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Abstract: Automatic ship detection technology in optical remote sensing images has a wide range of
applications in civilian and military fields. Among most important challenges encountered in ship
detection, we focus on the following three selected ones: (a) ships with low contrast; (b) sea surface
in complex situations; and (c) false alarm interference such as clouds and reefs. To overcome these
challenges, this paper proposes coarse-to-fine ship detection strategies based on anomaly detection
and spatial pyramid pooling pcanet (SPP-PCANet). The anomaly detection algorithm, based on the
multivariate Gaussian distribution, regards a ship as an abnormal marine area, effectively extracting
candidate regions of ships. Subsequently, we combine PCANet and spatial pyramid pooling to
reduce the amount of false positives and improve the detection rate. Furthermore, the non-maximum
suppression strategy is adopted to eliminate the overlapped frames on the same ship. To validate the
effectiveness of the proposed method, GF-1 images and GF-2 images were utilized in the experiment,
including the three scenarios mentioned above. Extensive experiments demonstrate that our method
obtains superior performance in the case of complex sea background, and has a certain degree of
robustness to external factors such as uneven illumination and low contrast on the GF-1 and GF-2
satellite image data.
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1. Introduction

In recent decades, research on Synthetic Aperture Radar (SAR) images [1–3] has improved
considerably, taking advantage of insensitivity in time and weather. However, low resolution and
monochrome SAR images can result in the lack of target texture and color features. In addition, despite
the visibility of disturbances (wakes) of water surface in SAR images, the characteristics of the ship
itself can be invisible, resulting in missed detection. Compared with SAR images, optical images
have more detailed information and more obvious geometric structures. This means that optical
images can capture more details and complex structures of observation scenes, and can be further
used for target recognition. In view of these advantages, ships in optical remote sensing images are
often regarded as research targets. Ship detection of marine in optical remote sensing image has
a paramount application value in military and civilian fields. The main applications in the military
field include battlefield environmental assessment and terrorist activity surveillance. Finding the
ship target of interest quickly from many optical remote sensing images is a technical prerequisite
for tracking, locating, and identifying a ship. In the civilian sector, attention is paid to the location of
passing ships within the target sea area to improve marine administration, thus playing an important
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role in maritime traffic, safety, and rescue. Therefore, ship target detection is of great significance to
optical imaging satellites in marine monitoring.

Traditional object detection is generally divided into two steps: searching and classification. More
specifically, a sliding window is used to determine the location of an object, and then the features in
this window and shadow classifiers [4] have to be manually designed for further classification [5].
Gradually, methods based on deep neural networks [6] have been proposed successively, which
include the steps of labeling raw data and training neural networks. Compared with the traditional
method, deep learning methods are more effective and faster for target detection. In the natural image
processing for target detection schemes, researchers have successively proposed some target detection
techniques, such as RCNN [7], Fast-RCNN [8], Faster-RCNN [9], R-FCN [10], YOLO [11], SSD [12],
FPN [13], Mask-RCNN [14], Focal Loss [15] and other deep learning algorithm frameworks. These
methods can be used to train outstanding detection models in the public dataset of natural images.
However, in the field of ship detection of remote sensing images, the use of the above-mentioned
methods has been less impressive in that there is a lack of published datasets with ground truth marks.
In the military, the ship dataset is confidential. Moreover, the acquisition of some datasets with ground
truth is also limited. Some scholars [16–19] have labeled ground truth for their own datasets, but these
datasets are not used publicly. A fact that cannot be ignored is that manually annotated sample costs
are relatively high. Furthermore, there is a difference in imaging mechanism between remote sensing
images and natural images, so that in some ways training target recognition algorithms in the dataset
of natural images cannot be well applied to remote sensing images. Most importantly, if the target
data are not similar to the original data, more challenging work is needed to rough tune or fine tune
the neural network when the methods mentioned above are used to load the pre-training model for
transfer learning.

