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Abstract: The region-based convolutional networks have shown their remarkable ability for object
detection in optical remote sensing images. However, the standard CNNs are inherently limited
to model geometric transformations due to the fixed geometric structures in its building modules.
To address this, we introduce a new module named deformable convolution that is integrated into
the prevailing Faster R-CNN. By adding 2D offsets to the regular sampling grid in the standard
convolution, it learns the augmenting spatial sampling locations in the modules from target tasks
without additional supervision. In our work, a deformable Faster R-CNN is constructed by
substituting the standard convolution layer with a deformable convolution layer in the last network
stage. Besides, top-down and skip connections are adopted to produce a single high-level feature map
of a fine resolution, on which the predictions are to be made. To make the model robust to occlusion,
a simple yet effective data augmentation technique is proposed for training the convolutional neural
network. Experimental results show that our deformable Faster R-CNN improves the mean average
precision by a large margin on the SORSI and HRRS dataset.
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1. Introduction

Recently, Convolutional Neural Networks (CNNs) [1] have achieved flourishing success for visual
recognition tasks, such as image classification [2], semantic segmentation [3], and object detection [4].
With the powerful feature representation capability of Deep CNNs, object detection has witnessed
a quantum leap in the performance on benchmark datasets. Within the last five years, there have
been massive improvements on standard benchmarks such as PASCAL and COCO by the family
of region-based CNNs. However, little effort has been made towards occluded object detection in
optical remote sensing images. Besides, modeling geometric variations or transformations in the
scale of objects, pose, viewpoint, and part deformations is a key challenge in optical remote sensing
visual recognition.

Object detection in optical remote sensing images often suffers from several increasing challenges
including the large variations in the visual appearance of objects caused by viewpoint variation,
occlusion, resolution, background clutter, illumination, shadow, etc. In the past few decades, various
methods have been developed for the detection of different types of objects in satellite and aerial images,
such as buildings [5], storage tanks [6], vehicles [7], and airplanes [8]. In general, they can be divided
into four main categories: Template matching-based methods, knowledge-based methods, OBIA-based
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methods, and machine learning-based methods. According to the selected template type, template
matching-based methods could be further subdivided into two classes, as rigid template matching
and deformable template matching [5,9]. For knowledge-based object detection methods, there are
two kinds of the most widely used, which used prior knowledge involved geometric information
and context information [10–12]. In general, OBIA-based object detection methods include two steps:
Image segmentation and object classification [13]. With regard to machine learning-based methods,
three crucial steps, which include feature extraction, feature fusion dimension reduction, and classifier
training, play important roles in the performance of object detection. Many recent approaches have
formulated object detection as feature extraction and classification problems and have achieved
significant improvements.

With the prosperity and rapid development of CNNs, object detection tasks have been formulated
as feature extraction and classification problems, whose results have been shown to be promising with
the help of the powerful feature representation capability of advanced CNN architecture. Currently,
the most popularly CNN-based object detection algorithms could be roughly divided into two streams:
The region-based methods and the region-free methods. The region-based methods firstly generate
about 2000 category-independent region proposals for the input image, extract a fixed-length feature
vector from each proposal using a CNN, and then classify those regions and refine their spatial
locations. As a ground-breaking work, R-CNN [4] consists of three modules. The first module generates
category-independent region proposals that are fed into the second module. It is a large CNN to extract
a fixed-length feature vector from each region, while the third module is a set of class-specific linear
SVMs. Compared to traditional R-CNN and its accelerated version SPPnet [14], Fast R-CNN [15] trains
networks using a multi-task loss in a single training stage, which simplifies learning and tremendously
increases runtime efficiency. Merging the proposed RPN and Fast R-CNN into a single network
by sharing their convolutional features, Faster R-CNN [16] enables a unified, deep-learning-based
object detection system to run at near real-time frame rates. In contrast, the region-free methods
frame object detection as a regression problem and directly estimates the objects region, which truly
enables real-time detection. YOLO [17] is extremely fast because it utilizes a single convolutional
network to simultaneously predict bounding boxes and class probabilities directly from full images
in one evaluation. Using a single CNN as well, SSD [18] discretizes the output space of bounding
boxes into a set of default boxes over different aspect ratios and scales per feature map location.
Additionally, the network combines predictions from multiple feature maps with different resolutions
to naturally handle objects of various sizes, which improves the accuracy on high-speed detection.
What is noteworthy is that the above-mentioned CNN-based object detection algorithms are designed
somewhat specially for general object detection benchmarks, which is not suitable for object detection
in optical remote sensing images because the object instances occupy a minor portion of the image that
usually have the characteristic of small size in the optical remote sensing images. Furthermore, to deal
with the problem of small objects, some methods like Fast R-CNN and Faster R-CNN achieve this by
directly up-sampling the input image at the training phase or testing phase. It significantly increases
the memory usage and processing time.

