
remote sensing  

Article

Seismological Observations of Ocean Swells Induced
by Typhoon Megi Using Dispersive Microseisms
Recorded in Coastal Areas

Jianmin Lin 1,2,* , Sunke Fang 1 , Xiaofeng Li 3 , Renhao Wu 1 and Hong Zheng 1,*
1 Marine Acoustics and Remote Sensing Laboratory, Zhejiang Ocean University, Zhoushan 316021, China;

fangsunke@outlook.com (S.F.); mikewu@zjou.edu.cn (R.W.)
2 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences,

Beijing 100190, China
3 Global Science and Technology, National Oceanic and Atmospheric Administration (NOAA)-National

Environmental Satellite, Data, and Information Service (NESDIS), College Park, MD 20740, USA;
xiaofeng.li@noaa.gov

* Correspondence: jmlin007@zjou.edu.cn (J.L.); seahzheng@msn.com (H.Z.);
Tel.: +86-580-218-3617 (J.L.); +86-580-255-0753 (H.Z.)

Received: 14 August 2018; Accepted: 6 September 2018; Published: 8 September 2018
����������
�������

Abstract: Typhoons in the western Pacific Ocean can generate extensive ocean swells, some of which
propagate toward Taiwan, Luzon, and the Ryukyu Islands, impacting the coasts and generating
double-frequency (DF) microseisms. The dispersion characteristics of DF microseisms relevant to
the propagation of ocean swells were analyzed using the fractional Fourier transform (FrFT) to
obtain the propagation distance and track the origins of typhoon-induced swells through seismic
observations. For the super typhoon Megi in 2010, the origin of the induced ocean swells was tracked
and localized accurately using seismic records from stations in eastern Taiwan. The localized source
regions and calculated wave periods of the ocean swells are in good agreement with values predicted
by ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF).
However, localized deviations may depend on the effective detection of dispersive DF microseisms,
which is tied to both coastline geometry and the geographic locations of seismic stations. This work
demonstrates the effectiveness of seismological methods in observing typhoon-induced swells. The
dispersion characteristics of DF microseisms recorded by coastal stations could be used as a proxy
measure to track and monitor typhoon-induced swells across oceans.
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1. Introduction

Swells induced by a typhoon can be devastating and commonly cause major damage to ships
and coastal infrastructure, as they can propagate over long distances with their energy only weakly
attenuated [1,2]. In addition to strong societal and environmental consequences, swells can have
observable impacts on ocean surface roughness, wind stress, air–sea interactions, global climate, and
possibly mixing in the global ocean [3–7]. As a result, research on swells recently became a subject
of increasing interest in the discipline of ocean science [8,9]. However, there is still little quantitative
research on this topic, and the processes that control swell evolution on large scales remain unclear.

Based on the coherent persistence of swells along their propagation routes, synthetic aperture
radar (SAR) was shown to be an effective approach to track swells across the ocean [10–12].
Jiang et al. [13] successfully tracked the propagation of storm swells from source regions around
58◦S, 132◦W to the coast of Mexico using SAR wave mode data. Ardhuin et al. [2] observed the
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dissipation of swell energy from a number of storms using high-quality global SAR data, and found
that swells propagated distances of 2800 to >20,000 km, depending on the swell steepness. However,
SAR sampling cannot be applied when mismatched to the natural swell propagation. Consequently,
Ardhuin et al. obtained only 22 total estimates of the swell energy budget at peak periods of 13–18 s
from 10 storms recorded during the period 2003–2007.

Because typhoon-induced swells seldom propagate across any measurement array that is
deployed in advance, it can be difficult to observe them using in situ measurements. To date, to
our knowledge, only the experiment of Snodgrass et al. [1] and the measurements of wind-wave
growth and swell decay during the Joint North Sea Wave Project (JONSWAP) by Hasselmann et al. [14]
were able to investigate swell evolution at large scales. Therefore, observational studies of swell
propagation are relatively scarce.

In recent years, a new method of observing swells emerged, based on seismic records of
typhoon-generated noise (i.e., “microseisms”) [15–20]. Seismic noise is used here as a proxy for
swell monitoring in areas where ocean wave gauges are poorly instrumented. This interdisciplinary
approach, spanning ocean acoustics, marine geophysics, and physical oceanography, could also
remotely sense the propagation of swells generated by typhoons, with a focus on locating the source
area and estimating the origin times of swells. This is expected to complement existing observational
methods and numerical simulations of swells.