To improve the speed and accuracy of ship detection, some coarse-to-fine detection algorithms
have been designed [20–22]. In recent years, the extraction approaches of ship candidate areas have
been proposed, for example, bayesian decision (BD) [23], compressed domain [24], and convolutional
neural network [16,25]. In addition, the sparse feature method based on multi-layer sparse
coding [26–30] was used to segment the saliency map [21,31,32] to obtain candidate regions.
An effective multi scale CFAR detector for the gamma distribution clutter model [33] was also designed
to detect candidate targets in the sea. Extended wavelet transform (EWT) was combined with phase
saliency map [34] to extract regions of interest (ROI). Simultaneously, in the phase of elimination of false
alarms in fine detection, ship detection algorithms have witnessed significant progress. LBP features
are extracted from the literature [35,36]. A compressed-domain of the ship detection framework [24] is
proposed by means of combining with deep neural network (DNN) and extreme learning machine
(ELM). DNN is exploited for high-level feature representation and classification, and ELM is used for
efficient feature pooling and decision making. Previous studies [37,38] exclude false alarms by using
SVM. Classification algorithms by employing the features of colors, textures and local shapes for ship
detection are introduced in [39,40]. Adopting a sparsely-encoded of bag-word model, Sun et al. [41]
proposed an automatic target detection framework. The visual saliency model is successively proposed
in [42,43]. A multitude of studies [44,45] indicate that the performance of the ship detection system
can be improved by combining previous methods. The maximum likelihood (ML) discrimination
algorithm [33] is also exploited to further eliminate false alarms.

In some relatively simple conditions, the methods mentioned above can achieve considerable
detection results. However, the detection performance of these algorithms will be affected in the
following three situations: (a) low contrast between ships and background; (b) scenes with complicated
sea conditions, such as large waves and uneven illumination; and (c) false alarm interference, such as
clouds, reefs, harbors and islands. In addition, these algorithms also give rise to different levels
of missed detection when multiple vessels are docked. Therefore, there is still much room for
improvement in ship detection algorithms.
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In general, the ship detection methods can be divided into two-stage and one-stage detectors,
employing a coarse-to-fine strategy [26,27]. A phase detector, inputs the original image and directly
outputs the detection result. Combining the mechanism analysis, experience and knowledge, we
adopt two-stage detection techniques in this paper mainly because one-stage detectors have lower
accuracy than two-stage detectors. As shown in the previous research, the two main challenges for
ship target detection are the extraction of candidate regions in a complex context and the identification
of targets when they are similar to false alarm. This method thus utilizes the anomaly detection
technology based on the multivariate Gaussian distribution to extract the candidate region (coarse
detection). This technology can effectively narrow the subsequent search area and reduce the missed
detection rate. Then, the slice of the candidate region is set to a fixed size, which is used as an input
of the PCANet network to perform feature training and extraction. In addition, to reduce the missed
detection rate, we add spatial pyramid pooling (SPP) at the output layer of PCANet. The SPP allows
the images of the training phase to be of various sizes and scales so that the deformation of the object is
robust. Training with images of various sizes can improve scale invariance and reduce the occurrence
of over fitting. Afterwards, the features extracted by the above stages are then fed into the LibSVM
for classification. Due to the addition of SPP, extra overlapping boxes are generated, and we use
non-maximum suppression (NMS) to exclude overlapping boxes in false alarms. The fine detection
stage effectively screens out accurate vessels from candidate areas, which are roughly detected in the
previous stage, further eliminating false alarms and improving the accuracy of detection. By combining
the above two stages, the method proposed in this paper can excellently detect the target in the three
challenging situations mentioned above.

The organization of this paper is as follows. In Section 2, the method adopted is presented,
including the anomaly detection based on the multivariate Gaussian distribution to determine the
target candidate area. In addition, the algorithm based on SPP-PCANet and LibSVM is described,
which extracts and classifies features, and the NMS strategy is discussed, which can eliminate
redundant overlapping boxes. The experimental studies are introduced to verify the proposed method
in Section 3. Section 4 contains conclusions and further work. The overall flow chart of the method
proposed in this paper is shown in Figure 1.

Figure 1. The overall flow chart of target detection. The process from left to right are sea–land
segmentation, candidate area extraction, false alarm exclusion, and detection results.

2. Methodology

The ship detection framework adopted by this paper consists of three consecutive phases:
pre-processing, pre-screening and discrimination.
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2.1. Preprocessing: Sea and Land Segmentation

The quality of the candidate area directly affects the accuracy of the target detection task. To
extract fewer high-quality pre-selected windows without redundancy, sea–land image segmentation
is performed by using GIS information before anomaly detection. The above operation not only
accelerates the speed of target detection, but also improves the performance of target detection and
recall rate. The results of the sea–land segmentation experiment are shown in Figure 2.

