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Abstract: The European Space Agency’s (ESA’s) Aerosol Climate Change Initiative (CCI) project
intends to exploit the robust, long-term, global aerosol optical thickness (AOT) dataset from Europe’s
satellite observations. Newly released Swansea University (SU) aerosol products include ATSR-2
(1995–2003) and AATSR (2002–2012) retrieval and synergy between AATSR and MERIS with a
spatial resolution of 10 km. Recently an experimental version of a retrieval using AATSR/MERIS
synergy was developed to provide four months of data for initial testing. In this study, both AATSR
retrieval (SU/AATSR) and retrieval (SU/synergy) datasets are validated globally using Aerosol
Robotic Network (AERONET) observations for March, June, September, and December 2008, as
suggested by the Aerosol-CCI project. The analysis includes the impacts of cloud screening, surface
parameterization, and aerosol type selections for two datasets under different surface and atmospheric
conditions. The comparison between SU/AATSR and SU/synergy shows very accurate and consistent
global patterns. The global evaluation using AERONET shows that the SU/AATSR product exhibits
slightly better agreement with AERONET than the SU/synergy product. SU/synergy retrieval
overestimates AOT for all surface and aerosol conditions. SU/AATSR data is much more stable and
has better quality; it slightly underestimates fine-mode dominated and absorbing AOTs yet slightly
overestimates coarse-mode dominated and non-absorbing AOTs.

Keywords: Aerosol-CCI; AATSR; AOT; global

1. Introduction

Due to the improvements of climate observation capabilities in the past half-century, especially
regarding both passive and active satellite observations of both geostationary and polar-orbiting
satellites, such observations are widely used in both regional and global applications [1].
Aerosol remote sensing is one of the most crucial aspects for global climate change researches. However,
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only aerosol products that provide time series data of sufficient length, consistency, and continuity
can be considered as potential suitable climate data records [2]. For instance, the Global Climate
Observing System (GCOS) requires aerosol optical thickness (AOT) data with an accuracy of 0.01 [3].
Thus, intensive validation of satellite aerosol products is necessary before their further application.

High-quality aerosol remote sensing was initiated in the 1990s along with the development of
new instruments [4]. The most popular satellite aerosol products are provided by the Moderate
Resolution Imaging Spectrometer (MODIS), which includes three different aerosol retrieval algorithms:
Dark-Target [5,6], Deep Blue [7], and MAIAC [8]. All three algorithms have been applied to
its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Additionally,
a newly developed NOAA aerosol retrieval algorithm provides another aerosol product [9].
Instruments with multi-angles yield further possibilities for accurate aerosol retrievals, such as the
Multiangle Imaging SpectroRadiometer (MISR) [10] and Advanced Along Track Scanning Radiometer
(AATSR) [11–13].There are also three current aerosol retrieval algorithms for AATSR: the AATSR
Dual View Algorithm (ADV) [14,15], Oxford-RAL Aerosol and Cloud (ORAC) [16], and Swansea
University (SU) [17], all of which will be further used with the Sea and Land Surface Temperature
Radiometer (SLSTR). Instruments such as the Ozone Monitoring Instrument (OMI) [18] and Polder [19]
provide UV channels and/or polarization information to accurately retrieve the aerosol absorbing
mode or aerosol fine mode fraction. Ocean color instruments like the Sea-Viewing Wide Field-of-View
Sensor (SeaWIFS) and the MEdium Resolution Imaging Spectrometer (MERIS) are also useful for
obtaining aerosol information. The MODIS DeepBlue algorithm was initially designed for SeaWIFS [7].
The newly developed eXtensible Bremen AErosol Retrieval (XBAER) [20,21] and European Space
Agency (ESA) MERIS aerosol [22] provide two additional data sources for aerosol remote sensing.

Validation allows the data provider and user community to have a better understanding of the
advantages and limitations of the dataset. It is scientifically incorrect to directly compare single satellite
pixel observations to in situ point measurements due to the spatial and temporal scale differences.
Ichoku et al. [23] proposed a method to compare the spatial statistics from satellite observations with
the corresponding temporal statistics from in situ measurements to achieve a meaningful and balanced
validation. The assumption is that the movement of air mass captured by a satellite in a spatial point
of view will be sampled by in situ measurements during a certain period of time [23]. This validation
strategy has been widely accepted and used in aerosol remote sensing.

Based on the method proposed by Ichoku et al. [23], intensive validations for MODIS aerosol
products have been performed for Collection 4, 5, 5.1, and 6 [5,24–28]. From the validation results,
MODIS aerosol retrieval algorithms have been improved for surface parameterization, aerosol type
treatment, and cloud screening. The spatial resolution of aerosol products has also been improved
from 10 km to 3 km while the coverage has been extended by combining different algorithms. Other
instruments like MISR [29–31], SeaWiFS [32,33], and PARASOL [34,35] have been evaluated by Aerosol
Robotic Network (AERONET) observations or inter-comparison with MODIS aerosol products or
CALIOP observations.

European aerosol research has been driven by the ESA Aerosol-CCI project. This project
is an intensive algorithm development effort that incorporates sensitivity analysis, validation,
and inter-comparison activities, along with a round robin exercise of seven different retrieval
algorithms [13]. Although ADV [14,15], ORAC [16], and SU [17,36] all have their advantages and
disadvantages and an ensemble aerosol product has been proposed in the second phase of the project,
validation of the SU algorithm indicated that it provides the overall best accuracy. Comparison of the
three products with AERONET is given in [13], and detailed evaluation over China is given in [37].
Until now, there have been no published studies on the global inter-comparison of the Swansea AATSR
aerosol product with the experimental synergy version.
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This study aims to conduct a detailed validation for the two SU AOT datasets. The analysis
includes a comparison between AATSR V4.21 and the synergy retrieval. Validation was performed
using global AERONET data. The paper is organized as follows. The satellite and ground-based
dataset are introduced in Section 2, the aerosol retrieval algorithms are described in Section 3, and the
validation results and analysis are presented in Section 4.

