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Abstract: Crop monitoring is of great importance for e.g., yield prediction and increasing water use
efficiency. The Copernicus Sentinel-1 mission operated by the European Space Agency provides
the opportunity to monitor Earth’s surface using radar at high spatial and temporal resolution.
Sentinel-1’s Synthetic Aperture Radar provides co- and cross-polarized backscatter, enabling the
calculation of microwave indices. In this study, we assess the potential of Sentinel-1 VV and VH
backscatter and their ratio VH/VV, the cross ratio (CR), to monitor crop conditions. A quantitative
assessment is provided based on in situ reference data of vegetation variables for different crops under
varying meteorological conditions. Vegetation Water Content (VWC), biomass, Leaf Area Index (LAI)
and height are measured in situ for oilseed-rape, corn and winter cereals at different fields during
two growing seasons. To quantify the sensitivity of backscatter and microwave indices to vegetation
dynamics, linear and exponential models and machine learning methods have been applied to the
Sentinel-1 data and in situ measurements. Using an exponential model, the CR can account for 87%
and 63% of the variability in VWC for corn and winter cereals. In oilseed-rape, the coefficient of
determination (R2) is lower (R2 = 0.34) due to the large difference in VWC between the two growing
seasons and changes in vegetation structure that affect backscatter. Findings from the Random Forest
analysis, which uses backscatter, microwave indices and soil moisture as input variables, show that
CR is by and large the most important variable to estimate VWC. This study demonstrates, based on
a quantitative analysis, the large potential of microwave indices for vegetation monitoring of VWC
and phenology.
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1. Introduction

With increasing stress on food supply due to the growing world population and changing
climate [1,2], vegetation monitoring and risk mitigation are essential for ensuring food security.
By closely tracking crop conditions, agricultural droughts and subsequent crop losses could be better
dealt with and yield predictions can be improved. In addition, crop monitoring can assist in more
sustainable land management and reducing the use of pesticides and fertilizers.

Spaceborne microwave remote sensing provides the means to monitor vegetation and soil
conditions on a range of scales. Synthetic Aperture Radars (SAR) provide observations at a high
spatial resolution in the order of tens of meters, which can be used for agricultural crop monitoring [3].
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However, until recently, high resolution SAR observations were not frequent enough to be used to
monitor vegetation dynamics in a way to be useful to farmers. With the launch of the European
Space Agency (ESA) Copernicus Sentinel-1 satellite series, backscatter observations are available at
an unprecedented temporal and spatial resolution, with a revisit time of 1.5–4 days over Europe
and a spatial resolution of 20 m. Since microwaves are sensitive to the water content in the soil and
vegetation and other variables influencing backscatter, i.e., soil roughness and vegetation structure,
the challenge in microwave remote sensing is to retrieve the vegetation signal.

At a large scale, many studies have demonstrated the use of microwave sensors for vegetation
monitoring, like EUMETSATs Metop Advanced SCATterometers (ASCAT), JAXAs Advanced
Microwave Scanning Radiometer 2 (AMSR2), ESAs Soil Moisture Ocean Salinity (SMOS) mission
and NASAs Soil Moisture Active Passive (SMAP), [4–11]. The temporal sampling for these products
is 1–2 days, but the spatial resolution is relatively coarse with pixels covering tens of kilometres.
Often, Vegetation Optical Depth is derived, which is an indicator of the water content in the
above ground biomass. At the field scale, many studies have used backscatter directly or indices
thereof to find a relation to vegetation dynamics. Ferrazzoli et al. [12] found that HV-polarized
backscatter at C-band correlated strongly (R2 = 0.75) with crop biomass over colza, wheat and
alfalfa, but that saturation occurred in corn, sunflower and sorghum. Paloscia et al. [13] found
high correlations between vegetation biomass and HV-backscatter over broad leaf crops such as
sunflower. In addition, Macelloni et al. [14] found an increase in VH backscatter with increasing Leaf
Area Index (LAI) over rapeseed sites in Italy and Sweden. Ratios of co- and cross-polarized backscatter
observations, i.e., the Radar Vegetation Index (RVI) [10,15] and Cross Ratio (CR) [16], were found
to distinguish well between vegetation densities and high linear correlations were found to in situ
measured Normalized Difference Vegetation Index (NDVI), LAI and Vegetation Water Content (VWC)
over different crops [15]. Wiseman et al. [17] compared dry biomass to C-band RADARSAT backscatter
for a six-week period in southern Manitoba, Canada. Significant correlations were found for corn,
soybean and oilseed-rape, which increased when applying a logarithm to the observations. In addition,
radar backscatter was also found to be sensitive to crop structure changes and phenology. This was
also found by Mattia et al. [18] and Satalino et al. [19], where backscatter changed drastically with
the emergence of heads in wheat. More recently, Veloso et al. [20] compared Sentinel-1 time series
to NDVI time series for wheat, oilseed-rape, corn, soybean and sunflower over test sites in France.
Good correspondence was found between SAR data and NDVI. Particularly, the VH/VV ratio could
be used for monitoring crop growth cycles. A qualitative comparison was performed between VH/VV
and in situ measured biomass for barley and corn and showed a good agreement. These studies
demonstrate the potential of SAR and especially Sentinel-1 to monitor vegetation dynamics.