Figure 2. The original images are in the first row of the figure, and the results of sea and land
segmentation are the second row. Among them, the black area represent the land portions.

First, the segmentation results of the image blocks of the land and sea boundaries are coordinated
with the GIS library information of the corresponding location. The coordinate solving error is corrected
according to the sliding mean value with the maximum matching degree, and then the binary image
of the sea–land segmentation is obtained, in which the ocean region is 1 (white) and the land region is
0 (black). Subsequently, the original image is convoluted with the binary image that obtained after the
sea–land segmentation, so we get a sea–land segmentation map in which the ocean region exists in the
original image. The matching degree is calculated by the following formula.

Fitting(R) =
p

∑
i=1

q

∑
j=1

(Rij �Mij) (1)

where Fitting(R) is the matching degree of the binary graph R obtained by image segmentation, Rij is
the pixel value of the ith row and the jth column in the binary image, and Mij is a binary map obtained
by the sliding window in the GIS library.

2.2. Pre-Screening: Anomaly Detection Algorithm

(a) Maximum interclass variance method
The maximum interclass variance method is also known as the Otsu algorithm, which is derived

from the principle of least squares based on gray histogram. The basic rule of the algorithm is to divide
the gray value of the image into two parts with the optimal threshold, so that the variance between the
two parts is the largest, i.e., the maximum separation. In view of this, the interclass variance of the
background and target in the image can be expressed as follows:

δ2(k) = v0(µ− µ0)
2 + v1(µ− µ1)

2 (2)
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where k is the gray level and µ is the total average gray value of the image. In addition, µ0 and µ1

represent the average gray value of the background and target parts, respectively, and v0 and v1 are
the probabilities of occurrence of the background and the target part. By calculating the inter-class
variance δ2(k) at different k values, the corresponding k is the optimal threshold required when δ2(k)
reaches the maximum.

(b) Iterative threshold segmentation
The algorithm uses an iterative method to find the optimal threshold for segmentation. First,

the parameter T0 is set and an initial estimated threshold T1 is selected. Then, the image is divided
into two parts G1 and G2 by the threshold T1 as shown in the following formula:

G = G1
⋃

G2 (3)

where G1 represents a portion whose gray value is greater than T1 and G2 represents a part with gray
value is less than or equal to T1. Finally, we calculate the average gray values µ1 and µ2 of all the pixels
in G1 and G2, respectively, and the new threshold T2 where T2 = (µ1 + µ2)/2. The best segmentation
threshold can be found if the following conditions are met:{

λ = T2, |T2 − T1| < T0

T1 = T2, |T2 − T1| ≥ T0
(4)

If these above conditions are satisfied, T2 is the optimal threshold λ; otherwise, T2 is assigned to
T1, and the above steps are repeated until the optimal threshold λ is obtained.

(c) Multivariate Gaussian distribution model
In general, the principle of the anomaly detection algorithm is that the number of negative

samples is much higher than that of positive samples, so that the parameters of Gaussian model p(x)
can be fitted with negative samples. The value of p(x) is larger for normal samples and smaller for
abnormal samples. Since ships (as positive samples) are less accounted for in large proportion of
the background ocean (as negative samples) in optical remote sensing images, which satisfies the
conditions of abnormality detection, the ship can be detected as an abnormality. Multivariate Gaussian
distribution model (Formula (5)) can automatically capture the correlation between different feature
variables and identify them as abnormal when the combination is not normal. Moreover, the number
of samples is required to be greater than the number of characteristic variables (m > n) within the
multivariate Gaussian distribution, which is not very suitable for n large cases. This is to ensure that
the covariance matrix Σ is reversible and there are enough data to fit the n/2 parameters in the Σ.

p(x; µ, Σ) =
1

(2π)
n
2 |Σ| 12

exp(−1
2
(x− µ)TΣ−1(x− µ)) (5)

µ =
1
m

m

∑
i=1

x(i) (6)

∑ =
1
m

m

∑
i=1

(x(i) − µ)(xi − µ)T (7)

where µ is an n-dimensional mean vector and covariance Σ is an n × n matrix. If the following
condition is met, it is considered to be an abnormal part.

p(x) < ε (8)

We follow the strategy of moving the window from left to right and top to bottom to rearrange
the pixels of each window size. Assuming that the input image size is m× n, the sample is constructed
using a sliding window of size k × k so that each sample is a 1 × k × k vector. More intuitively,
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each pixel is the center of its corresponding sliding window in the final image size of (m− 4)× (n− 4).
When each pixel is replaced by a k× k× 1 vector in the sliding window, a new sample set of [(m−
k)/s + 1]2 × (k× k) is formed, which we denote as SM = {x(1), x(2), ..., x(m)}. Among them, s is the
step size of the sliding window, and we take it as 1; [(m− k)/s + 1]2 = T can be considered as the
number of samples and k× k = n as the dimension of each sample.