2. Materials

2.1. AATSR

AATSR is a dual-view sensor on board the European Space Agency (ESA) satellite ENVISAT
(May 2002–April 2012). It is the successor of ATSR-1 and ATSR-2 on board ERS-1 and ERS-2. AATSR
provides unique dual-viewing (with a forward view angle of 55◦) observation capabilities at different
wavelengths and enables research into atmospheric properties and sea surface temperature, among
others. AATSR data have an average swath of 500 km and a resolution of 1 km at the nadir, together
with the following wavelengths: 0.55, 0.66, 0.87, 1.6, 3.7, 11, and 12 µm. The successor of AATSR is
SLSTR onboard Sentinel-3, which was launched in February 2016.

2.2. MERIS

The MERIS instrument was onboard the same platform as AATSR on the European ENVISAT
satellite (May 2002–April 2012); it has fifteen wavelength bands between 390 nm and 1040 nm with
a programmable bandwidth between 2.5 nm and 30 nm. MERIS provides two different spatial
resolutions; the full resolution is 300 m and the reduced resolution is 1 km with a swath width of
1150 km. Simultaneous observations of MERIS and AATSR enable the synergistic retrieval of different
surface and atmospheric parameters. MERIS has a much wider swath and more wavelengths in the
visible range than AATSR. Several channels in the blue wavelength, similar to the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), provide the unique ability to retrieve aerosol information for both dark
and bright surfaces [7]. However, information observed by the AATSR near-infrared channel (1.6 µm)
can provide additional highly useful constraints for high-quality aerosol retrieval. The successor to
MERIS is the OLCI instrument onboard Sentinel-3, launched on February 2016. Thus, synergy of
MERIS/AATSR can be used on OLCI/SLSTR.

2.3. AERONET

AERONET is a globally distributed network of over 800 stations that provides standardized
high-quality aerosol measurements, which are widely used in various aerosol-related studies, including
satellite retrieval validation [38,39]. AERONET uses the CIMEL sun/sky radiometers to obtain
direct sun and diffuse sky radiances within the 340–1020 nm and 440–1020 nm spectral ranges,
respectively. AOT measurements are recorded every 15 min from direct solar radiation with an
accuracy of 0.01–0.02 [38]. AERONET data can be downloaded from the official website (http://
aeronet.gsfc.nasa.gov/). The AOT values at 550 nm are not directly provided by AERONET, but are
interpolated from AERONET AOTs at 440 nm and 870 nm using the Ångström equation [40]. Figure 1
shows the AERONET site distributions.

http://aeronet.gsfc.nasa.gov/
http://aeronet.gsfc.nasa.gov/
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3. Methods

3.1. AATSR Algorithm

The main advantage of the AATSR aerosol retrieval algorithm is to use its dual-view observation
capability. As in the work of Veefkind and de Leeuw [41], for the AATSR aerosol retrieval used
here, the ratio of surface reflectances at the nadir and forward observations has been correlated
across wavebands, and the variation in surface anisotropy can be simply modelled using a surface
parameterization model [42]. The dual-view avoids the need to obtain wavelength-dependent, accurate,
and absolute surface reflectance values. This method differs from other approaches by using a more
sophisticated physically based surface model to account for spectral variation of surface anisotropy
owing to variations in of the fraction of scattered light with wavelength [42]. The retrieval uses
a continuous mixture of the four basic aerosol components (dust, sea salt, weak-absorption, and
strong-absorption) presented in de Leeuw et al. [11], in which dust and sea salt generally define
the coarse mode and sulfate, organic matter, and black carbon define the fine mode. Additional
information of the fine mode fraction and absorbing fine mode fraction is supplied in terms of monthly
1◦ × 1◦ climatological data derived from two sources, modelling and observations in Kinne et al. [43].
The retrieval algorithm uses an iterative optimization of the AOT and aerosol model subject to multiple
constraints (a multi-angular constraint over land and a spectral constraint over ocean) using a LUT
method [17,36]. Uncertainty of the retrieved AOT is also provided using non-linear optimization
of an error function, which considers the error from the surface model and observation errors from
instrument calibration, the radiative transfer mode, and LUT (constructed by the radiative transfer
code allowing rapid calculation of output parameters).

3.2. Synergy Algorithm

A version of the MERIS/AATSR synergistic algorithm for retrieval of aerosol properties has been
described in detail by North et al. [44]. This was implemented in the ENVISAT BEAM processor,
with intention to provide aerosol retrieval both as a product, and to allow atmospheric correction
of both MERIS and AATSR data. This showed improvement over the equivalent single instrument
algorithms in aerosol retrieval, though over a limited dataset, and intended to provide improvements
over dark vegetated surfaces only. For the study presented here, a revised algorithm was developed to
fit with compatible Aerosol CCI scheme and permitted to run over all surfaces to allow a global testing
intended for further algorithm development... The synergy algorithm uses the combined wavelengths
from both AATSR and MERIS observation, in which the aerosol types are defined the same as AATSR
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algorithm. Substantial uncertainties in the retrieval of aerosol form multi angle or multi instrument
measurements arise from errors in collocation of either forward to nadir images or images between
different instruments. To compensate for these uncertainties it is useful to aggregate the individual
measurements to 9 × 9 km2 super pixels. This aggregation is done differently for AATSR and MERIS
data as the two algorithm branches have different strength and weaknesses. For AATSR all cloud free
pixels within the super pixel are averaged. For MERIS on the other hand only the 20 darkest pixels of
the available cloud free pixels are used to compute an average TOA reflectance. The optimization is
based on a linear combination of two separate error metrics for MERIS and AATSR data respectively,
but with a consistent atmospheric composition. The spectral error metric used for MERIS is similar
to the linear mixing model used in the Bremen AErosol Retrieval (BAER) algorithm [45]. The cloud
screening algorithm employed here is classification approach developed by Gomez-Chova in the frame
of the MERIS-AATSR-SYNERGY project [46]. This algorithm provides good results in detecting clouds
for the nadir geometry where it benefits from the combined spectral band information of MERIS and
AATSR. Unfortunately it does not provide a dedicated cloud mask for the forward view of AATSR.
In the context of this option the derived cloud mask is extended by 3 pixels around each cloud to
reduce the impact of this draw back. However cirrus or other clouds above an altitude of 4-5km are
likely to provide contamination, leading to high bias, so the test dataset should be considered valid for
cloud-free areas only. Over ocean, to provide a complete dataset, the same ocean surface model is used
as for CCI, and retrieved using AATSR only, but using the MERIS/AATSR synergy cloud mask with
twilight zone – differences over ocean indicate differences due to cloud masking only.