The aim of this study is to further quantify the potential of Sentinel-1 backscatter to monitor
vegetation dynamics. We assess the sensitivity of Sentinel-1 VH and VV backscatter and ratio thereof
to vegetation dynamics by comparing them to in situ measured vegetation variables, such as VWC,
LAI, height and biomass. Destructive vegetation samples were taken for two consecutive years,
with very different meteorological conditions, during the growing season of winter cereals, corn and
oilseed-rape. A linear model, exponential model and random forest machine learning are used to
understand the signal and assess the potential of combining microwave indices from Sentinel-1 to
estimate VWC. Testing the use of freely available microwave indices and products in combination
with machine learning approaches ensures applicability on a large scale and to ultimately develop
predictive models for VWC. The advantage of the presented approach is that no a priori information
on vegetation structure is needed, which was often the case in previous studies estimating VWC.
This work advances from previous studies by providing for the first time a quantitative performance
assessment of Sentinel-1 for monitoring vegetation dynamics over multiple crop types and years.
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2. Data

2.1. Site Description

The study is performed in the Hydrological Open Air Laboratory (HOAL) [21], which is a
66 hectare large catchment located in Petzenkirchen, Austria (48◦9 N, 15◦9 E) and managed by the
Austrian Federal Agency of Water Management and TU Wien. Elevation varies between 268 and 323 m
and the average slope is 8%. The main land use in the catchment is agriculture and most common
crops are winter wheat and corn. Dominant soil types are Cambisols and Planisols with medium to
poor infiltration capacity. Average temperature in the HOAL is 9.5◦C and mean annual precipitation is
823 mm per year. The peak of precipitation is usually in summer.

In 2016 and 2017, samples of vegetation variables were taken every 12 or 24 days during the
growing season, coinciding with the same orbit of Sentinel-1. Only during one orbit of Sentinel-1
samples were taken, since the incidence angle is the same for this orbit. The overpass time of Sentinel-1
was at 5:09 a.m. and sampling was done as close to this time as possible. A total of six sampling
units (SU) were selected for sampling of vegetation and soil moisture. Different crops were sampled:
oilseed-rape, corn and winter cereals barley and wheat. Measurements were taken at random locations
within a 20 m radius from the centre of the SU. The location of the SUs is depicted in Figure 1.

2.2. In Situ Data

2.2.1. Biomass and Vegetation Water Content

Wet biomass (BM) and VWC are determined by destructive sampling and oven drying of the
samples. Samples were separated in stems and leafs, resulting in three VWC measurements, total
VWC (VWCt), leaf VWC (VWCl) and stem VWC (VWCs). Since the croplands are owned by farmers
and sampling is frequent, per sampling day a number of plants or rows were cut and BM and VWCt

are determined per plant or row. In corn and oilseed-rape, three plants per sampling day were taken.
In winter cereal, two or three rows were cut with a total length of 50 centimeters. To acquire an
estimate of BM and VWC per m2, the row or plant density on 1 m2 was counted for every croptype
and subsequently BM and VWC at 1 m2 were calculated. In the laboratory, samples were separated
for stems and leafs and separately weighted before and after oven-drying. Oven-drying was done at
70 ◦C for 24 to 48 h until the dry weight was stable.

2.2.2. Leaf Area Index

Leaf Area Index (LAI) is measured using a Licor LAI-2000 Plant Canopy Analyzer (Lincoln, NE,
USA). The LAI-2000 measures light intensity with a fish-eye lense in five concentric field of views,
with zenith angles of 7, 23, 38, 53 and 68 degrees. For every measurement, one above-canopy and six
below-canopy readings are acquired. The ratio between the above- and below-canopy reading is used
to calculate gap fraction and subsequently LAI using the built-in software C2000 LI-COR software
(Lincoln, NE, USA). For each SU and sampling day, a total of five repeat LAI measurements were
taken, which were distributed randomly around the SU centre. The five LAI measurements were
then averaged.

2.2.3. Vegetation Height and Status

Vegetation height was measured at five locations for every sampling unit and sampling day and
averaged. Height was noted in the field. In addition, photographs were taken of the vegetation to
document vegetation status, e.g., seeding, stem extension, flowering, heading, harvest and corn growth
stages. An overview of vegetation status is given in Table 1.
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Figure 1. Map of the HOAL indicating the Sampling Unit locations (blue squares) and the area per
field used to calculate Sentinel-1 indices (blue polygons). The top graph shows a Google Earth Image
as the background, the lower figure depicts monthly averaged Sentinel-1 CR for the months April
(Red), May (Green) and June (Blue) 2016.
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Table 1. Crop type, number of samples (NS), seeding and harvest dates (year/month/day and day of
year) per year and SU. In addition, timing of phenological stages stem extension (St.), flowering (Fl.),
heading (He.) and ripening (Ri.) are given in day of year for oilseed-rape (Rape) and winter cereal
(Cereal) and growth stages’ three leaves (V3), 12 leaves and cob development (V12), flowering (R1) and
maturity (R6) are given for corn.