We assume that each sample xi obeys the Gaussian distribution, and use them to estimate the
value of the parameter mean µ and the variance δ2 to model the eigenvectors. For T samples, we
can get the center position of the Gaussian distribution by averaging them. The variance estimate
σ is obtained by subtracting from all samples x1, x2, ..., xm the mean value µ, which is then squared
and summed. In more detail, µj is the average value of feature j, so the model corresponding to µj is
p(xj; µj, σ2

j ). Therefore, all the datasets taking the average value of feature j is necessary to calculate
these probabilities from 1 to n values of j, using these formulas to estimate µ1, µ2, ..., µn. Similarly,
for σ2, it can be written in vectorization. These training sets are used to fit the model p(x); similarly,
parameters are fitted using all these Gaussian models.

Since the denominator part in Formula (5) is close to 0, it has been experimentally verified that
Formulas (5) and (9) are equivalent, so Formula (5) can be simplified as:

M(x) = (x− µ)TΣ−1(x− u) (9)

The candidate regions whose connected area is larger than a certain threshold λ are filtered,
and then the sliding window to the original image to find the location of the corresponding abnormal
position is mapped. Then, the exception area is set to 1 and the non-exception area to 0. In this case,
we exploit morphological methods to eliminate isolated small holes, and screen candidate regions
according to the eight connected domains to satisfy:

M(i, j) =

{
1 Threshold ≥ λ

0 Threshold < λ
(10)

where i and j represent the row number and column numbers of the pixel in the image, respectively.
In the experiment, it is appropriate to determine the threshold to be 100 by experimental test for the
optical remote sensing image in our dataset. A portion greater than 100 is considered to be an abnormal
region, and smaller than 100 is taken as background area. The anomaly detection flow chart of this
paper is shown in Figure 3.

Considering that part of the infrared band image in optical remote sensing image does not appear
to be covered by mist or thin clouds, to verify the validity of our method, the panchromatic band image
of optical remote sensing image was used in the experiment. The anomaly detection method adopted
in this paper was compared with those of the Otsu threshold segmentation and iterative segmentation
experiments. It could be found that these two methods have the following unsatisfactory aspects:
(a) the anti-interference ability of false alarms such as thin clouds and mists is poor, and these false
alarms will cover ships and cause missed inspections; and (b) excessive anomalies (false alarms such
as clouds and mists are also considered anomalies) cause more false alarms. Conversely, the anomaly
detection algorithm based on multivariate Gaussian distribution adopted in this paper can better resist
the effects of some false alarms such as thin clouds, haze, and complex sea conditions, and has superior
anti-interference ability. Even the ships covered by thin clouds could be still detected, which increases
detection rates and reduces false positives. The experimental part of this study shows the analysis
results of the comparison with the two methods mentioned above.
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Figure 3. Extraction of candidate regions of ship targets based on anomaly detection algorithm.

2.3. Discrimination: Fine Detection

PCANet is a network model that is simpler in training process and can adapt to different tasks
and different data types. PCANet mainly consists of three parts: (a) cascaded principal component
analysis (PCA); (b) binary hash coding; and (c) block histogram. In this framework, a multi-layer filter
kernel is first learned through the PCA method, and then binary hash coding and block histogram
features are used for downsampling and encoding operations.

At this stage, feature extraction and classification are performed separately by PCANet and
libSVM on the candidate slices obtained from the previous coarse detection. The features extracted by
PCANet are used as input to the LibSVM to train the classifier. The fine detection phase further carefully
identifies the candidate slice to eliminate the false alarm. Traditional methods for extracting features are
Sift, HoG, LBP, Harr, etc. However, these features face great challenges for deformation, illumination,
occlusion, background clutter, etc. In contrast, PCANet extracted features can make up for the
shortcomings of traditional features, and its advantage is reflected in the more accurate classification
of LibSVM, which can reduce more false positives and improve higher accuracy. The process of
eliminating false alarms in the fine detection phase is shown in Figure 4.