Microseisms are the most energetic component of seismic noise, with a typical frequency peak of
~0.05–0.4 Hz [21–23]. Ocean wave activity was long accepted as the major source of microseisms [24].
A portion of the energy inherited from ocean waves at the sea surface (e.g., generated by typhoons)
can propagate to the sea floor or shoreline and be transferred to seismic waves in basement rocks
as microseisms. These microseisms can propagate as both surface waves (mainly Rayleigh) and
compressional (P) waves, which can be recorded by broadband seismometers located thousands of
kilometers from the source [25–28]. Recent studies also reported Love waves and S waves detected in
microseismic signals [29,30].

Microseisms can be divided into two distinct bands in the frequency domain, which are
called single-frequency (SF, ~0.05–0.12 Hz) and double-frequency (DF, ~0.12–0.4 Hz) microseisms.
Each band is generated by a different physical process. SF microseisms are generated by the direct
interaction of pressure fluctuations induced by ocean waves with the shallow seafloor or the shore,
and therefore, typically have energy concentrated in the same frequency band as ocean waves [31].
Because ocean-wave-induced pressure fluctuations attenuate exponentially with water depth with
an e-folding constant equal to the wavenumber [32], the source regions of SF microseisms are
generally areas of shallow coastal water. DF microseisms are observed at higher intensities than SF
microseisms and are characterized by dominant frequencies of approximately twice the corresponding
ocean wave frequencies. They are generated by depth-independent seafloor pressure fluctuations
that are induced by the nonlinear interference of ocean waves with nearly opposite propagation
directions at similar periods [24]. Based on the Longuet-Higgins theory, Ardhuin et al. [33] developed
the first numerical model of DF microseism generation by random ocean waves and presented a
classification system for DF microseism generation from wave–wave interactions under typhoon
conditions. In their classification, Class-I microseisms are produced by interactions between opposing
ocean waves generated by a rapidly moving typhoon at different times, Class-II microseisms are caused
by the interaction between typhoon-induced swells incident on coasts and their coastal reflections, and
Class-III microseisms arise from interactions between ocean waves generated by two distinct typhoons.

DF microseisms could be used to monitor typhoons and to track typhoon-induced
swells [25,28,34–36], because typhoon-induced swells are dispersive surface gravity waves that
propagate in deep water over long distances. The swells can reach and impact coastlines, generating
dispersive DF microseisms due to interactions between incident swells and opposing components
from coastal reflection. Consequently, the time–frequency evolution of dispersive DF microseisms is
closely related to the dispersion of typhoon-induced swells, and can, therefore, provide a potential
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way to characterize the propagation of typhoon-induced swells, which are rarely observed using
conventional equipment.

To our knowledge, Barruol et al. [17,18], Cathles et al. [19], and Davy et al. [20] are the only
existing studies that used seismic signals to remotely detect typhoon-induced ocean swells. Specifically,
Barruol et al. [17,18] used seismic stations as alternatives to ocean wave buoys for analyzing ocean
wave activity, employing microseisms to estimate swell height and propagation direction through
polarization analysis. Cathles et al. [19] used seismic observations of 93 distant ocean swell events
recorded on the Ross Ice Shelf during 2004–2006 to demonstrate that typhoon-induced swells could
have a tangible mechanical influence on the calving margins of the Antarctic Ice Sheet. Davy et al. [20]
investigated microseisms of extreme swell events recorded on La Réunion island using seismic
stations as ocean wave gauges, verifying that microseisms can provide valuable insights into extreme
swell events. Although both Barruol et al. [17,18] and Davy et al. [20] proposed retrieving the swell
propagation direction from the azimuth of the seismic noise using polarization analysis, these studies
treated the origin of each swell as a static point, rather than a dynamic feature with a distributed source
whose centroid changes with the temporal evolution of a typhoon.