SU Area Crop NS Seeding Harvest St./V3 Fl./V12 He./R1 Ri./R6

1 5 ha
Rape 3 ’15/08/29 (241) ’16/07/23 (205) ∼104 ∼130

Cereal 11 ’16/11/29 (334) ’17/07/19 (200) ∼135 ∼150 ∼170

2 6.1 ha
Rape 11 ’15/08/29 (241) ’16/07/23 (205) ∼104 ∼130

Cereal 11 ’16/11/29 (334) ’17/07/19 (200) ∼135 ∼150 ∼170

3 2.6 ha
Cereal 9 ’15/10/05 (278) ’16/07/23 (205) ∼100 ∼145 ∼165

Corn 11 ’17/04/22 (112) ’17/10/25 (298) ∼135 ∼180 ∼205 ∼252

4 2.3 ha
Corn 10 ’16/04/27 (118) ’16/09/30 (274) ∼150 ∼188 ∼203 ∼253

Cereal 11 ’16/10/31 (305) ’17/07/19 (200) ∼135 ∼150 ∼170

5 3.2 ha
Cereal 9 ’15/10/02 (275) ’16/07/01 (183) ∼100 ∼130 ∼150

Rape 11 ’16/08/25 (238) ’17/07/19 (200) ∼100 ∼135

6 9.4 ha
Rape 0 ’15/08/28 (240) ’16/07/20 (202) ∼104 ∼130

Cereal 11 ’16/11/01 (306) ’17/07/19 (200) ∼135 ∼150 ∼170

2.2.4. Soil Moisture and Precipitation

Soil moisture is monitored continuously with the in situ soil moisture network, which is installed in
the HOAL. Soil moisture and soil temperature are measured using low-current Time Domain Transmission
(TDT) probes called SPADE (sceme.de GmbH i.G., Horn-Bad Meinberg, Germany). In the summer of
2013, soil moisture stations were installed at 30 locations throughout the HOAL. Per station, four sensors
are horizontally installed at the following depths: 0.05, 0.10, 0.20 and 0.50 m. The network is calibrated in
natural soil, by creating a test bed in the field with homogenized soil and TDT sensors and laboratory
calibrated TDR sensors were installed at 0.10 m depth and two at 0.20 m depth. The four TDT sensors
were calibrated with the TDR as the reference measurement of soil moisture. For this study, we used soil
moisture from one station at 5 cm, which is representative for the rest of the catchment. Precipitation is
recorded every minute at four OTT Pluvio rain gauges distributed throughout the catchment. In this
study, we used daily sums of precipitation, averaged for the four rain gauges.

2.3. Sentinel-1

Sentinel-1 is part of Europe’s Copernicus programme and at the moment has two satellites in orbit,
Sentinel-1A and Sentinel-1B launched in April 2014 and 2016, respectively. The Sentinel-1 satellites
carry Synthetic Aperture Radars (SAR), providing backscatter at C-band (5.405 GHz). The acquisition
mode over (non-polar) land is Interferometric Wide (IW) swath mode. The SAR instruments are
designed to provide co- and cross-polarized backscatter over a 250 km swath at a 20 m spatial
resolution in single look. The temporal revisit time of one Sentinel-1 satellite is 12 days, and temporal
coverage is 1.5–4 days over Europe using both Sentinel-1A and Sentinel-1B.

3. Methods

This study investigates the potential of microwave indices for crop monitoring in two ways.
First, the temporal evolution of vegetation variables, soil moisture and Sentinel-1 VH and VV
backscatter and CR are investigated and discussed in detail. Secondly, quantitative analyses are
performed by calculating correlation statistics between backscatter data fitted to in situ observations
using a linear model, exponential model and Random Forest (RF) modelling.
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3.1. Microwave Indices from Sentinel-1

Sentinel-1 data processed at the Earth Observation Data Centre for Water Resources monitoring
GmbH (EODC) and TU Wien using the Sentinel Application Platform (SNAP) toolbox provided by
ESA. The first step is the radiometric calibration that converts the intensity into normalized backscatter
(σ◦). This is followed by the terrain correction using Range Doppler Terrain correction with the
Shuttle Radar Topography Mission digital elevation model provided with SNAP and georeferencing.
The resulting σ◦ is available at a 10 m sampling.

To bypass incidence angle effects and other observation geometry effects, only one orbit is used,
providing Sentinel-1A observations every 12 days. For every crop field that contains an SU, σ◦ is
averaged over the whole field in the linear domain. To rule out border effects, a 50 m buffer from the
field borders is excluded from the calculation. The areas used and an RGB image of S1 Cross Ratio
between VH and VV backscatter for April, May and June are shown in Figure 1. First, both VV and
VH backscatter are averaged and then CR is calculated as VH/VV in the linear domain. As a last step,
all values are converted to the logarithmic domain.

Total backscatter from a vegetated surface does not only comprise scattering from the vegetation
itself. It also includes the backscatter originating from the underlying surface attenuated by the vegetation,
and interaction between soil and vegetation. To simplify backscatter from vegetated surfaces, vegetation
is often regarded as a cloud of randomly distributed water droplets, which are structurally held in place
by dry matter. The predominant mechanism responsible for backscatter from vegetation is volume
scattering. Often, cross-polarized backscatter is most indicative for these scattering mechanisms and
high correlations have been found between cross-polarized backscatter at C-Band and crop condition
indicators such as LAI and biomass [12,13,22]. Since cross-polarized backscatter increases more strongly
with volume scattering than co-polarized backscatter, CR increases with vegetation. By using the CR, the
effect of soil moisture is reduced as well as soil-vegetation interaction effects [20]. However, a challenge
in using cross-polarized backscatter or CR is the effect of soil roughness and vegetation structure. Soil
roughness also causes depolarisation when soils are rough and have the same backscatter or CR values as
a vegetated surface. Vegetation structure significantly impacts backscatter and, for some crops, structure
can change throughout the growing season. Hence, monitoring VWCt using SAR is complex and more
research is needed quantifying the potential of SAR for crop monitoring.