Figure 4. Exclude false alarm diagram. PCANet feature extraction and LibSVM classifier flow chart.
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Suppose there are N training pictures of size m× n. In this experiment, each picture was drawn
into a set of line vectors as a sample set, whose size is N × (m× n). We normalized the training image
size to a size of 80 × 80. In addition, the number of filters in the first and second stages were 8 and
4, respectively, and the filter size was 7 × 7. In the first stage, principal component analysis was
performed on N training pictures. Preprocessing, N training pictures can be obtained:

I = [ Ī1, Ī2, ..., ¯IN ] (11)

where Īi is an image obtained after rearrangement and preprocessing of each image. In the first stage,
the feature vector corresponding to the first L1 largest feature values were extracted by solving the
feature vector of I IT as the filter of the next stage. The filter at this stage can be expressed as:

v1
f = e f (I IT), f = 1, 2, ..., L1 (12)

where e f (I IT) denotes the f th principal eigenvector of I IT . Then, the filters obtained in the first stage
were, respectively, subjected to a convolution operation on the N images as an input of the second
stage. Similar to the first stage, each obtained image was preprocessed, and the results of image
segmentation were merged together.

Y = [Y1, Y2, ..., YL1 ] (13)

where Yi represents the block result of N pictures and one of the filter convolutions. Similarly,
by solving the eigenvector of YYT , the feature vector corresponding to the first L2 largest eigenvalues
was taken as a filter.

v2
f = e f (YYT), f = 1, 2, ..., L2 (14)

The above formula represents the filter of the second stage. Then, through the spatial pyramid
pooling, hash coding and histogram statistics, the feature vector of each training image was obtained.
Finally, we inputed the trained feature vectors into the LibSVM to train and test them.

Generally, training with images of various sizes can improve scale invariance and reduce the
occurrence of over fitting. This method adds spatial pyramid pooling (SPP) at the output layer of
PCANet so that the input images can be trained by different sizes to generate a fixed-size output.
Adding SPP to PCANet not only achieves the effect of multi-stage and multi-scale training, but also
can extract and re-aggregate feature maps from different aspects. After each training was completed,
the parameters of the network were reserved in the experiment. Then, another dimension was resized
and the model based on the previous weight was retrained. Through experimental comparison, it
was found that adding SPP can reduce the rate of missed detection, but within the allowable range,
the false alarm rate was relatively increased.

In the experiment, we employed the non-maximum suppression (NMS) strategy to eliminate
redundant overlapping frames, which can greatly reduce the false alarm rate. More than anything,
PCANet has the following unique advantages compared with CNN. (a) The network structure for
extracting features is simple. Each layer only performs PCA mapping, and binary hash coding and
merging the process of histogram are carried out at the output of last layer. (b) A high level of
experience and adjustment skill are not required. (c) The training and testing speed is faster than
that of CNN. The CNN structure used in the experiment is as follows: Convolution→ Pooling→
Convolution→ Pooling→ Convolution→ Pooling→ Convolution→ Pooling→ Convolution→
Dropout→ Convolution→ Softmax→ Loss. In addition, the features extracted by PCANet are more
efficient and do not excessively eliminate target candidate areas in the previous stage, increasing the
detection rate and producing fewer false alarms than CNN.
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3. Experimental Results and Analysis

3.1. Dataset Description

The sample data of the optical remote sensing image were derived from the GF-1 and GF-2
satellites. The experiment validated the proposed method on the GF-1 images of 18,192 × 18,000 pixels
and GF2 images of 29,200 × 27,620 pixels. These datasets contain a variety of scenarios, such as cloud
interference, low contrast, complex sea conditions, port vessels and so on. Before sending data to
PCAnet training, we performed different data enhancements to improve performance. The data
enhancements used include rotation, scaling, translation, left and right flipping and other operations.
We collected 16,178 training samples (of which the validation set accounted for 3178) and 5394
test samples. There were 8343 positive samples and 7835 negative samples in the training set,
while the numbers of positive and negative samples in the testing set were 2781 and 2613, respectively.
The samples were reshaped to 80 × 80 pixels and stretched to 1 × 6401 as input to the PCANet model
for training to extract features, with the last column being the sample label. The features extracted by
the model were processed by SPP and then sent to the LibSVM classifier for training and classification.
The display of positive and negative samples are shown in Figure 5.