Approximately 30% of tropical cyclones occur in the northwest Pacific, which makes this an
ideal study area [37,38]. Typhoon Megi was one of the most intense typhoons in the northwest Pacific
during 2010, with Category 5 strength on the Saffir–Simpson hurricane wind scale. The present work
is a proof-of-concept study for investigations of typhoon-induced ocean swell origins during the
lifespan of Typhoon Megi, using seismic data recorded in coastal areas. We first investigated the DF
microseisms recorded during Typhoon Megi by terrestrial seismic stations on Taiwan and the Ryukyu
Islands. We then inverted for the origin time and source region of typhoon-induced swells using the
dispersion characteristics of DF microseisms, and obtained results that are generally consistent with
ERA5 reanalysis of ocean wave data. This demonstrates that seismic monitoring could allow us to
track typhoon-induced swells using microseisms recorded at coastal sites.

2. Data

According to the best-track data of the Regional Specialized Meteorological Center (RSMC),
Megi formed over the deep Philippine Sea on 13 October 2010, and intensified to super typhoon
classification, with 10-min maximum sustained wind speeds up to ~230 km/h recorded early on
18 October 2010. Megi moved into the South China Sea (SCS), then turned north to the Taiwan Strait
after making landfall on Luzon Island, Philippines on 18 October 2010, and made a second and final
landfall in southeast (SE) China on 23 October (Figure 1). The long track course of Megi, with a
principally westward-moving direction over the deep Philippine Sea, provided ample opportunity to
generate intense ocean swells propagating toward Taiwan and the Ryukyu Islands. The subsequent
DF microseisms were used here to track typhoon-induced swells using seismological methods.

Continuous vertical-component seismic waveform data recorded by stations in Taiwan and the
Ryukyu Islands were obtained from the Incorporated Research Institutions for Seismology (IRIS)
Data Management Center and the F-net network of Japan (Figure 1). The ERA5-reanalyzed ocean
wave data used in this paper were provided by the ECMWF. Downloaded data covered the period of
10–23 October 2010, comprising the lifespan of Typhoon Megi and three days prior to its onset.
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Figure 1. Distribution of seismic stations (red triangles) and trajectory of Typhoon Megi (colored 
circles) in the western Pacific Ocean, with a superimposed Quick-Look image of Megi captured by 
Modis on 17 October 2010 at 04:55 coordinated universal time (UTC) 
(https://ladsweb.modaps.eosdis.nasa.gov). The seismic stations are mostly from the Broadband 
Array in Taiwan for Seismology (BATS) and the F-net network of Japan. The typhoon track is 
indicated by rounded circles, equally spaced in time at six-hour intervals, with circle size and color 
related to wind speed. The best-track data of Megi were provided by the Japan Meteorological 
Agency (http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html). 
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the following steps: (1) demeaning and detrending; (2) removal of the instrument response; (3) 
resampling to one point per second; and (4) filtering with a band-pass filter from 0.05 to 0.45 Hz. 
Secondly, spectrograms were calculated from preprocessed data using a Fourier transform with a 
moving-window length of 2048 samples shifted in steps of 1800 samples (i.e., half an hour). Figure 2 
shows sample power spectrograms recorded during Typhoon Megi at the seismic stations indicated 
by red triangles in Figure 1. The spectrograms effectively detected the DF microseisms generated by 
Megi, and were uncontaminated by transient events such as earthquakes, instrumental 
irregularities, and non-stationary noise, which appear as short pulses later in the spectrograms. The 
plots show the temporal evolution of recorded microseisms during the course of Megi. The 
dispersive DF microseismic signals inspired the investigation of the generation and propagation of 
typhoon-induced swells using seismological observations. 

Figure 1. Distribution of seismic stations (red triangles) and trajectory of Typhoon Megi (colored circles)
in the western Pacific Ocean, with a superimposed Quick-Look image of Megi captured by Modis on
17 October 2010 at 04:55 coordinated universal time (UTC) (https://ladsweb.modaps.eosdis.nasa.gov).
The seismic stations are mostly from the Broadband Array in Taiwan for Seismology (BATS) and the
F-net network of Japan. The typhoon track is indicated by rounded circles, equally spaced in time
at six-hour intervals, with circle size and color related to wind speed. The best-track data of Megi
were provided by the Japan Meteorological Agency (http://www.jma.go.jp/jma/jma-eng/jma-center/
rsmc-hp-pub-eg/trackarchives.html).