3.2. Linear and Exponential Model

For all quantitative analyses, in situ and remote sensing observations are aggregated per crop
type over the different fields and years. In situ measurements of vegetation variables were only taken
when crops are present on the field and not during intercropping periods. The Sentinel-1 observations
are temporally matched to the in situ measurements and analyses are thus only performed on dates
when crops are present. To relate Sentinel-1 backscatter and CR to in situ observations, two models
are used. First, Sentinel-1 observations are directly compared to in situ observations using a linear
model. Secondly, as done by Wiseman et al. [17], an exponential model is developed, calculating the
logarithm of the dependent variables. Temporal correlation coefficients (R2) are calculated between
results from the linear and exponential model results and the in situ data of VWCt, VWCl , VWCs,
BM, LAI and height. Results of the temporal correlation analyses are discussed per crop type and per
model, i.e., linear or exponential.

3.3. Random Forest Modeling

The sensitivity of Sentinel-1 backscatter to VWCt is further quantified using a supervised random
forest (RF) machine learning approach. RF has the advantage that it does not make any assumptions about
the relation between input variables and the response variable and can identify nonlinear relationships.
RF uses multiple regression trees that are trained on the response variable, in this study VWCt. RF selects a
random set of input variables and data points. Four RF trees all with a maximum of 500 decision trees and
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a depth of 30 are trained using all in situ observations; a separate model per crop and a model using all data
and crop type as categorical variable. As inputs, the following EO based microwave indices and products
are used: Sentinel-1 VH, VV and CR. Since soil moisture could be an important indicator for VWCt, surface
soil moisture from in situ observations is used as additional input variable. Two soil moisture variables
are used, the soil moisture at the moment of the Sentinel-1 overpass (SSM) and antecedent soil moisture
(ASSM), which represents soil moisture averaged over the previous three days.

The advantage of RF is the analysis of feature importance, quantifying the relative importance
of the different variables for estimating VWCt. The variable importance quantifies the decrease in
performance of the model when the variable is left out of the regressor. The Out-Of-Bag (OOB) R2

score is calculated to assess the performance of the models. Bootstrapping is used to train the RF and
the OOB R2 score is the average R2 calculated from the trees that do not contain a certain value for
VWCt in the respective bootstrap sample. We emphasize that due to the sample size RF is not used to
predict VWCt but as a tool to analyse the sensitivity of the different microwave indices to VWCt and
their importance to represent variability in VWCt.

4. Results and Discussion

4.1. Time Series Analysis

Two complete growing seasons have been sampled and are covered by Sentinel-1. In Austria,
these two years have differed significantly from each other in terms of water availability, temperature
and radiation. In addition, 2016 received more than average precipitation especially in January,
February, May and June, whereas 2017 received less rainfall than average. These significantly different
meteorological conditions between the years provide the opportunity to investigate the sensitivity of
backscatter to vegetation dynamics under varying meteorological conditions.

4.1.1. Oilseed-Rape

Oilseed-rape is a broadleaf plant and has a different vegetation structure than cereals. In the HOAL,
oilseed-rape is seeded at 28, 29 and 25 of August 2015 and 2016 (doy 240–241 and 238) and harvested at
23, 20 and 19 of July (doy 205, 202 and 200) for 2016 (Figure 2) and 2017 (Figure 3), respectively. As for
planting, flowering and ripening also happened around the same time for both years, with flowering
starting at doy 100–104 and development of pods and ripening at doy 130–135. VWCt however differs
greatly between the two years, with values around 15 kg/m2 in 2016 and 4 kg/m2 in 2017. This is
likely caused by the different meteorological conditions between the two years. Where 2016 was an
exceptionally wet year, 2017 was drier especially in May, June and July. The difference in water content
originates mainly from the stem water content, which is higher in 2016 than in 2017. After a rainfall event
in June 2017, water content increases with 4 kg/m2 and is more comparable to 2016. This indicates rapid
changes of stem water content in oilseed-rape when soil moisture is available.

For both years, the CR increases until the end of May (doy 150), apart from a peak in January 2016
and a dip in February and April 2017, which are caused by frozen soils and snow cover. VH also increases
throughout the growing season. Starting around doy 110, a decrease is observed in both CR and VH
backscatter, followed by a strong increase of several dB. The small decrease coincides with the start of
flowering at doy 100–104. The strong increase is observed from doy 120 to doy 132, which is at a similar
time as the start of ripening. Both the decrease and strong increase related to flowering and ripening were
also observed by Wiseman et al. [17] in Canada with C-band Radarsat and Veloso et al. [20] over France
with Sentinel-1. The increase of VH with increasing vegetation was also observed by Macelloni et al. [14],
who found that cross-polarized backscatter increased with increasing LAI over test sites in Montespertoli,
Italy, and Fjardhundra, Sweden. VV backscatter varies over the year simultaneously with soil moisture,
with lowest VV backscatter on doy 120 in 2016, which coincides with a drop in soil moisture. However,
the decrease in soil moisture starting from doy 125 in both years is not reflected in VV backscatter. Instead,
VV backscatter increases together with CR and VH backscatter.