3.3. Major Differences between AATSR and AATSR/MERIS Synergy Algorithms

The main differences are summarized in Table 1. Due the instrument characteristic differences
between AATSR and MERIS, as presented in Sections 2.1 and 2.2, the main differences between the
two aerosol retrieval algorithms involve four aspects. The first part is the input difference. The AATSR
algorithm uses four channels (0.55, 0.67, 0.87, and 1.6 µm) for both views while the synergy algorithm
additionally uses 13 MERIS channels (all MERIS channels except 0.763 and 0.9 µm). The second aspect
is the difference of cloud screening, which is the most important aspect for explaining the retrieval
coverage difference. AATSR algorithm cloud screening is based on the ESA standard cloud mask
and further improves the treatment for bright surfaces, thin clouds, and high aerosol loading cases
by using new criteria. The synergy algorithm cloud mask is detailed in Gomez-Chova et al. [46], but
applied to nadir only. The twilight zone effect [47] is considered by excluding three surrounding pixels
to mask some residual cloud. The aerosol models are the same in AATSR and synergy algorithms,
which is described in de Leeuw et al. [11]. However, the wavelength-dependent aerosol properties may
play different roles in different retrievals. The difference in surface treatments due to the additional
use of MERIS is a soil/vegetation mixture idea adapted from the Bremen AErosol Retrieval (BAER)
algorithm. This idea has been used for MERIS surface parameterization [45].
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Table 1. Differences between AATSR and synergy aerosol retrieval algorithms.

AATSR AATSR/MERIS

Input AATSR RTOA (0.55, 0.67, 0.87, and 1.6 µm) at
both views

AATSR RTOA (0.55, 0.67, 0.87, and 1.6 µm) at both
views + all MERIS RTOA (except 0.763 and
0.9 µm)

Cloud
screening Improved ESA standard cloud screening Gomez-Chova [46] nadir only, + 3 pixels around

excluded

Aerosol
model Aerosol-CCI defined [11] Aerosol-CCI defined [11]

Surface
model North et al., 1999 North et al., 1999 + soil/vegetation mix

Limitations

Potentially operates at 2 km resolution, but
usually degraded due to registration uncertainty
Uses fixed set of aerosol models
Not tested over snow/ice

Potentially operates at 2 km resolution, but
usually degraded due to registration uncertainty
uncertainty
Not tested over snow/ice

3.4. Matchup Methodology

In situ measurements used as reference data, such as AERONET, provide a point measurement
and have high temporal resolution (every 15 min), while satellites provide only a snapshot of a
larger region in one pixel with different spatial resolutions at a single time. In order to consider both
the spatial and temporal differences between satellite and in situ observations, the spatial-temporal
collocation method proposed by Ichoku et al. [23] has been widely used in the aerosol community,
which mitigates the effect of spatial/temporal variability. In this case, AERONET data averaged
within 30 min of the AATSR/MERIS overpass are extracted and compared with AATSR/MERIS data
averaged within a 25 km radius of the AERONET site. As AERONET does not conduct measurements
at 550 nm, data are interpolated to 550 nm using the standard Ångström exponent.

3.5. Statistical Metrics

The MSA (Mean Satellite-retrieved AOT) and MAA (Mean AERONET AOT) are used to evaluate
the differences between satellite-derived AOT and AERONET observed AOT. The relative mean
bias (RMB) is defined as the ratio of MSA and MAA, which is an indicator of underestimation or
overestimation for satellite-derived AOT. The MBE (mean bias error) and MAE (mean absolute-bias
error) can be used as an indicator of the satellite-derived AOT bias. MAE can be used to show
the scattering characteristics of the biases. All these statistical metrics can be used to evaluate the
satellite-derived AOT. In this study, root-mean-square error (RMSE) and correlation coefficient (R) are
also used as an important indicator, which are defined as

MSA =
1
n ∑n

i=1 τsat,i (1)

MAA =
1
n ∑n

i=1 τAER,i (2)

RMB = MSA/MAA (3)

MAE =
1
n ∑n

i=1|(τsat,i − τAER,i)| (4)

MBE =
1
n ∑n

i=1(τsat,i − τAER,i) (5)

RMSE =

√(
1
n ∑n

i=1(τsat,i − τAER,i)
2
)

(6)
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R(τsat, τAER) =
Cov(τsat, τAER)√
Var[τsat]Var[τAER]

(7)

where Cov(τsat, τAER) is the standard deviation of satellite-derived AOT and AERONET AOT and
Var[τsat], Var[τAER] are the RMSE of satellite-derived AOT and AERONET AOT, respectively.

The classical linear regression analysis would lead to inestimable error if there are errors in
variables, especially for the usage of prediction of material property in social science [48]. Other
regression analysis such as orthogonal regression may have better performance than the standard
linear regression [48]. In this paper, we do not perform standard regression analysis although it has
been widely used for the validation of aerosol satellite products. Instead, EE is widely used to show the
quality of aerosol satellite products. Chu et al. [25] validated MODIS AOT comparing AERONET AOT
from 30 sites and proposed that MODIS retrievals should fall into an EE of ±0.20AOTAERONET ± 0.05.
On this basis, EE analysis was used in validation of MODIS Collection 003, 004, 005, and 6 [5,24,25,27]
and narrowed from ±0.20AOTAERONET ± 0.05 to ±0.15AOTAERONET ± 0.05 [5,27]. Thus we define EE
following the standard MODIS products validation as

EE = ±0.15AOTAERONET ± 0.05 (8)

4. Results

In this section, we present the evaluation results for SU AATSR and AATSR/MERIS synergy
retrieval results. The data for the AATSR product can be downloaded from ICARE Data and
Services Center (http://www.icare.univ-lille1.fr/). For the synergy dataset contact the author
(p.r.j.north@swan.ac.uk). Because only four months of data (March, June, September, and December
2008) have been processed for AATSR/MERIS synergy retrieval, the global comparison will be
performed for these four months.