However, CNNs are inherently limited to model geometric transformations shown in visual
appearance. The limitations derive from the fixed geometric structures of CNN modules: A convolution
operation samples the input feature map at fixed locations. As long as a standard CNN architecture
is adopted, the only method available to model geometric transformations are artificially generating
sufficient complete training samples with various deformations. As said by Cheng et al. [19], it is
problematic to directly use it for object detection in optical remote sensing images because it is difficult
to effectively handle the problem of object rotation variations. Rotation Invariant CNN (RICNN)
augments training objects by rotating them 360 degrees by a step of 10 degrees, which does not
actually solve the inherent limitation in CNN. The emergence of deformable convolution overcomes
the mapping limitations in CNN [20]. By adding 2D offsets to the regular convolution grid in the
standard convolution, deformable convolution sample features from flexible locations instead of
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fixed locations, allowing for the free deformation of the sampling grid. In other words, deformable
convolution refines standard convolution by adding learned offsets. The deformable convolution
modules can readily replace the convolution layer in standard CNN and form deformable ConvNet.
The spatial sampling locations in deformable convolution modules are augmented with additional
offsets, which are learned from data and driven by the target task. Deformable ConvNet is a simple,
efficient, deep, and end-to-end solution to model dense spatial transformations. We believe that it
is feasible and effective to learn dense spatial transformation in CNNs for object detection in optical
remote sensing images.

In this paper, we present a deformable Faster R-CNN with aggregating multi-layer features for
partially occluded object detection in optical remote sensing images. In other words, Deformable
ConvNet, embedded within Faster R-CNN, is introduced in the field of optical remote sensing for
object detection. The main contributions of this paper are summarized as follows:

â A unified deformable Faster R-CNN is introduced for object detection in optical remote sensing
images. Geometric variation modeling is completed within the deformable convolution layers.
Feature maps extracted by deformable ConvNet contain more information about various
geometric transformations.

â A modified backbone network is specially designed for small object to generate more abundant
feature maps with high semantic information at low layer. Therefore, a Transfer Connection
Block (TCB) adopting top-down and skip connections is presented to produce a single high-level
feature map of a fine resolution.

â A simple, yet effective, data augmentation technique named Random Covering is proposed for
training CNN. In training phase, it randomly selects a rectangle region in a region of interest and
covers its pixels with random values. Hence, we can obtain augmented training samples with
random levels of occlusion, which are fed into the model to enhance the generalization ability of
the CNN model.

The rest of this paper is organized as follows. Section 2 introduces the methodology of our
deformable Faster R-CNN with the transfer connection block. The last subsection of Section 2 proposes
the data augmentation technique, namely the Random Covering. Section 3 presents the datasets and
experimental settings. The results of our methodology and other approaches in the SORSI and HRRS
dataset are presented in Section 4, while Section 5 gives our conclusion and the future work.

2. Methodology

Figure 1 presents a roundup of our deformable Faster R-CNN with three transfer connection
blocks. Deformable Faster R-CNN is constructed by substituting the standard convolution layer
with a deformable convolution layer in the fifth network stage. The proposed network consists of
a deformable proposal network and a deformable object detection network, both of which share
a deformable backbone network with three transfer connection blocks for feature map generation.
More details are provided in the following content.
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Figure 1. Architecture of the deformable Faster CNN with three TCBs.

2.1. Deformable Convolution

While convolution in CNNs can be regarded as 3D spatial sampling, deformable convolution
operates on the 2D spatial domain and remains the same across the channel dimension. In general,
they are explained in 2D here. Extending the equations to 3D should be straightforward and omitted
for notation clarity.