Remote Sens. 2018, 10, 1396 8 of 19

Even though there are clear differences in VWCt, as a result of a large difference in VWCs, and soil
moisture, the CR, VV and VH are very similar for 2016 and 2017. This suggests that both VV and VH
backscatter are mostly sensitive to the leaf water content but not the stem water content.

Figure 2. Time series of precipitation (blue) and soil moisture at 5 cm depth (orange) (top). Total VWC
(VWCt, blue), stems (VWCs, pink) and leafs (VWCl , light pink), LAI (green) (middle). S-1 VH (dark
blue) and VV (light blue) and CR (yellow) (bottom). The separate fields are indicated with transparent
lines. Grey vertical lines are planting and harvesting dates.

Figure 3. Time series of Sentinel-1 and in situ variables as in Figure 2 for 2017.
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4.1.2. Corn

Time series of in situ data and Sentinel-1 for Corn are shown in Figures 4 and 5. Like oilseed-rape,
corn is a broadleaf plant. Corn is planted on 27 (doy 118) and 22 (doy 112) of April and harvested on
30 September 2016 (doy 274) and 25 October 2017 (doy 298). Around doy 135 in 2017 and doy 150 in 2016,
growth stage V3 is reached, when three leaves are visible and the plant is around 20 cm high. Stage V10–V12,
when 10–12 leafs have emerged, is reached at doy 180 in 2017 and 188 in 2016. The pollination stage
(VT/R1) is reached at doy 203 in 2016 and doy 192 in 2017. VWCt increases rapidly until doy 225 in 2016
and doy 205 in 2017. In 2016, VWCt increases steadily and starts to decrease when soil moisture starts to
decrease. In 2017, the decrease occurs earlier and VWCt then varies until harvesting.

The CR starts to increase strongly from doy 135 in 2017 and 150 in 2016, 3–4 weeks after planting
at growth stage V3 (Figures 4 and 5 and Table 1). In both years, CR increases strongly until doy 180,
from −12 dB to −6 dB. The end of the strong increase coincides with growth phase V10–V12. At this time,
VWCt also exceeds 2 kg/m2 and LAI exceeds 3. Similar thresholds were found by Ferrazzoli et al. [12]
and Jiao et al. [23] where backscatter and indices saturated at LAI of 2–3. In both years, CR keeps
increasing slightly until doy 192 in 2017 and 205 in 203 in 2016. At this time, leaves have fully developed,
dry matter has accumulated the most mass and pollination starts (VT/R1). In 2017, CR varies with
VWCt, decreasing from doy 204 to 216 and then increasing to doy 240 and decreasing again during
the ripening phase until harvest. This shows that, when the crop is fully grown, CR responds to
small changes in VWCt. In general, VV backscatter decreases from doy 150, simultaneously with SSM.
Between doy 150 and 200, VV backscatter is lower in 2017, as is soil moisture. The sensitivity of VV to
soil moisture in corn can be explained by the row distance between corn. With a row spacing of 70 cm,
bare soil is still visible until a late stage, hence VV backscatter is still sensitive to soil moisture and not
yet strongly attenuated by vegetation. In the same period, VH backscatter increases, with increasing
VWCt and with increasing LAI and closing crop cover. The same was found by Macelloni et al. [14]
and Ferrazzoli et al. [12] who found an increase in C-band backscatter with increasing LAI in corn.
After harvest of the corn at doy 290 in 2016 and 273 in 2017, backscatter and CR drop.

Figure 4. Time series of Sentinel-1 and in situ variables as in Figure 2 for corn 2016.
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Figure 5. Time series of Sentinel-1 and in situ variables as in Figure 2 for corn 2017.

For corn, monitoring of growth stages V10–R1 is of great importance to farmers. Moisture and
heat stress during the stages V10–R1 have the largest effect on final yield. In addition, management
practices during these stages, e.g., application of fertilizers, can have a positive effect on yields.
Hence, information of the timing of these phases and water content of the plant is pivotal and can
improve farming practices.

4.1.3. Winter Cereals

In the HOAL, winter cereals comprise barley and wheat, both narrow-leaf crops. The growing
season, phenology and structure of the two crops is very similar. The time series of the in situ data and
Sentinel-1 data is shown for the growing season of 2016 and 2017 in Figures 6 and 7. Winter cereals
were planted in October 2015 and November 2016 (doy 183, 200, 205). The earlier planting date and
mild winter in 2016 led to an earlier start of the stem extension phase in 2016, at the middle of April
(doy 100). In 2017, January and April were colder than usual and this in combination with the later
planting date led to the stem extension phase to start half of May (doy 135). Heading occurred in the
last weeks of May and beginning of June (doy 130–150) for both years. The shift in growth phases
between 2016 and 2017 is also observed in VWCt (Figures 6 and 7), which increases at an earlier stage
in 2016 (doy 90) than in 2017 (doy 120). VWCt keeps increasing during the grain filling period until its
peak around doy 150, which is the same for both years. During the ripening stage, VWCt decreases
steadily until harvest.