4.1. Global AOT Pattern Comparison

The first step in comparing SU/AATSR and SU/synergy aerosol products is to analyze the global
spatial distribution as it can provide an overview of the performance of different products, especially
for major aerosol source regions like the anthropogenic pollution regions of India and eastern China,
biomass burning regions in South Africa and South America, and desert and arid regions in North
Africa and western China [49,50]. The AOT global distribution includes all possible cloud cover,
aerosol, and surface types, which are the three aspects impacting retrieval quality. It also helps to
explore how cloud screening and geometry co-register between different instruments and how different
views impact data coverage and retrieval in different seasons. Additionally, the corresponding monthly
averaged surface reflectance at 550 nm is used to understand the influence of surface reflectance on
aerosol retrieval.

Figures 2a–5a (2a, 3a, 4a, 5a) present the monthly mean AOT of SU/AATSR and SU/synergy for
March, June, September, and December 2008 while Figures 2c–5c shows the monthly averaged AOT
difference. According to Figures 2a–5a, both algorithms show good performance, retrieving high AOT
(τ > 0.6) over North Africa, where the dominant aerosol is dust and biomass. Similar conclusions can
be achieved for regions like South Asia, where aerosols are dominated by soot aerosols from biomass
burning, urban emissions, or coal combustion. Almost no retrievals are provided for either dataset
over regions with latitudes larger than 50◦N in March and December. As well as the limited sunlight
during these months, two other reasons may contribute: (1) the large sun zenith angle, which has
been restricted to 70◦ in calculations using the lookup table (LUT) built by radiative transfer codes;
(2) the significant snow cover in high-latitude regions, which cannot be retrieved for either proposed
algorithm. It is interesting to note that the SU/synergy dataset has a larger coverage over high latitude
regions than the SU/AATSR; however, the SU/AATSR product has a larger coverage over land than
SU/synergy, especially over western China and Africa. This is mainly due to more conservative
cloud screening in the SU/AATSR aerosol product, which will be described later. Besides the cloud

http://www.icare.univ-lille1.fr/
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screening impact, the main reason involves differences of surface parameterization. According to
Figures 2c–5c, SU/synergy generally provides higher AOT values than SU/AATSR; regions with a
large AOT difference (∆τ > 0.1) are concentrated in areas with high AOT loadings such as Africa, North
India, and Eastern China. The patterns of AOT differences generally match AOT global distributions,
indicating that absolute AOT differences increase with an increase of AOT. However, relatively large
absolute AOT differences (over 0.1) are found in regions with relatively low AOT loading (AOT smaller
than 0.3), such as Mexico, Southern South America, and South Africa. This may be due cloud cover, the
complicated surface cover and high retrieval uncertainty due to less favourable solar view geometry in
the southern hemisphere, where we sample the weaker aerosol backscatter from AATSR oblique view.
Large predicted uncertainty in the retrieved AOT is also observed in the AOT uncertainty dataset
provided by both algorithms.

SU/synergy generally shows higher global AOT than SU/AATSR. However, some lower
SU/synergy AOTs are observed in northern South America, with limited sampling due to cloud
screening. The second region is the Congo Basin, with AOT loading from 0.3 to 0.6. The third region
is Australia, where the largest negative AOT values are found, with ∆τ > 0.1. The first and second
regions are dominated by higher absorbing aerosol concentrations (biomass burning), indicating
the potential impacts of aerosol type (especially the wavelength-dependent properties) in the two
retrieval algorithms, despite using almost the same components as those proposed in the Aerosol-CCI
project. The third region may further confirm the impact of aerosol typing because a large positive
difference is observed between the Sahara Desert regions while a negative difference is observed
over the Australian desert. Another potential impact may be attributed to the forward observation
capability of AATSR, which may provide different ‘information content’ for southern and northern
hemispheres. The ‘information content’ shows the capabilities of how precisely the proposed algorithm
can retrieve the target parameters. The new retrieval using SLSTR shows the impact of changing the
forward observations of AATSR to backward observations of SLSTR in the southern and northern
hemisphere [44].

Figures 2d–5d show the monthly averaged surface reflectance at 550 nm for the selected months.
It is clear that both two algorithms have the capability of retrieving AOT over bright surfaces (surface
reflectance at 550 nm > 0.3). The absolute AOT differences generally follow the patterns of surface
reflectance, which means that AOT differences increase with an increase of surface reflectance. This
can be explained by the characteristics of the satellite aerosol retrieval algorithm linked to information
content. Each surface type has a so-called critical surface reflectance (CSR), over which changes of
AOT cannot influence TOA reflectance [51]. Dark surfaces increase aerosol sensitivity due to lower
reflectance than CSR at each waveband, which enables retrieval over dark surfaces, generating AOT
with a high information content. However, over a relatively bright surface, TOA reflectance is less
sensitive to aerosol loading, especially for lower aerosol absorption values (e.g., desert regions), which
have smaller wavelength-dependence features [50].
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Aerosol types of high AOT quality are required for each month to understand the retrieval
algorithm. March represents spring in the northern hemisphere. Both algorithms provide no retrieval
over high latitudes, as shown in Figure 2a, due to snow cover or the high sun zenith angle, as well
as cloud screening. For tropical areas such as Africa, the aerosol type is dominated by dust aerosols
for Saharan areas [52] (surface reflectances at 550 nm > 0.3) and industrial and dust aerosols for
most parts of South Africa [53]. In contrast, absorbing aerosols such as biomass burning dominate
in northern South America [12], resulting in a negative AOT difference. Details of the AOT quality
relating to aerosol absorption are discussed in Section 4.3.2. AOT differences in the Australian desert
and surrounding coastal areas differ significantly from those in the Sahara Desert.