A standard 2D convolution consists of two steps: (1) Sampling using a regular gridR over the
input feature map X; and (2) summation of sampled values weighted by W. The gridR defines the
convolution kernel by size and dilation. For example, R = {(−1,1),(−1,0), . . . ,(0,1),(1,1)} defines a
3 × 3 kernel with dilation 1. We can derive the standard convolution output of each position p0 on the
output feature map Y, according to the following formula:

Y(p0) = ∑
pi∈R

W(pi) · X(p0 + pi) (1)

In Dai et al. [20], deformable convolution was defined by augmenting the regular gridR with 2D
offsets {∆pi|i = 1, . . . , N}, where N = |R|. Then the deformable convolution output of each position
p0 on the output feature map Y can be formulized as follows:

Y(p0) = ∑
pi∈R

W(pi) · X(p0 + pi + ∆pi) (2)

Obviously, the sampling is over the unfixed positions pi + ∆pi of the input feature grid. As the
offset ∆pi might be non-integer, Equation (2) is implemented by bilinear interpolation to obtain the
fractional position. As we know, the bilinear interpolation can be formulated as

X(p) = ∑
q

G(q, p) · X(q) (3)

where p denotes an arbitrarily fractional position (p = p0 + pi + ∆pi for Equation (2)), q enumerates
four integral spatial positions nearest to the position p, and G(·, ·) indicates the bilinear interpolation
kernel. Note that G can be decomposed into two 1D kernels as

G = g(qx, px) · g
(
qy, py

)
(4)

where the 1D bilinear interpolation kernel is defined as g(a, b) = max(0, 1− |a− b|).
As illustrated in Figure 2, the additional offsets are learned by adding a standard convolutional

layer branch whose convolution kernel is the same spatial resolution as the current convolutional
layer. Additionally, the output offset fields have the same spatial resolution with the input feature map.
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The output channel dimension is set at 2N to encode N 2D offset vectors. During training, both the
convolutional kernels for producing the output features and for generating offsets can be learned.
The gradients enforced on the deformable convolution layer can be back-propagated through the
bilinear operations in Equations (3) and (4).
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2.2. Transfer Connection Block

Generally, the objects have the characteristics of small size in the optical remote sensing images.
The region-based methods consist of a region proposal network and an object detection network,
both of which share a backbone network to generate feature representation. However, we notice that
the feature maps of the shared network have a very large receptive field so that it can be hardly matched
to small objects. The semantic information in the high-layer is significant for feature representation [21].
Based on these two considerations, the transfer connection block is presented to combine high semantic
features from higher layers with fine details from lower layers, which is shown in Figure 3. To match
the dimensions between them, the de-convolution operation is used to enlarge the high-level feature
maps and sum them in the element-wise way. To be specific, the modified backbone network produces
feature maps through three TCBs, starting from the last layer of the backbone network, which has
high semantic information. Then the feature maps of the last layer are transmitted back to combine
bottom-up feature maps at middle layers by top-down and skip connections. The TCP is sequentially
embedded into the last three stages of the backbone network. By default, ResNet_50 is used to be the
backbone network [22].
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2.3. Random Covering

Occlusion caused by fog or cloud is a critical influencing factor on the generalization ability
of CNNs in optical remote sensing images. It is desirable to achieve invariance to various levels of
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occlusion. When some parts of an object are occluded, a strong detection model should recognize
its category and locate it from the overall object structure. However, the collected training samples
usually reveal limited variance in occlusion. In an extreme case when no occlusion happens in all the
training objects, the learned CNN model will work well on the testing images without occlusion. But it
may fail to recognize objects with partial occlusion because of the limited generalization ability of the
CNN model. While we can manually augment occluded images to the training data, this process is
costly and the levels of occlusion can be limited.

To address the occlusion problem and improve the generalization ability of CNNs, Random
Covering is introduced as a new data augmentation approach. This idea is inspired by another data
augmentation approach named Random Erasing [23]. In the training phase, Random Covering happens
with a certain probability. For an image I, within a mini-batch in the training phase, it is randomly
chosen to undergo either Random Covering with probability p, or kept unchanged with probability
1− p. Random Covering randomly selects a rectangle region Irc in the image and adds random values
on these selected pixels. Assume the size of the image is W×H and its area is S = W×H. We randomly
initialize the area of the covering rectangle region to Src, where Src/S is in the range specified by
minimum sl and maximum sh. The aspect ratio rrc of covering rectangle region is randomly initialized
between r1 and r2. Then the size of covering region Irc is Hrc =