To investigate the characteristics of the microseisms generated by typhoon-induced swells,
power spectrograms were computed from seismic data to reveal the intensity of the microseisms
as a function of time and frequency. Firstly, the original seismic waveform data were preprocessed
with the following steps: (1) demeaning and detrending; (2) removal of the instrument response;
(3) resampling to one point per second; and (4) filtering with a band-pass filter from 0.05 to 0.45 Hz.
Secondly, spectrograms were calculated from preprocessed data using a Fourier transform with a
moving-window length of 2048 samples shifted in steps of 1800 samples (i.e., half an hour). Figure 2
shows sample power spectrograms recorded during Typhoon Megi at the seismic stations indicated
by red triangles in Figure 1. The spectrograms effectively detected the DF microseisms generated by
Megi, and were uncontaminated by transient events such as earthquakes, instrumental irregularities,
and non-stationary noise, which appear as short pulses later in the spectrograms. The plots show the
temporal evolution of recorded microseisms during the course of Megi. The dispersive DF microseismic
signals inspired the investigation of the generation and propagation of typhoon-induced swells using
seismological observations.

https://ladsweb.modaps.eosdis.nasa.gov
http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html
http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html
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3. Methods

Our overarching goal was to remotely sense the generation of typhoon-induced swells via
dispersive DF microseisms. To that end, we firstly detected the arrivals of typhoon-induced swells
using the principal function of the spectrograms calculated before analysis. We then identified the DF
(Class-II) microseisms using the swaths of relatively high signal energy density that tilt from lower-left
to upper-right (indicating dispersion) in Figure 2 (dashed ellipses).

3.1. Location and Timing of Swell Origin

We calculated great-circle distances and travel times of typhoon-induced swell propagation from
the origin to the coastlines, where coastal seismic stations are deployed in the vicinity, based on the
method presented by Munk et al. [39].

Typhoon-induced swells propagating on deep water could be considered as surface gravity waves.
According to the linear theory for waves forced by gravity, the group velocity could be expressed by

Cg =
1
2

√
gλ

2π
=

g
4π

T, (1)

where g = 9.81 m · s−2 is acceleration due to gravity, λ is wavelength, and T is wave period. Therefore,
the group velocity increases with the period in deep water. Assuming ocean swells with frequency fw

propagate a distance x, the corresponding travel time t could be computed as follows:

t =
x

Cg
=

4πx
g

fw. (2)
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The partial derivative from Equation (2) is

dt
d fw

=
4πx

g
. (3)

Thus, the ocean swell propagation distance could be derived by

x =
g

4π
(

d fw

dt
)
−1

. (4)

Because the frequencies of DF microseisms are nearly twice those of the corresponding ocean swells [24],
when the ocean swell frequency fw in Equation (4) is replaced with the DF microseism frequency, the
swell propagation distance will be

x =
g

2π

[
d f
dt

]−1
, (5)

where f is the frequency of the recorded dispersive DF microseisms in Hz; d f /dt represents the
time–frequency slope that can be calculated using the fractional Fourier transform (FrFT; see Section 3.2)
based on the calculated spectrograms.

Similarly, according to Equation (2), the corresponding travel time of the swells could also be
expressed with the DF microseism frequency as follows:

t =
2π f

g
x. (6)

Therefore, we firstly computed the slope of the characteristic frequency of the dispersive DF
microseisms versus time d f /dt on the basis of the calculated power spectrograms. Then, we could
determine the propagation distance x of the swells according to Equation (5), and estimate the travel
time using Equation (6).

Figure 3 shows a diagram of the generation of dispersive Class-II DF microseisms by
typhoon-induced swells, which are frequency-dispersed after long-distance propagation, and
summarizes the geometry of the dispersive DF microseisms depicted in the spectrograms. To calculate
swell propagation distance x and travel time t, the linear swath of high signal intensity in the
spectrogram is identified by visual inspection and defined as indicated by the rhomboidal shape
in Figure 3b. In our preliminary study of the characteristics of microseisms generated by Typhoon
Megi [28], dispersive DF microseisms generated in coastal source regions were distributed mainly below
0.2 Hz. Therefore, the upper frequency limit of the inspected region was set to 0.18 Hz here, which could
be regarded as the boundary between the dispersive (pink ellipse in Figure 3b) and non-dispersive
(blue-gray ellipse) microseisms.