Figure 5. The presentation of positive and negative sample datasets. Among them, the scenes of
positive samples in the first three columns are cloud interference, low contrast, and complex sea
conditions; Columns 4–6 are positive samples in the normal sea background; and the last two columns
are negative samples.

3.2. Contrastive Experiments

To better evaluate the performance of the proposed algorithm in remote sensing image of different
scenes, this work applied autocorrelation function to reflect the roughness of texture features [46,47] in
a variety of situations. It can be used to measure the background complexity in different scenarios. In
remote sensing image processing and interpretation, a multitude of feature are similar in shape, size
and tone except for textures. The texture features of an image are often periodic, reflecting the texture of
the image itself, such as roughness, smoothness, granularity, randomness, and normativeness. Texture
analysis refers to the process of extracting texture features by certain image processing techniques to
obtain quantitative or qualitative descriptions of textures. Autocorrelation function methods were
employed in this study to extract texture features, which used as a texture measure to effectively
reflect the roughness of texture images. Assuming the image is defined as f (x, y), the autocorrelation
function is:

C(ε, η, j, k) =
∑

j+w
x=j−w ∑k+w

y=k−w f (x, y) f (x− ε, y− η)

∑
j+w
x=j−w ∑k+w

y=k−w[ f (x, y)]2
(15)
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where ε, η represents the offset value, and [ f (x, y)]2 represents the displacement vector. The above
equation shows that the autocorrelation function varies with the (x, y), which has a corresponding
relationship with the change of the texture thickness in the image. More specifically, the algorithm
calculates the correlation value between each pixel (j, k) in the (2w + 1)× (2w + 1) window and the
offset value ε, η. Generally, the coarse texture region has a higher correlation for a given deviation (ε, η)
than the fine texture region, and thus the texture roughness should be proportional to the expansion of
the autocorrelation function.

The texture of the image can reflect the roughness of the sea surface. In this experiment,
the autocorrelation function is used as the texture measure, which reflects its roughness. Figure 6
reflects the complexity of the sea conditions under four different sea backgrounds: cloud cover,
low contrast, complex surface waves and near the coast.

Figure 6. Texture roughness under different background. Among them, (a–d) represent the background
of low contrast, the port scene, complex sea surface, and cloud interference.

(a) Anomaly detection to extract target candidate regions
To verify the performance of our algorithm, we conducted a comparative analysis with different

methods. For the selection of different sizes of the sliding window for anomaly detection, we chose the
size of sliding windows as 5 × 5 in Reference [40]. In Reference [40], the size of 3 × 3, 5 × 5 and 9 × 9
sliding windows are experimentally validated, and the influence of experimental results is explained
in detail. It is worth mentioning that the detection performance is optimal when the sliding window is
chosen as 5 × 5. Figure 7 illustrates the comparison of the anomaly detection algorithm based on the
multivariate Gaussian distribution with other candidate region extraction algorithms, including Otsu
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threshold segmentation and iterative threshold segmentation. It can be seen from experiments that,
compared with other methods, our algorithm could excellently highlight the obvious ship area in the
case of thin cloud cover (the red rectangle mark in the first row and the fourth column in Figure 7),
large wave complex background and low contrast ship (the red rectangular marker in the third row
and fourth column in Figure 7). Contrarily, the Otsu threshold segmentation has poor anti-interference
ability to thin clouds and mist, and the abnormal regions caused by these false alarms will cover the
area of the ship, causing missed detection. In the case of complex background of sea, Otsu threshold
segmentation and iterative threshold segmentation led to more obvious segmentation of the ship and
wake, resulting in too many connected domains (as shown in the red rectangular box markers in the
second and third columns of the second row in Figure 7), which caused more false alarms. On the other
hand, these two methods caused missed detection for ships with low contrast. Although adjusting
threshold could reduce some false alarm interference, it also reduced the area of ship pixels, thus
reducing the detection rate of ship targets. Compared with Otsu threshold segmentation and iterative
threshold segmentation algorithms, the anomaly detection algorithm based on multivariate Gaussian
distribution in this paper compensated for the defects of these two threshold segmentation methods.
The experimental evaluation proved this assertion and showed that our approach effectively dealt
with the limitations of the above two methods, especially in achieving significant improvements in
some challenging images. The advantages of our approach are mainly reflected in the following facets:
(a) the shape of the ship can retain a good anomalous area with fewer noise points; (b) it has better
anti-interference for the background of complex sea conditions (such as large waves, thin clouds, mist,
etc.); and (c) for vessels under thin cloud cover, it can be detected better.