√
Src × rrc and Wrc =

√
Src/rrc. A point

p = (xrc, yrc) in the image I is randomly initialized as the center of the covering region Irc, where the
left-top location plu and the right-bottom location prb are

(
max

(
1, xrc − Wrc

2

)
, max

(
1, yrc − Hrc

2

))
and(

min
(

W, xrc +
Wrc

2

)
, min

(
H, yrc +

Hrc
2

))
. After selecting the covering region Irc, each pixel in Irc is

assigned to the weighted summation of the original pixel and a random value. The weight coefficient λ

is randomly initialized in a range specified by minimum λ1 and maximum λ2. The Random Covering
procedure is shown in Algorithm 1. In the case of object detection, we select covering region in the
bounding box of each object. If there are multiple objects in the image, Random Covering is applied on
each object separately.

Algorithm 1: Random Covering Procedure

Input: Input image I;
Area of image S = W × H;
Covering probability p;
Area ratio range sl and sh;
Aspect ratio range r1 and r2;
Weight coefficient range λ1 and λ2;

Output: Covering image I∗.
Initialization: p1←Rand(0, 1).
if p1 ≥ p then

I∗←I;
return I∗.

else
Src←Rand(sl , sh)× S;
rrc←Rand(r1, r2);
λ←Rand(λ1, λ2);
Hrc ←

√
Src × rrc , Wrc ←

√
Src/rrc ;

xrc ← Rand(1, W) , yrc ← Rand(1, H) ;

plu←
(

max
(

1, xrc − Wrc
2

)
, max

(
1, yrc − Hrc

2

))
;

prb←
(

min
(

W, xrc +
Wrc

2

)
, min

(
H, yrc +

Hrc
2

))
;

Irc←(plu, prb);
I(Irc)←λ · Rand(0, 1) + (1− λ) · I(I∗);
I∗←I;
return I∗.

end
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3. Dataset and Experimental Settings

To evaluate and validate the effectiveness of deformable Faster R-CNN on the optical remote
sensing images, the datasets, experimental settings, and the corresponding evaluation metrics of the
experimental results are described in this section.

3.1. Evaluation Metrics

Here, we explain two universally agreed and widely applied standard measures for evaluating
the object detection methods, namely the Precision–Recall Curve (PRC) and Average Precision (AP).
The first evaluation metric is based on the overlapping area between detections and ground truth.
The Precision measures the fraction of detections that are true positives and the Recall measures the
fraction of positives that are correctly identified. Let TP, FP, and FN denote the number of true
positives, the number of false positives, and the number of false negatives, respectively. The Precision
and Recall can be formulated as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

In an object-level evaluation, detections are recognized as TP if the area overlap ratio α between
detections and ground truth object exceeds a predefined threshold λ by the formula

α =
Area(detection ∩ ground_truth)
Area(detection ∪ ground_truth)

> λ (7)

where Area(detection ∩ ground_truth) denotes the intersection of the detection and ground truth and
Area(detection ∪ ground_truth) denotes their union. Otherwise they are considered as FP. In addition,
if several detections overlap with the same ground truth object, only one is considered as the true
positive and the others are considered as false positives.

The second evaluation metric called AP is based on the area under the PRC. The AP computes the
average value of Precision over the interval from Recall = 0 to Recall = 1. Mean AP (mAP) computes
the average value of AP over all object categories. AP and mAP are used as the quantitative indicators
in object detection. Typically, the higher the AP and mAP is, the better the detection performance,
and vice versa.