For June, retrievals over high latitude regions are greater for both algorithms than during March.
No retrieval over western China and western America is observed by SU/AATSR in June. Further
increases of AOT over North Africa are found for both datasets due to stronger dust plus biomass
burning. This enhances changes in the AOT differences over North Africa, as shown in Figure 3c.
Over southern North America and South Africa, where the aerosol source mainly constitutes urban
emissions and industrial pollution, the AOT differences are larger than 0.1. As shown in Figure 3d, the
surface reflectances in these areas are lower than 0.2, showing that the errors in aerosol typing may be
the leading factor for the large AOT differences. Over northern South America and inland Australia,
the AOT differences are still negative due to retrieval differences introduced by absorption aerosols.
A mixture of dust aerosols and biomass burning in North and Central Africa results in both positive
and negative AOT differences.

Compared to retrievals in June, one advantage of SU/synergy is its data coverage in September;
more aerosol retrievals occur over high latitudes. SU/synergy AOTs show positive differences
compared to individual SU/AATSR pixels, as shown in Figures 3a and 4b. The AOT differences
decrease to 0.01–0.1 over the northern hemisphere. Over southern South America, most AOT
differences are higher than 0.2 and the maximum AOT difference occurs over this area. Areas with
negative AOT differences are the same as in other months over inland Australia, northern South
America, and central Africa. The data coverage of AOT over northern South America is larger than
that in March for both datasets.

In December, the AOT data coverage decreases from that in other months with movement of the
sun zenith angle. AOT differences are lowest in all four months and almost all differences of pixels are
in the range of 0.01–0.1. Examples of high AOT differences (larger than 0.1) exist over the southern
hemisphere, especially southern South Africa, southern South America, and coastal areas of Australia.

In summary, AOTs derived from the SU/synergy algorithm are higher than those from SU/AATSR
in most areas. Negative differences presented in Figures 2c, 3c, 4c and 5c tend to concentrate over
central Africa, northern South America, and inland Australia. However, SU/AATSR AOTs are lower
than SU/synergy AOTs over most areas except inland Australia, central Africa, and northern South
America. This shows that the spatial distribution of overestimation is not consistent and has strong
geographic patterns.
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4.2. Global Validation Using AERONET

In Section 4.1, we qualitatively investigate the global difference between the two datasets. Here,
we collocate all SU/synergy L2 AOT data of the selected four months in 2008 with the AERONET L2
dataset for a quantitative analysis. All collocated in situ stations are included in the analysis, as well
as those in complicated coastal areas. Although aerosol retrieval around coastal areas may require



Remote Sens. 2018, 10, 1414 12 of 27

an additional separate analysis, as suggested by Wang et al. [54], we retain these match-ups in this
analysis. Figure 6a,b show the spatial distribution of AERONET sites where ground-based data are
used; the colors of each square indicate the match-up numbers of the collocation. In total, 742 matches
are successfully collocated for the SU/AATSR product with AERONET datasets from 162 sites and 681
matches are successfully collocated for the SU/synergy data with AERONET datasets from 174 sites.
The spatial distributions of AERONET sites with successful collocated matches are mainly determined
by data quality and coverage of satellite-derived AOT. According to the collocation number, the data
coverage of the SU/AATSR product is slightly larger than that of AATSR/synergy.
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Figure 6c,d reveals the spatial distribution of AOT biases of two datasets with respect to AERONET
datasets. The SU/synergy algorithm overestimates AOT (MBE ≥ 0.10) for most sites in tropical
areas (from the equator to 30◦N), especially those in northern Africa and southeastern coastal China.
On the other hand, it underestimates AOT over only a few sites, mainly in inland areas. However,
SU/synergy generally performs well over areas with more AERONET sites (more match-ups); thus,
on average, SU/synergy slightly overestimates AOT (MBE ≤ 0.04) over western Europe and most
parts of North America. The performance of SU/AATSR is better than that of SU/synergy, in that no
obvious overestimations or underestimations (except over desert regions) occur for most sites. AOT is
overestimated over a few sites in northern Africa with an RMB value over 0.10.

Figure 7a,b illustrate scatter plots of AERONET L2 data with two AATSR datasets; the areas of
each point represent the uncertainties of satellite retrieval (provided in the dataset) in each collocated
pair and colors represent the standard deviation of AOTs in a 50 × 50 km sample area. The magenta
points and lines are the mean and mean ± 2σ of satellite retrieved AOT in each AERONET AOT range
(0.1), respectively. The dashed bold lines stand for Expected Error (EE) of ±0.15AOTAERONET ± 0.05.
We also plotted AOT histograms in the bottom right corner of each scatter plot to understand the
distribution patterns of AOT biases. Basic statistics are included in the top left corner of each scatter
box, including the number of collocated pairs, the correlation coefficient (R), the root mean square
error (RMSE), and the percentages of matchups fall within, above, and below EE. R aims to find the
fitting agreement between the two datasets. However, the correlation coefficient cannot be taken as



Remote Sens. 2018, 10, 1414 13 of 27

an independent metric of accuracy; thus, RMSE is introduced as the main evaluation metric together
with R.
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in 2008. The colors of each point represent the AOT standard deviation in a sampling area measuring
50 × 50 km. Areas of each point represent the uncertainties of satellite retrieval (provided in the
dataset) for each collocated pair. The magenta points and lines are the mean and mean ± 2σ of satellite
retrieved AOTs in each AERONET AOT range (0.1). The dashed bold lines stand for expected error
(EE) of ±0.15AOTAERONET ± 0.05.

The uncertainty data in L2 datasets are included in the scatter plots to understand how the
single pixel retrieval error contributes to the validation. The areas of most points (averaged retrieval
uncertainties) are relatively small, indicating good qualities of both datasets in most cases. It should be
noted that the colors of these scatter points do not represent the density but the standard deviation
(Std) of retrieved AOT over a sampling area of 50 × 50 km. As well as the spatial variabilities of
AOT, extremely large Stds may also reveal the influence of cloud contamination in particular for large
spatial-window collocation [55], which plays a large role in the overestimation of AOT [56]. Points
above the 1-1 lines of both datasets with Std values over 0.1 tend to be contaminated by residual
cloud. From this point of view, the SU/AATSR dataset has a more homogenous AOT distribution and
potentially better cloud mask processing because the colors of the points in Figure 7b are generally
lighter than those in Figure 7a.