We emphasized the dispersive characteristics using three additional processing steps. (1) A
least-squares regression was used to fit a line to the dominant energy of the inspected region (red
line in Figure 3b); i.e., the point (t, f ) with the highest spectral amplitude S(t, f ) at each time t in
the selected region. (2) Points (t, f ) distributed below the regression line were selected for further
processing and were defined as the FrFT region in Figure 3b. (3) Finally, we applied an FrFT to process
the dispersive DF microseisms, to compute d f /dt in Equation (5), and thereby, to determine x. Since
the swell origin is a complicated air–sea interaction process, which spreads over significant distances
and time as the typhoon moves and evolves, the time length of the moving window for the FrFT
calculation was set to three hours, during which we assumed that the swell origin was quasi-constant
in time and space.
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Figure 3. Schematic of (a) DF microseism generation by typhoon-induced swells, and (b) dispersive
DF microseisms as they would appear on a spectrogram. When the typhoon-induced swells propagate
through deep water over long distances, high-frequency components travel more slowly than
low-frequency components, and consequently, the observed DF microseisms are frequency-dispersed,
with an energy distribution (pink ellipse) tilting from lower-left to upper-right. For interpretation, see
the text.

3.2. Fractional Fourier Transform

The fractional Fourier transform (FrFT) was introduced by Namias [40] and is now widely applied
in various fields of study as a rotation operator in the time–frequency plane [41,42]. The FrFT is suitable
for analyzing linear frequency-modulated (LFM) signals due to their energy concentration, as they
have linear instantaneous frequencies in a subregion of their total bandwidth. The FrFT is defined by
the transformation kernel Kα(t, u); for an LFM signal x(t), this can be expressed by

Xα(u) =
∫ ∞

−∞
x(t)Kα(t, u)dt, (7)

Kα(t, u) =


√

1− i cot α exp(i2π( t2+u2

2 cot α− tu
sin α )) α 6= nπ

δ(t− u) α = 2nπ

δ(t + u) α = (2n + 1)π

, (8)

where α is the angle used to apply a rotational transformation to the conventional time–frequency
axes. The optimal α value yields the highest-magnitude response to the LFM signal. According to
Reference [43], the optimal transform angle α is numerically related to the rate of the LFM signal χ by

α = −arctan(
F2

s /Ω
2χ

), (9)

where Fs is the sampling rate and Ω is the total number of time samples. The frequency-versus-time
slope in this paper, d f /dt, was computed from χ according to Equation (9).

4. Results and Discussion

4.1. Swell-Generated DF Microseisms

The DF microseisms generated by Typhoon Megi were detected effectively on spectrograms
(Figure 2), with little contamination. Occasional high-amplitude transient events, such as earthquakes,
instrumental irregularities, and non-stationary noise, appeared as short pulses on the spectrograms.
Before 17 October 2010, when the typhoon center was still over the deep Philippine Sea (Figure 1), we
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observed weak DF microseisms above 0.2 Hz, which were shown to have Class-I source mechanisms
and centroids around the typhoon center [28].

Figure 4 shows the distributions of the peak periods of ocean waves when Typhoon Megi was
still over the Philippine Sea. The majority of typhoon-induced swells propagated nearly westward,
to Taiwan and Luzon islands. Because of the dispersive effects of surface gravity waves on deep
water, the low-frequency waves (deep red color in Figure 4) propagated at a higher group velocity
than the high-frequency components, thus arrived and interacted earlier with the coasts to generate
low-frequency DF microseisms.
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The distribution of peak periods of ocean waves in 6-h time intervals on 15–17 October 2010 (a–i)
was predicted by ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts
(ECMWF), and hurricane symbols indicate the location of the typhoon center at each time.

DF microseisms were observed on 17–18 October 2010 with dominant frequencies that increased
almost linearly from 0.12 to 0.20 Hz (Figure 2). In our preliminary study [28], we noted that these DF
microseisms were expected to originate near local coasts (i.e., along the SE coast of Taiwan) due to
interactions between reflected ocean swells and subsequent incident swells. This is consistent with
the propagation of typhoon-induced swells shown in Figure 4. The onset of these dispersive DF
microseisms in the late afternoon of 17 October 2010 was in good agreement with the time when the
first low-frequency swells arrived at the eastern coastline of Taiwan. The time–frequency characteristics
of these DF microseisms reflect the dispersion of the corresponding ocean swells, and could, thus, be
used as a proxy to explore the generation and propagation of typhoon-induced swells.