Strong variations in CR in winter, especially January 2016 and February 2017, are caused by
frozen soils and snow cover as was also observed in the CR for oilseed-rape. A clear steady increase
in CR can be seen from doy 0, which is during the tillering phase of winter cereals, which was also
observed for winter barley by Veloso et al. [20]. The shift in growth phases between years, as was
observed in in situ measurements, can also be observed in CR. CR starts to increase earlier and is
overall higher in 2016 (Figure 6). This is also visible in the maxima of CR, which is at doy 102 in
2016 (Figure 6) and doy 126 in 2017 (Figure 7). The maximum in CR coincides with the start of
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the stem extension phase. During the stem extension phase, CR starts to decrease. For all fields,
a dip in CR is observed around doy 150, coinciding with the maximum in VWCt and the start of
heading and flowering. During the grain fill period, CR starts to rise again and then decreases or stays
constant. The changes in CR are most likely driven by phenology and large changes in vegetation
structure during stem extension and heading. Similar variations related to structure were also found
by Mattia et al. [18] and Satalino et al. [24]. VV backscatter decreases until the beginning of the stem
extension phase of the winter cereal. Although soil moisture decreases too, small variations in soil
moisture are not reflected in the VV signal. When VWCt in the crop decreases (from day 150), a slight
increase in VV backscatter can be observed even though soil moisture is still decreasing (especially in
2017). In addition, VV backscatter is lower between doy 85 and 115 in 2016 than in 2017, even though
soil moisture was higher in 2016. Since vegetation water content in winter cereal was higher during
this time in 2016, the lower VV backscatter in 2016 is likely caused by the increased attenuation.
VH backscatter decreases during the last period of tillering. The decrease occurs earlier in 2016 than
in 2017. As soon as stem extension starts, VH starts to increase again, likely as a result of volume
scattering mechanisms.

The sensitivity of CR to structural changes related to growth stages of winter cereals provides
pivotal information on the growth stage to farmers. Winter cereals, especially wheat, are very sensitive
to diseases during the flowering stage when soils are wet and temperatures are high, i.e., Fusarium a
fungal disease leading to harmful mycotoxins. Infection risk can be reduced by targeted application of
pesticides during flowering Chala et al. [25]. Hence, additional information on timing of flowering can
assist in disease prevention and limit the use of chemicals.

Figure 6. Time series of Sentinel-1 and in situ variables as in Figure 2 for winter cereal 2016.
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Figure 7. Time series of Sentinel-1 and in situ variables as in Figure 2 for winter cereal 2017.

4.2. Temporal Evolution of CR

Figure 8 shows the CR averaged per crop type for all fields within the HOAL for the years
2015–2017 and averaged over all years. The CR for oilseed-rape and winter cereal, which are planted in
the previous autumn, starts to rise in spring (doy 70–150) and decreases in early summer (doy 170–200).
CR for oilseed-rape increases steadily although some variations are visible around doy 110, which is
related to flowering, as discussed in Section 4.1.1. In winter cereal, CR shows a clear dip around
doy 130–150, associated with the heading as discussed in Section 4.1.3. Between years, a clear difference
between the CR can be seen. In 2016, CR starts to rise earlier, from January onward. This is most
likely caused by the mild winter of 2016 compared to 2015 and 2017. Corn is usually planted in April
and starts to rise later in the year (doy 150–170) and decreases with harvest in autumn (doy 250–300).
The CR increases continuously until the ripening stage commences. In 2017, CR in corn has its peak in
June and decreases steadily until October. This could be due to the dry conditions of 2017 compared to
2015 and 2016, especially in June, July and August.

For all crops, the variability is much smaller during the growing period of the crop.
Around planting time and harvest, the variability is higher since data is not masked for the planting
and harvest dates per field. Due to differences in planting and harvesting dates and different field
management practices, e.g., some fields are left bare while others have inter-cropping, variability of
CR increases.

In the last window, the CR shows a consistent and distinct behaviour for every crop type even
though different years are averaged with very different meteorological conditions and crops rotate on
a yearly basis between fields. This emphasizes the sensitivity of CR to vegetation dynamics.
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Figure 8. Cross Ratio of Sentinel-1 for different crop types per year (2015–2017) and averaged over all
fields and years (lower window). The shaded areas represent the 25th and 75th percentile.

4.3. Quantitative Comparison

4.3.1. Linear and Exponential Model Results

The scatterplots in Figure 9 and R2 values in Table 2 illustrate the relation between Sentinel-1
parameters and in situ measured variables. From the three microwave indices, i.e., VH, VV and CR,
CR shows the highest correlation to VWCt for all crops, with R2 of 0.16, 0.48 and 0.22 for oilseed-rape
(not-significant), corn and winter cereals, respectively, and R2 = 0.21 for all crops together. CR correlates
strongest to LAI in corn (R2 = 0.62), and to height for oilseed-rape (R2 = 0.51) and winter cereals
(R2 = 0.50). In corn, VH backscatter is most sensitive to LAI (R2 = 0.61) and VWCl (R2 = 0.49). This was
also found by Macelloni et al. [14], who, using a simple first order radiative transfer model, showed that,
at the C-band, leaves make a significant contribution to scattering in broad leaf crops. Contrary to
oilseed-rape and winter cereal, in corn, the VV is moderately sensitive to soil moisture (R2 = 0.24),
which was also observed in the time series evolution. This can be explained by the fact that, for the
other crops, sampling started in March, when the canopy was already closed, and attenuation already
affects the VV signal. The planting date in April and the row spacing of corn leaves sufficient bare soil
to still observe variations in soil moisture.