Detailed statistics of the comparison with AERONET are shown in Table A1. In total, SU/AATSR
collocated 742 matches, more than the 681 matches of SU/synergy. This is mainly due to the different
cloud screening of SU/synergy (discussed in Section 4.3.1). The four-month average values of MAA
for both the SU/AATSR and SU/synergy are 0.19. A difference between MSAs for the SU/AATSR and
SU/synergy occurs in the clear positive systematic error of SU/Synergy. It is obvious from Figure 7a,b
that all magenta points lie above the 1-1 line, which is also indicated by the RMB value of 1.39 and the
higher MSA value of 0.26. However, SU/AATSR does not exhibit overestimation, indicated by the fact
that the MSA (0.20) of SU/AATSR is closer to the MAA (0.19), and the magenta points are distributed
around the 1-1 line. According to Figure 7a, the performances of EE indicates overestimation of
SU/synergy (39.5% vs. 12.26%). 39.50% of matchups fall above EE and only 2.94% of matchups fall
below EE. Besides, SU/AATSR performs better than SU/synergy, indicated by 81.40% vs. 57.56%
falling into EE.
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In order to further understand the bias distribution patters related to AOT, we divide the AOT
difference between satellite-derived and AEROENT AOTs into six classes: lower than −0.2, −0.2
to −0.1, −0.1 to 0, 0 to 0.1, 0.1 to 0.2, and higher than 0.2 (Table 2). The pixels in each class exhibit
a continuous spatial distribution and strong geographic characteristics (Figures 2c–5c). The AOT
differences between SU/synergy AOT and SU/AATSR AOT are presented in Table 2 using SU/AATSR
as a reference. Most AOT differences fall into Class 3, ranging from 48.9% in June to 64.86% in
December. The percentages of Class 2 and Class 5 are similar, as are those of Class 1 and Class 5.
Negligible negative AOT differences are observed in Class 6 for all months. The best agreement
between SU/synergy and SU/AATSR occurs in December. The percentage of Class 1 and Class 2 AOTs
decreases to 2.86% and 10.16%, respectively. The percentage of Class 1 AOTs is 64.86% (maximum of
all months).

Table 2. Fraction of AOT differences between SU/AATSR and SU/synergy and AERONET.

Classes Range March June September December

Class 1 ∆τ > 0.2 4.38% 9.69% 9.64% 2.86%
Class 2 0.2 ≥ ∆τ > 0.1 17.19% 20.05% 17.39% 10.16%
Class 3 0.1 ≥ ∆τ > 0 61.53% 48.90% 57.63% 64.86%
Class 4 0 ≥ ∆τ > −0.1 13.82% 15.32% 12.27% 20.89%
Class 5 −0.1 ≥ ∆τ > −0.2 2.63% 4.62% 2.27% 1.13%
Class 6 −0.2 ≥ ∆τ 0.45% 1.43% 0.79% 0.14%

To further investigate the biases of the two retrieval algorithms, comparisons were performed
between SU/synergy, SU/AATSR, and AERONET observations for AOT difference ranges from above
0.1 to below 0.1. The results are presented as scatter plots in Figure 8. Figure 8a is the scatter plot of
satellite AOT data with AERONET ground-based AOTs; the evaluation metrics are included in the
upper left of each plot, including the number of total collocated points, the correlation coefficient,
the RSME, and the fraction of EE. The statistical values between satellite-derived AOT and the two
AOTs derived from the two algorithms are presented in Table 3. For the SU/AATSR AOT product,
the accuracy of the algorithm (compared to AERONET data) shows minimal changes, with RMSE
values from 0.079–0.098, R from 0.893–0.909, and fraction of match-ups fall into EE from 85.15% to
77.32% for ∆τ ≤ 0.1 and ∆τ > 0.1, respectively. According to Figure 8b, we can see that SU/Synergy
shows large overestimation especially for AOT bias larger than 0.1 compared to SU/AATSR (84.54%
vs. 15.46%). Almost no underestimation from SU/synergy can be found while 7.22% from SU/AATSR
is shown in Figure 8b, indicating the systematically error in surface parameterization in SU/synergy.
This indicates that SU/AATSR produces stable AOT. However, the SU/synergy AOT dataset shows
different features. RMSE values increase from 0.096–0.192 for ∆τ ≤ 0.1 and ∆τ > 0.1, respectively.
As mentioned before, SU/synergy shows systematic overestimation of AOT for the whole AOT range.
We further compare these two satellite datasets with each other; very good correlations are observed
with correlation coefficients of 0.990 and 0.979 for ∆τ ≤ 0.1 and ∆τ > 0.1, respectively. The absolute
differences between SU/synergy and SU/AATSR show a slight increase with an increase of AOT for
∆τ ≤ 0.1. However, a systematic overestimation of approximately 0.12 is observed in Figure 8b.

Table 3. Comparison of statistical values between SU/AATSR, SU/synergy, and AERONET.

Algorithm N R RMSE R_R EE_w EE_a EE_b

∆τ ≤ 0.1
SU/synergy

330
0.894 0.096

0.990
69.39% 28.18% 2.42%

SU/AATSR 0.893 0.079 85.15% 11.52% 3.33%

∆τ > 0.1
SU/synergy

97
0.911 0.192

0.979
15.46% 84.54% 0

SU/AATSR 0.909 0.098 77.32% 15.46% 7.22%
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Figure 8. Scatter plot of SU/synergy AOT and SU/AATSR AOT with AERONET data for AOT ≤
bias < 0.1 (a) and AOT bias > 0.1 (b). Blue points represent SU/AATSR AOTs and green points
represent SU/synergy AOTs. The magenta circles are the means of AOT difference in each range and
lines of the same color are the means ± σ. The dashed bold lines stand for expected error (EE) of
±0.15AOTAERONET ± 0.05.