3.2. Dataset and Implementation Details

To evaluate the performance of deformable Faster R-CNN, we conduct experiments on various
optical remote sensing datasets. We chose three datasets, including the NWPU VHR-10 [24], SORSI [25],
and HRRS [26] datasets. The NWPU VHR-10 dataset is a 10-class geospatial object detection dataset
that contains a total of 650 annotated optical remote sensing images in the manner of VOC 2007.
The ratios of training, validation and testing dataset are set to 20%, 20%, and 60%, respectively. Then,
we randomly selected 130, 130, and 390 images to fill these three subsets, respectively. To make the
model more robust to various input object sizes and shapes, each training image is sampled by the
following options: (1) Using the original/flipped input image; and (2) rotating the input image by an
angle step of 18◦. The SORSI dataset contains only two categories: Ship and plane which includes
5922 optical remote sensing images—5216 images for ship and 706 images for plane. The numbers of
this dataset in different classes are highly imbalanced, which poses great challenges for model training.
To make a fair comparison, the SORSI dataset is randomly split into 80% for training, and 20% for
testing as well. Some samples of these three datasets are shown in Figure 4. Besides, a more challenging
occlusion dataset is collected by Qiu et al., which is available on https://github.com/QiuWhu/Data.
This dataset includes 47 images with total 184 airplanes, 105 airplanes of which are partially occluded
by cloud or hangar or truncated by image border.

https://github.com/ QiuWhu/Data
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Adopting the alternating training strategy in this paper, we trained and tested both RPN and Fast
R-CNN on images of a single scale based on Caffe [27] in all of the experiments. The images were
resized such that their shorter side is 608 pixels under the premise of ensuring the longer side less
than 1024 pixels. We used the pre-training model ResNet-50 to initialize the network. The deformable
Faster R-CNN is constructed by substituting the standard convolution layer with a deformable
convolution layer in the last three-network stage. For other newly added layers, we initialized the
parameters by drawing weights from a zero-mean Gaussian distribution with standard deviation of
0.01. Furthermore, it is easy for our method to adopt Online Hard Example Mining (OHEM) [28]
during training. Assuming N proposals per image generated by RPN, in the forward pass, we evaluate
the loss of all N proposals. Then we sort all RoIs (positive and negative) by loss and select B RoIs that
have the highest loss. Back-propagation [29] is performed based on the selected proposals.

For the NWPU VHR-10 dataset, we trained a total of 80 K iterations, with a learning rate of 10−3 for
the first 60 K iterations, 10−4 for the next 20 K iterations. The iteration was halved for the SORSI
datasets. Weight decay and momentum were 0.0005 and 0.9, respectively. For anchors, we adopted
three scales with box areas of 162, 402, and 1002 pixels, and an aspect ratio of 1:1, which were adjusted
for better coverage of the size distribution of our optical remote sensing dataset. At the RPN stage,
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we sampled a total of 256 anchors as a mini-batch for training (128 proposals for the Fast RCNN stage),
where the ratio of positive to negative samples was 1:1. The evaluation metric is AP of each object and
mAP with the Interception-of-Union (IoU) threshold set to 0.5. Non-Maximum Suppression (NMS)
is adopted to reduce redundancy on the proposal regions based on their box-classification scores.
The IoU threshold is fixed for NMS at 0.7. All experiments were performed on Intel i7-6700K CPU and
NVIDIA GTX1080 GPU.

4. Experimental Results and Discussion

4.1. Quantitative Evaluation of NWPU VHR-10 Dataset

To evaluate the proposed deformable Faster RCNN with TCB quantitatively, we compared it with
the AP values with four state-of-the-art CNN-based methods: (1) A rotation-invariant CNN (RICNN)
model which considers rotation-invariant information with a rotation-invariant layer and other
fine-tuned layers; (2) the SSD model with an input image size of 512 × 512 pixels; (3) the R-P-Faster
RCNN [30] object detection framework; and (4) deformable R-FCN with the aspect ratio constrained
NMS. The results of these methods all come out of the previous papers [31].

As shown in Table 1, the proposed deformable Faster RCNN with TCB, which is fine-tuned on the
ResNet-50 ImageNet pre-trained model, obtains the best mean AP value of 84.4% among all the object
detection methods. It also indicates that our deformable faster RCNN with TCB achieves the best
AP values for most classes, except baseball diamond, harbor, and bridge. In particular, the AP values
of small objects like vehicle increase more than other objects, which illustrate the good performance
of our methods for small object detection. This will be further verified through the results on the
SORSI dataset in the next subsection. Compared with the second best method of deformable R-FCN
with arcNMS, the AP values of seven objects are increased, including airplane (0.873 to 0.907), ship
(0.814 to 0.871), storage tank (0.636 to 0.705), tennis court (0.816 to 0.893), basketball court (0.741 to
0.873), Ground track field (0.903 to 0.972), and Vehicle (0.755 to 0.888). Figure 5 plots the PRCs of our
method over ten testing classes, respectively. The recall ratio evaluates the ability of detecting more
targets, while the precision evaluates the quality of detecting correct objects rather than containing
many false alarms. Obviously, the ground track field obtains the best performance, in comparison to
other objects adopting the proposed method.