The scatterplots (Figure 9) clearly indicate the nonlinear relationship between CR and VWCt

with a large sensitivity to low VWCt values and saturation at high VWCt. This behaviour is observed
for all vegetation variables and for all crop types. At denser vegetation, with higher VWCt, BM,
height and LAI, the CR appears to saturate and small uncertainties in CR can lead to large variations
in VWCt. This was also seen in the time series analysis, where CR was more sensitive to vegetation
variables especially in the early growing season. Saturation at higher crop density was also observed
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by Ferrazzoli et al. [26] for HV backscatter, Paloscia et al. [27] for VH/VV and Wiseman et al. [17] for
HV backscatter and the Cloude–Pottier decomposition measure entropy. Consequently, the nonlinear
relationship negatively affects the correlation of the linear model. As done by Wiseman et al. [17],
an exponential model is developed, calculating the logarithm of the dependent variables. The R2 for
all crops increases with 0.42 to R2 = 0.63. Values for R2 increase dramatically for winter cereals and
corn to R2 = 0.87 and R2 = 0.63. In winter cereals CR is still a strong indicator for height (R2 = 0.68);
however, using an exponential model, CR is almost as sensitive to VWCt as it is to height (R2 = 0.63).
For oilseed-rape, CR is still most sensitive to height and to less extent to VWCt (R2 = 0.34).

The low explained variability of VWCt by CR in oilseed-rape can be explained by the large
difference in VWCt between 2016 and 2017. The large difference in total VWCt originates from the
difference in stem water (Figures 2 and 3). Correlation to VWCs is also low (R2 = 0.36). With the
wavelength of C-band, it is expected that, for broad leaf crops, backscatter is more sensitive to the
leaf water content. However, there is also no strong correlation between VWCl and CR (R2 = 0.31).
Similar results were found by Wiseman et al. [17] and attributed the low explained variance in dry
biomass to the effect of crop phenology and structure due to flowering and seeding rather than
accumulation of biomass as discussed in Section 4.1.1.

4.3.2. Random Forest Model Results

The RF modelling is used to elucidate the potential of different microwave indices to describe
variability in VWC. The RF is applied to the logarithm of the VWCt and results of OOB R2 score and
feature importance are illustrated in Table 3.

For oilseed-rape, the OOB R2 score of 0.31 indicates that the RF model is not able to estimate VWCt

better than a single input feature, as, for example, an exponential model using only CR. The feature
importance does show that CR is the most important input variable to predict VWCt with a relative
importance of 0.26. ASSM has a similar relative importance followed by SSM. This can be explained by
the large difference in VWCt between 2016 and 2017, where also soil moisture was higher in 2016 than
2017 (Figures 2 ande 3). The VWCt in oilseed-rape is strongly related to soil moisture availability and
hence soil moisture is an important predictive variable for VWCt in oilseed-rape.

For winter cereals, the RF approach provides better results than the linear and exponential model,
R2 = 0.81 for RF versus R2 = 0.63 for the exponential model. For winter cereals, CR varied with
phenological stages and vegetation structure after the tillering phase. As such, more complex machine
learning methods, which include more input variables, can better explain variability in narrow-leaf
crops like winter cereals. Still, the most important variable to estimate VWCt is CR with a relative
importance of 0.31, followed by ASSM and S1VV, demonstrating the potential of CR for monitoring
VWCt in winter cereal.

For corn, the exponential model performs better than the RF approach with R2 = 0.87 for the
exponential model and R2 = 0.74 for RF. This indicates that simple exponential model between CR
and VWCt performs better for corn, and that introducing SSM and ASSM decreases the predictive
performance. This is further emphasized by the variable importance for corn, where the Sentinel-1
input variables CR and VH are most important with relative importances of 0.30 and 0.25. This can be
explained by the fact that the VV backscatter for corn is sensitive to soil moisture, so that additional
information on soil moisture is not of added value.

The advantage of RF is that it can also use categorical variables for building the regression model.
This is done for the last RF model where all data from all crops are grouped and categorical values
are given for the different crop types. The OOB R2 score of 0.80 demonstrates the ability to describe
the variability in VWCt based on the microwave indices and soil moisture. Looking at the feature
importance, it is evident that the CR is the variable best capturing variability in VWCt with a relative
importance of 0.35, followed by, although at a much lower importance, VV (0.17) and VH (0.16).
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Figure 9. Scatter plot of S1 CR (left), VV (middle) and VH (right) backscatter with in situ measured
vegetation variables VWC, BM and Height, and in situ measured soil moisture for the different crop
types Oilseed-rape (red), Corn (purple) and winter cereal (green).

Table 2. R2 per crop type (Oilseed-rape, Corn and Winter cereal) between Sentinel-1 CR, VH and VV
for variables total VWC (VWCt), VWC from leafs (VWCl), VWC from stems (VWCs), biomass (BM),
Leaf Area Index (LAI), plant height (H) and soil moisture (SM) for both the linear and exponential
model. In black are significant R2 values (p < 0.05).