4.3. Factor Analysis

The following sections discuss the three most important factors: cloud screening, surface
reflectance estimation, and aerosol typing, to qualitatively understand the two datasets according to
their retrievals.

4.3.1. Cloud Screening

Figure 9 illustrates the differences between SU/AATSR and SU/synergy. AATSR has a swath
width of approximately 500 km while the swath of MERIS is approximately 1150 km, more than twice
that of AATSR (Figure 9c). However, due to the characteristic of the synergy dataset, only the overlap
regions between MERIS and AATSR are used in the retrieval; thus, the advantage of the wide swath
of MERIS is not applicable. It is more interesting that SU/synergy AOT sometimes shows lower
coverage than SU/AATSR. Figure 9b,d show the AOT derived by SU/AATSR and SU/synergy over
northeast China and Korea. The retrievals over North Korea (red rectangle) from SU/AATSR have
much higher coverage than those of SU/synergy. According to the RGB figure presented in Figure 9a,c,
the AOT spatial distribution from SU/AATSR agrees better with the cloud cover. According to RBG
visualization, both MERIS and AATSR are cloud free, but SU/synergy AOT screens some ‘non-cloudy’
pixels. This is mainly because SU/synergy retrievals require that both AATSR (forward and nadir)
and MERIS (nadir) are detected as cloud free, which further reduces the retrieval coverage. However,
this indicates that SU/synergy is more likely to over-flag cloud than exhibit cloud contamination,
in contrast to SU/AATSR, which means that the overestimation of SU/synergy is due to surface
parameterization and aerosol typing.
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Figure 9. Influence of cloud masking in China and Korea: (a) AATSR RGB map, (b) SU/AATSR AOT,
(c) MERIS RGB map, and (d) SU/synergy AOT.

4.3.2. Surface Reflectance

In this section, we perform a quantitative comparison of the two datasets with respect to surface
reflectance. Note that this discussion assumes no influence of cloud contamination on all match-ups.
Thus, the standard deviation of AOT in a sampling area (0.5◦ × 0.5◦) was selected as a threshold of 0.1
to minimize potential cloud contamination [15].

Figure 10 shows the scatter plots of SU/synergy and SU/AATSR biases with respect to SU/AATSR
surface reflectance in the 550 nm wavelength, respectively. According to Figure 10a, SU/synergy
overestimates AOT for almost all match-ups under all surface reflectance conditions. The best
SU/synergy performances occur when surface reflectance is between 0.05 and 0.1. The average
mean AOT bias for those cases is smaller than 0.05. When surface reflectance increases from 0.1 to
0.3, the AOT bias becomes larger, with a mean value of 0.2. Instability of the SU/synergy retrieval
algorithm for each binned surface reflectance is reflected by the lengths of the magenta lines. The
performance of SU/synergy deteriorates slightly with the increase of surface reflectance, especially for
very bright surfaces where the reflectance at 550 nm is larger than 0.2. SU/AATSR typically shows no
obvious overestimation or underestimation when the surface reflectance is less than 0.2. When the
surface reflectance is more than 0.2, SU/AATSR tends to overestimate AOT with a bias from 0.05 to 0.1
(or above 0.3 in extreme cases, e.g., the Sahara Desert).
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The box plots in Figure 11 present the seasonal characteristics of surface reflectance, AERONET
AOT, SU/AATSR AOT, and SU/synergy AOT. In March, the surface reflectance at 550 nm changes
from 0.09 to 0.16. Compared to the AERONET observed AOT, the box of SU/AATSR shows almost the
same patterns as AERONET. A slight underestimate of high AOT and overestimate for low AOT is
observed. The SU/synergy algorithm overestimates AOT for all surface reflectance values. In June,
the changes of surface reflectance at 550 nm and AERONET AOT decrease. SU/AATSR shows a slight
underestimate while SU/synergy overestimates AOT, similar to March. In September, the surface
conditions are similar to June. The performance of SU/AATSR is good, and the box plot is almost
the same as that for AERONET. The SU/synergy still overestimates AOTs. In December, the surface
reflectance changes larger than in September. However, SU/synergy still overestimates AOT, but the
minimum overestimate occurs in December.
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represent the average value, 99% value, 1% value, maximum value, and minimum value of each group.

4.3.3. Aerosol Typing

Besides cloud screening and surface parameterization, aerosol typing is another important aspect
that should be discussed. Figure 12a,b present the dependence of the SU/synergy bias (SU/synergy
AOT—AERONET AOT) with respect to the Absorption AOT (AAOT) fraction and fine mode AOT
(FAOT) fraction. Figure 13a,b show the SU/AATSR bias. As discussed previously, the SU/AATSR
algorithm is generally more stable with respect to surface reflectance. Similar patterns are observed for
aerosol absorbing and size parameters. Figure 13 is more concentrated and shows some regular patterns
while Figure 12 exhibits no real patterns. Figure 12 shows that SU/synergy overestimates almost all
aerosol types; however, SU/AATSR underestimates both absorbing aerosols and fine-mode dominated
aerosols. Conversely, SU/synergy overestimates AOTs for both non-absorbing and coarse-mode
dominated aerosols. For cases where AAOTs/AOTs are less than 0.05 (i.e., the dominant aerosol type is
non-absorption aerosols), SU/synergy overestimates AOTs while SU/AATSR tends to underestimate
AOTs. This may explain the large positive differences of AOT difference (between SU/synergy and
SU/AATSR) over industrial areas (northern India, southern Africa, southern North America, and
southern South America). For AAOT/AOT over 0.05, the SU/AATSR bias becomes positive, in contrast
to smaller AAOT/AOT, and the differences of SU/AATSR and SU/synergy are comparable. This may
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explain the negative differences in northern South America, central Africa, and the Australian desert
in Figures 2c, 3c, 4c and 5c (blue color). Additionally, when the coarse mode dominates (FAOT/AOT
less than 0.4), SU/AATSR tends to underestimate AOT; it then overestimates AOT as the FAOT/AOT
increases. The SU/synergy algorithm exhibits hardly any regular patterns of AOT bias dependence
with respect to the fine-mode fraction.
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5. Conclusions

The SU AATSR V4.21 product was compared with an experimental retrieval developed by
Swansea University using AATSR and MERIS data for March, June, September, and December 2008
as part of the Aerosol-CCI project. Future work includes (1) investigating of the data qualities over
certain regions such as coast line and China; (2) the validation of the retrieval uncertainties, which will
be a valuable dataset to analyze and provide a better understanding of the aerosol data.