4.2. Origins of Typhoon-Induced Swell

The derived propagation distances of the typhoon-induced swells were compared with the
distances from the seismic stations to the typhoon centers indicated by the best-track data (Figure 5).
The correlation coefficients (CC) between the least-squares regression lines (pink lines in Figure 5a–f)
and the corresponding dominant energy points (i.e., the points (t, f ) with the highest spectral
amplitude S(t, f ) at each time t) in the inspected region were all above 0.8, indicating linear dispersion
of the DF microseisms. However, when the slope of the least-squares regression line was used in
Equation (5) directly, we found that the estimated swell source regions were located at a distance
(~1000 km) from the trajectory of Megi (Figure 5g–l). It is likely that the typhoon moved significantly
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over this long time interval, and the induced ocean waves, thus, developed into ocean swells at
locations far from the typhoon trajectory. Therefore, the inspected region was segmented into
three-hour time windows, during which the typhoon was assumed to move minimally and the
swell origin was constrained to a quasi-static region in space and time. The FrFT was then computed
for each successive segment of DF microseisms to obtain the corresponding swell propagation distance.
We find that these distances are generally coincident with the locations of the typhoon center after
15 October 2010, when Megi strengthened to become a typhoon (Figure 5g–l).
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Figure 5. Estimation of the propagation distance x of typhoon-induced swells from the origin to the
Taiwan coastline based on seismic records. (a–f) Dispersive DF microseisms generated by the ocean
swells induced by Typhoon Megi on power spectrograms computed using data from seismic stations
in Taiwan. The pink solid lines superimposed on the spectrograms represent least-squares regression
lines as in Figure 3b, and dark lines denote the calculated slope d f /dt of the dispersive DF microseisms
in successive three-hour time windows. (g–l) Comparison between estimated propagation distances of
typhoon-induced swells and distances from the typhoon center to seismic stations (red lines). Large
pink dots and small gray dots represent calculated propagation distances using the pink and dark lines
in the subfigures in the left column, respectively.

Figure 6 shows the propagation distance x, the initial wave period T, and the origin time t2 of the
typhoon-induced swells derived from the dispersion characteristics of DF microseisms recorded by
station YULB, which is located close to the coastline (~18 km) of eastern Taiwan (Figure 1). Probable
source regions are indicated by dotted circles with their centers at the station location and their radii
equal to the propagation distance x. We assumed that the most likely source regions of long-period
ocean swells had the highest-amplitude significant wave heights, and therefore, we superimposed
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the significant height of the total swell predicted by ERA5 reanalysis at time t1, which was close to
the calculated swell origin time t2, in Figure 6a–c. Furthermore, the corresponding peak wave period,
which reports the wave fronts of the long-period ocean swells, was superimposed on the plots of
Figure 6d–f. We compared the origins of typhoon-induced swells calculated from DF microseisms
with ocean-wave state data provided by ERA5 reanalysis and found good consistency between the
two estimates. These results indicate that the dispersion characteristics of DF microseisms recorded by
coastal seismic stations could be a useful proxy for tracking and monitoring typhoon-induced swells
over oceans.
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Figure 6. Typhoon-induced swell propagation calculated from dispersive DF microseisms at station
YULB, compared with (a–c) significant heights of total swells and (d–f) peak wave periods at time t1

as predicted by ERA5 reanalysis. The dotted circle centered on station YULB, with radius equal to
the propagation distance x, represents the probable location of the origin of each swell. The origin
time and initial wave period of the typhoon-induced swell are denoted t2 and T, respectively, and the
hurricane symbols indicate the locations of the typhoon center.