Table 1. The AP values of the object detection methods on the NWPU VHR-10 dataset.

Method RICNN SSD R-P-Faster
R-CNN

Deformable
R-FCN

(ResNet-101)
with arcNMS

Deformable
Faster RCNN
(ResNet-50)
with TCB

Airplane 0.884 0.957 0.904 0.873 0.907
Ship 0.773 0.829 0.75 0.814 0.871

Storage tank 0.853 0.856 0.444 0.636 0.705
Baseball diamond 0.881 0.966 0.899 0.904 0.895

Tennis court 0.408 0.821 0.79 0.816 0.893
Basketball court 0.585 0.856 0.776 0.741 0.873

Ground track field 0.867 0.582 0.877 0.903 0.972
Harbor 0.686 0.548 0.791 0.753 0.735
Bridge 0.615 0.419 0.682 0.714 0.699
Vehicle 0.711 0.756 0.732 0.755 0.888

mean AP 0.726 0.759 0.765 0.791 0.844
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4.2. Quantitative Evaluation of SORSI Dataset

To verify the performance on detecting small objects in optical remote sensing images, we conduct
experiments on the SORSI dataset, only including two categories: Plane and ship. Besides, the areas of
bounding boxes falling in the ship category dominate from 102 to 502 pixels while those in the plane
category possess from 502 to 1002 pixels. In other words, the ship has smaller scale than the plane,
which indicates that detecting ships is considerably more challenging. The results of the baseline
come from [25]. From Table 2, it can be seen that the AP value for ship grows by five percentage
points while adopting the TCB module, which manifests the TCB module, which is significant to
detect smaller object. Besides, AP values for ship and plane steadily improves by one percentage point
when deformable convolution layers are used. In addition, the final AP values for all objects have a
big improvement while adding the OHEM mechanism in the training phase, especially for the ship
category. This demonstrates that the TCB module works well with the OHEM mechanism for detecting
small objects.

Table 2. The results of modified Faster R-CNN on SORSI dataset.

Method Baseline Faster RCNN
with TCB

Deformable
Faster RCNN

with TCB

Deformable
Faster RCNN

with TCB
(+OHEM)

plane 0.729 0.778 0.792 0.862
Ship 0.850 0.826 0.831 0.903

mean AP 0.789 0.802 0.812 0.883

4.3. Quantitative Evaluation of HRRS Dataset

To verify the effectiveness of the proposed Random Covering on the partial occlusion problem,
experiments are conducted on the HRRS dataset. This dataset only includes one category: Airplane.
This dataset includes 47 images with total 184 airplanes, 105 airplanes of which are partially occluded
by cloud or hangar or truncated by image border. Therefore, we only randomly cover the images,
which contain one airplane at least. First, we conduct an experiment on the SORSI dataset. It is
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surprising that the AP value for plane gets improvement by 0.4 percentage points while the AP value
for ship remains unchanged. This shows that the proposed Random Covering can work well on an
un-occluded dataset and improve the generalization ability of our model. Second, all the images of the
HRRS dataset are tested by the previous model. Figure 6 shows a comparison of PRC while the model
trains with or without Random Covering. In addition, we count up the number of true positives for
the partially occluded objects, as illustrated in the Table 3. The results indicate that both the AP value
and the TP increase by a large margin while adopting the Random Covering in the training phase.
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Table 3. The AP and #TP on the HRRS dataset with or without RC.

Method with RC without RC

AP/#TP 0.901/96 0.758/77

5. Conclusions

In this paper, a unified deformable Faster R-CNN is introduced for modeling geometric variations
in optical remote sensing images. Besides, we presented a transfer connection block aggregating
multi-layer features to produce a single high-level feature map of a fine resolution, which is significant
for detecting small objects. To improve the generalization ability of the CNN model and address the
occlusion problem, we proposed a simple data augmentation approach named Random Covering,
which was used in the training phase. Experiments conducted on three datasets show the effectiveness
of our method. In the future work, we will focus on the balance between the TCB module and
the average running time per image, and the effect of deformable convolution in the feature
extraction network.
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