AERONET data are selected as reference data to validate the two SU datasets. AERONET
sites have an extremely uniform distribution over northern America and west Europe. Generally
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speaking, AOT retrievals depend on cloud screening, surface parameterization, and aerosol typing. The
SU/AATSR algorithm performs quite well for all AOTs over western Europe and northern America.
However, the SU/synergy algorithm overestimates AOT over western Europe and northern America.
This systematic error is predominantly caused by the surface assumptions and aerosol typing used
in the algorithm. In order to further understand the systematic differences between the SU/synergy
dataset and SU/AATSR dataset, the AOT difference maps between SU/synergy and SU/AATSR data
were created for the four selected months. The AOT differences show strong geographical and seasonal
characteristics. SU/synergy AOTs are higher than SU/AATSR AOTs, except over northern South
America, central Africa, and inland Australia. Comparisons between SU/synergy, SU/AATSR, and
AERONET observations further show the AOT quality of each retrieval. For cases where ∆τ ≤ 0.1, the
two algorithms have quite similar performances. However, for ∆τ > 0.1, SU/synergy performance
deteriorates while the performance of SU/AATSR remains the same.

The data quality of the two retrievals was further evaluated for cloud screening, surface
parameterization, and aerosol typing. SU/synergy shows stricter cloud screening than SU/AATSR,
indicating less possibilities for cloud contamination. The overestimation of SU/synergy is due to both
surface parameterization, especially for bright surfaces, and aerosol typing (for all aerosol sizes and
absorption). SU/AATSR data quality is better than that of SU/synergy; indicated by underestimated
fine-mode dominated aerosols and less absorbing AOTs, and vice versa for coarse-mode dominated
and non-absorbing AOTs. In summary, for most vegetated areas, SU/AATSR shows good performance
and SU/synergy tends to overestimate AOT for all (dark and bright) surfaces and aerosol conditions
(different sizes and absorption characteristics). SU/AATSR underestimates AOT for biomass burning
aerosols (absorption aerosols) and overestimates AOT for dust aerosols.

The comparison of validation results with the AERONET observations illustrates that the
SU/AATSR algorithm exhibits better performance than the SU/synergy algorithm, since a positive bias
was introduced in the synergy retrieval of AOD. A number of differences may explain this. The synergy
algorithm .did not use explicit cloud screening for the oblique view, and angular component is based on
an earlier version than the V4.21 product. Over ocean, despite using identical retrievals on AATSR only,
the clear positive bias reported by the synergy algorithm indicates extensive cloud contamination due to
lack of oblique view screening. In addition, the application of multiple instruments and multiple views
introduces more errors, including those from co-registration between different datasetsg. Nevertheless,
the synergy retrieval achieved similar or better overall correlation with AERONET, with R = 0.9 for
synergy and R = 0.89 for the AATSR product. While some positive bias is explained due to incomplete
cloud screening in the synergy processing, it is clear also that the initial surface spectra used for the
spectral component of the retrieval need to be refined for future versions to reduce bias. This can
be informed by similar work on spectral retrievals for MERIS and OLCI [20,50]. While ability to use
full information from AATSR and MERIS ENVISAT instruments is demonstrated, further work is
needed to improve treatment of surface spectra in particular to eliminate bias, and to prepare for
implementation on OLCI/SLSTR on Sentinel-3.
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Figure A1. Seasonal (March, June, September, and December) scattering plots of AERONET data with
SU/synergy and SU/AATSR data, 2008. (a) synergy AOT vs. AERONET AOT in March, (b) AATSR
AOT vs. AERONET AOT in March, (c) synergy AOT vs. AERONET AOT in June, (d) AATSR AOT
vs. AERONET AOT in June, (e) synergy AOT vs. AERONET AOT in September, (f) AATSR AOT vs.
AERONET AOT in September, (g) synergy AOT vs. AERONET AOT in December, and (h) AATSR
AOT vs. AERONET AOT in December.
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of (a) synergy collocated pairs, (b) AATSR collocated pairs, (c) the synergy collocated pairs difference,
(d) the synergy AOT difference (synergy AOT—AERONET AOT), and (e) the AATSR AOT difference
(AATSR AOT—AERONET AOT).
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Table A1. Validation statistics of SU/synergy and SU/AATSR AOT products.

N MSA MAA MBE MAE RMSE RMB EE_w EE_a EE_b R

SU/AATSR

March 166 0.24 0.23 0.01 0.06 0.09 1.03 80.72% 14.46% 4.82% 0.93
June 224 0.18 0.27 0.01 0.06 0.12 1.05 76.79% 13.39% 9.82% 0.86

September 243 0.19 0.19 0.00 0.05 0.08 1.01 85.60% 7.82% 6.58% 0.89
December 109 0.19 0.17 0.01 0.04 0.06 1.07 82.57% 16.51% 0.92% 0.94

All 742 0.20 0.19 0.01 0.05 0.10 1.03 81.40% 12.26% 6.33% 0.89

SU/synergy

March 185 0.29 0.21 0.08 0.09 0.12 1.37 57.76% 40.54% 2.70% 0.94
June 176 0.26 0.18 0.09 0.10 0.15 1.50 49.43% 48.30% 2.27% 0.90

September 188 0.25 0.18 0.07 0.08 0.11 1.37 60.11% 37.23% 2.66% 0.87
December 132 0.22 0.17 0.05 0.07 0.10 1.28 65.91% 29.55% 4.55% 0.88

All 681 0.26 0.19 0.07 0.09 0.12 1.39 57.56% 39.50% 2.94% 0.90
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