated SWH. Then, a tuning
phase, aimed at tuning empirical coefficients of the CWAVE function using a S-1 training dataset
collected under cyclonic conditions, is undertaken. Finally, to verify the retrieval scheme, both WW3
simulations and ECMWF real-time SWH data are used. Numerical results show the soundness of the
retrieval scheme, which results in an RMSE equal to 0.3 m and 0.28 m with a 0.19 SI and 0.18 SI when
WW3 and ECMWF data are used, respectively.

It is concluded that the empirical algorithm herein is applicable for retrieving SWH from S-1 SAR
images in cyclones, although the algorithm relies on a good-quality SAR intensity spectrum. In the
near future, we plan to further implement and adapt the algorithm for RADARSAT-2 and Chinese
GF-3 SAR.
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Abbreviations

SAR synthetic aperture radar
S-1 Sentinel-1
EW extra wide-swath
IW interferometric mode
VV vertical-vertical
VH vertical-horizontal
HH horizontal-horizontal
HV horizontal-vertical
WW3 WAVEWATCH-III
RMSE root mean square error
SWH significant wave height
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NRCS normalized radar cross section
CVAR variance of the NRCS
COR correlation coefficient
ECMWF European Centre for Medium-Range Weather Forecasts
MPI Max-Planck Institute
SPRA semi parametric retrieval algorithm
PARSA partition rescaling and shift algorithm
PFSM parameterized first-guess spectrum method
MTF modulation transfer function
GMF geophysical model function
NCEP National Centers for Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
GEBCO General Bathymetric Char of the Oceans
BODC British Oceanographic Data Centre
GMD Generalized Multiple DIA
SI scatter index
UTC Universal Time Coordinated
GF-3 Gaofen-3
ROI Region of Interest
NDBC National Data Buoy Center
dB Decibel

Appendix A

Table A1. S-1 SAR dataset and cyclone information.

Cyclone Imaging
Mode

Acquisition Time
(YYYY-MM-DD)

Incidence
Angle Range (◦)

Pixel Size Azimuth
× Range (m)

Cyclone Eye
(◦E, ◦N)

Maximum Wind
Speed (m/s)

Lionrock EW 2016-8-27 20:53 35.35~47.26 10 × 10 136.1, 25.6 59

Lester
EW 2016-8-30 14:46 35.21~46.98 40 × 40 134.3, 17.9 54
IW 2016-9-04 16:31 41.84~46.03 10 × 10 159.3, 24.8 —

Gaston EW 2016-9-01 20:30 19.60~35.10 40 × 40 38.5, 38.0 38

Hermine
IW 2016-9-01 23:44 30.65~35.95 10 × 10 84.8, 29.0 36
EW 2016-9-04 22:32 19.42~35.19 40 × 40 68.2, 36.9 31
EW 2016-9-05 10:33 34.94~47.08 40 × 40 38.5, 38.1 28

Karl EW 2016-9-23 22:23 19.56~35.21 40 × 40 65.2, 30.0 28

Table A2. The coefficients of the proposed algorithm, in which subscripts (1, . . . , 5) represent the
corresponding variables (σ0

VV, CVAR, sin θ, σ0
VH, λc/β), e.g., a12 is the coefficient for the termσ0

VV × CVAR.

Coefficient
EW

Coefficient
EW

Coefficient
EW

IW IW IW

A0
−10.9512 A12

2.6973 A25
−4.1285

−41.4098 −0.2364 22.5031

A1
1.7089 A13

−0.8280 A33
−20.4785

0.0069 −0.6192 −83.1034

A2
−1.5203 A14

0.0785 A34
0.8388

−14.7807 0.0058 1.6855

A3
36.7410 A15

0.0109 A35
−0.0334

113.9617 0.0566 22.0160

A4
−1.1681 A22

−41.1151 A44
−0.0396

−0.5089 16.0019 0.0207

A5
−0.2542 A23

28.6781 A45
−0.0371

0.9944 −106.0103 0.3284

A11
−0.0293 A24

−2.4737 A55
−0.0379

−0.0202 −1.0574 −1.6378
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