Crop Model Var VWCt VWCl VWCs BM LAI H SM

Oilseed-rape

linear
CR 0.16 0.27 0.14 0.19 0.03 0.39 0.07
VH 0.03 0.29 0.06 0.05 0.03 0.15 0.16
VV 0.02 0.19 0.00 0.01 0.15 0.00 0.15

exponential
CR 0.34 0.31 0.36 0.34 0.08 0.51 0.06
VH 0.10 0.23 0.12 0.12 0.01 0.23 0.16
VV 0.01 0.11 0.00 0.00 0.13 0.01 0.16
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Table 2. Cont.

Crop Model Var VWCt VWCl VWCs BM LAI H SM

Corn

linear
CR 0.48 0.16 0.02 0.42 0.62 0.55 0.07
VH 0.44 0.49 0.16 0.43 0.61 0.48 0.00
VV 0.15 0.01 0.23 0.10 0.19 0.20 0.24

exponential
CR 0.87 0.18 0.11 0.85 0.78 0.83 0.09
VH 0.62 0.35 0.27 0.63 0.73 0.61 0.00
VV 0.42 0.00 0.28 0.39 0.27 0.40 0.27

Winter cereal

linear
CR 0.22 0.34 0.22 0.26 0.30 0.50 0.16
VH 0.08 0.14 0.25 0.04 0.13 0.00 0.01
VV 0.25 0.04 0.12 0.22 0.02 0.21 0.04

exponential
CR 0.63 0.27 0.19 0.64 0.22 0.68 0.15
VH 0.02 0.37 0.35 0.01 0.10 0.00 0.01
VV 0.35 0.19 0.38 0.32 0.01 0.28 0.04

Table 3. OOB R2 score and variable importance of Sentinel-1 CR, VH and VV, and surface soil moisture
(SSM) and antecedent soil moisture averaged over three days prior (ASSM) from the RF modelling for
VWCt per crop type.

Crop OOB R2 Score f1 f2 f3 f4 f5

Oilseed-rape 0.31 S1CR ASSM SSM S1VH S1VV
0.26 0.26 0.20 0.15 0.13

Corn 0.74 S1CR S1VH ASSM S1VV SSM
0.30 0.25 0.18 0.15 0.12

Winter cereal 0.81 S1CR ASSM S1VV SSM S1VH
0.31 0.20 0.18 0.16 0.16

All 0.80 S1CR S1VV S1VH ASSM SSM
0.35 0.17 0.16 0.12 0.11

5. Conclusions

This study assessed the sensitivity of Sentinel-1 SAR backscatter and a ratio derived thereof to vegetation
dynamics. In situ data on VWC, biomass, height and LAI was collected over two growing seasons for
oilseed-rape, corn and winter cereals. Using three approaches, a linear model, exponential model and
random forest modelling, a quantitative analysis between SAR parameters and in situ data was performed.

Time series analysis demonstrated the sensitivity of backscatter and CR to vegetation variables
such as total vegetation water content, but also the sensitivity to changes in vegetation structure.
In particular, the flowering and seeding in oilseed-rape and the stem extension and head development
in winter cereals affected backscatter and CR, diminishing its sensitivity to VWCt. These observations
correspond to previous studies that observed the same behaviour in the backscatter signals.

The modelling demonstrated the nonlinear relationship between CR and vegetation variables.
Initially, low R2 values were found between CR and VWC for oilseed-rape and winter cereals when
using a linear model. Moderate R2 values were found for corn. Using an exponential model, CR was
able to account for 34%, 63% and 87% of the variability in VWC in oilseed-rape, corn and winter cereal.
In oilseed-rape, the CR cannot account for the large differences in VWCt which were observed between
the two growing seasons. In addition, at high vegetation density and high CR, CR saturates and small
uncertainties in CR can lead to large errors in VWCt. The random forest modelling demonstrated the
relative importance of CR for estimating VWCt dynamics in crops, where the variable importance over
all crops was 0.35 for CR. This was followed by VV and VH backscatter. It also showed that, for corn
and oilseed-rape, a simple exponential model accounts better for variation in VWCt, but, for winter
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cereals, the RF model performs better when including additional soil moisture data. Since CR in winter
cereals is strongly affected by changes in structure, using these additional input variables as is done in
the RF approach increase the performance of the model.

The presented research demonstrates the high sensitivity of microwave indices to vegetation
dynamics especially for corn and winter cereals and at low VWCt. It also provides valuable insights
to ultimately predict VWC based on Earth Observation data using either simple models or machine
learning approaches. Knowledge on VWC in crops can aid farmers in monitoring crop health and
help decide when to irrigate and as a result could increase water use efficiency. In addition, this study
confirms previous findings on changes in backscatter which are indicative for flowering and seeding
of oilseed-rape. Furthermore, timing of heading and flowering in winter cereals can be observed.
Since the risk of disease in oilseed-rape and winter cereals is high during flowering, information on
the timing of these stages can assist in disease prevention and limit the use of chemicals. Consequently,
although SAR data on itself is still affected by structural effects, valuable information can be gained on
growth phases of crops. Although this study focused on a small region in Austria, it does show that
information on vegetation dynamics can be obtained from Sentinel-1 observations. Further studies
should focus on applying the developed method to other regions of interest. Furthermore, the added
value of SAR data in combination with, for example, visible near infra-red based data could lead to
improved vegetation monitoring capabilities and needs further exploration.
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