4.3. Localization Deviations

The effective generation of dispersive DF microseisms depends on the properties of the coastlines,
where reflected and incident typhoon-induced swells interact to generate DF microseisms. For example,
the DF microseisms that we observed were weaker in the Ryukyu Islands than in Taiwan, as shown in
Figure 2. It is likely that the coastlines of the Ryukyu Islands are not long enough to produce the strong
reflections necessary for strong DF microseisms. Consequently, coastal seismic stations in eastern
Taiwan, such as station YULB, were primarily used in this study. In addition, the geometry of the
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coastlines has a strong influence on the generation of DF microseisms [44], as such microseisms can only
be generated effectively when incident ocean swells are reflected in the opposite direction by the coast,
and subsequently, interfere with later incident swells. Figure 7 shows several coastline geometries
that could contribute effectively to the generation of DF microseisms. The topographic properties
of the coastlines, such as steepness, will also affect the reflection coefficients of incident swells and
further affect the efficiency of the generation of DF microseisms, as described by Ardhuin et al. [33].
In addition, the effective generation of dispersive DF microseisms depends on the intensity of the
incident ocean swells; e.g., before Megi strengthened into a typhoon, its induced ocean waves and
swells were not strong enough to generate DF microseisms at high signal-to-noise ratios (SNRs) in
Taiwan. Consequently, the computed swell propagation distances were not so consistent with the
locations of the typhoon center for the period before 15 October 2010 (Figure 5).
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Figure 7. Examples of coastline geometries that facilitate the generation of dispersive DF microseisms,
including (a) straight coast, (b) rectangular coast, (c) bay, and (d) channel. In all cases, the coast
provides opportunities for interference between incident and reflected ocean waves with similar
periods. Landscape images were downloaded from Google Maps.

Furthermore, the geographic locations of seismic stations have considerable influence on the
effectiveness of our method for tracking typhoon-induced swells. Figure 8 shows a possible source of
error in our localization method caused by the location of a seismic station relative to the coast. The
calculated propagation distance x of the typhoon-induced swell is theoretically expected to equal the
true propagation distance r from the swell source region to the coastal source of the DF microseisms.
However, in the localization process, the derived source regions of ocean swells are restricted to an
arc of radius x centered on the seismic station rather than the coast. Hence, the distance vector from
the seismic station to the source of the DF microseisms contributes to the localization misfit. Further
investigation of the coastal source regions of the dispersive DF microseisms is necessary to evaluate
and correct these deviations, and such an effort is essential to improve this method.
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geographic location of the seismic station.

From our preliminary investigation [28], DF microseisms with coastal sources propagate inland
and gradually attenuate; thus, coastal stations generally record stronger DF microseisms than inland
sites. Therefore, the distance inland of the seismic station plays an important role in determining
the SNR. For example, stations located relatively close to the eastern coast of Taiwan, such as YULB,
NACB, and TWGB, detected stronger dispersive DF microseisms (Figures 2 and 5). This is one of the
principal reasons why station YULB was used in this study. In addition, the detection and calculation
of dispersive DF microseisms are affected by local background noise, including undesirable signals
induced by local site effects.

Finally, localization deviations could also be affected by the accuracy of the fundamental
assumptions of this method. The ocean swell propagation distance x is calculated from the frequency
dispersion relationship of the ocean swells, and is directly used in computing the great-circle distance
from the observation site to the swell source region. However, the actual propagation route of the
swells can be affected by factors including sea surface winds, ocean currents, wave–wave interactions,
and seafloor topography near the coast, leading to deviations of the propagation path from an idealized
great circle. As a result, as typhoon-induced swells propagate farther, and these factors increasingly
affect the deviation, resulting in larger errors in the localization of swell source regions, as shown
in Figure 5.

5. Conclusions

Ocean swells induced in the western Pacific Ocean by Typhoon Megi in 2010 were tracked
effectively using DF microseisms recorded by seismic stations in eastern Taiwan. The frequency
dispersion of the DF microseisms was used to calculate the propagation distance and constrain the
source regions of ocean swells. Localized source regions and calculated wave periods of ocean swells
were generally consistent with ocean-wave field data provided by ERA5 reanalysis from ECMWF.
Although localization results can depend on the effective detection of dispersive DF microseisms,
which is tied to both coastline geometry and the locations of the seismometers, the present results
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indicate that the dispersion characteristics of DF microseisms recorded by coastal seismometers could
be a viable proxy measure for tracking and monitoring typhoon-induced swells across the oceans.
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