Figure 7. The upper, middle, and lower rows are the results of abnormal detection of cloud (or mist)
coverage, relatively complicated sea conditions, and low contrast of the ship. The first three columns
from left to right represent the original image, iterative segmentation, and Otsu threshold segmentation,
respectively, and the last column represents the anomaly detection results of the multivariate Gaussian
distribution used in this paper.

(b) Fine detection to eliminate false alarms
For the GF1 image with a resolution of 2 m and the GF2 image with a resolution of 0.8 m,

the length of the ship’s size ranged from about 30 m to 400 m in this experiment. Our experimental
results were based on the statistics of ships whose number of pixels is more than 40. A ship with
length less than 30 m is not within the statistical range. During the experiment, when the original
image was directly input, and in the case where the SPP was not added, some missed detections
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occurred. Conversely, when SPP was added, the rate of missed detections was reduced, but the false
alarm rate inevitably increased. In view of this, when the original image (18,192 × 18,000 pixels
and 29,200 × 27,620 pixels) was cropped into multiple 1000 × 1000 size slices as input, the generated
false alarms were basically overlapping boxes when the SPP was added. In light of this result,
a non-maximum suppression strategy was utilized to exclude redundant boxes. This operation
eliminated more false alarms, thus reducing the excess false rate. To better verify the effectiveness of
the proposed method, the experiment were carried out, respectively, on clouds with low-interference,
vessels with low contrast, complex sea-surface background and offshore conditions. The experimental
results in these four scenarios are shown in Figure 8. Through experiments, we found that the method
proposed in this paper can achieve a pleasurable detection effect. To verify the effectiveness of our
work, the detection results were measured according to the four criteria of precision (P), recall (R),
missed detection rate (MR) and false alarm rate (FR).

P =
Cs

Ns
(16)

FR = 1− P (17)

R =
Cs

Ss
(18)

where Cs represents the number of ships that are correctly detected and Ns and Ss are the total number
of detections and the number of ships in the test dataset, respectively. We conducted comparative
analysis of experiments with three kinds of feature extractor methods. Compared with the CNN, Hog
and LBP features, the precision and recall rate of the experimental results of these methods are shown
in the following. For detailed extraction and experimental results of each phase, Figure 9 and Table 1
give some reflections of the algorithm’s performance in terms of detection.

Figure 8. Target detection results of different methods under different experimental conditions:
(a) cloud interference; (b) ship with low contrast; (c) complex sea conditions; and (d) near-shore vessel.



Remote Sens. 2019, 11, 47 13 of 17

Table 1. Comparison of accuracy and recall of ships by different methods.

Algorithm P (%) R (%) MR (%) FR (%) C_s S_s

CNN 0.83 0.84 0.16 0.17 361 430
Hog 0.86 0.73 0.27 0.14 314 430
LBP 0.82 0.64 0.36 0.18 275 430

Our method 0.85 0.97 0.03 0.15 417 430

From the tabulate data, it is obvious that the algorithm proposed in this paper can achieve better
detection performance. Most of the ship targets could be detected well, and the false alarm was
maintained at around 15%. The recall rates of CNN, HOG and LBP are 0.84%, 0.73% and 0.64%,
respectively. The recall rate of the ship detection algorithm proposed in this paper could reach 97%,
which exceeds the other three methods. However, due to the addition of the spatial pyramid pooling
operation, the false alarm rate of this method was higher than that of HOG algorithm, but lower
than that of CNN and LBP. When strong interference exists, such as ships with relatively complex
sea-surface background, low contrast, cloud interference, etc., the other three methods presented
missed detections and excessive false alarms. This is because there are many scattered false alarms
in the saliency map when selecting candidate regions. In particular, these feature extractors could
not classify these false alarms and ship targets effectively, which led to the detection performance
degradation. In Figure 10, the blue oval frame represents the ship target existing in the original image,
and the red rectangular frame shows the detection result of different methods. It can be seen from the
experimental comparison that, in the above four cases, the CNN, HOG and LBP features were less
robust to cloud interference, ships with complex sea conditions, low contrast vessels, and near-shore
vessels, which may cause missed detection. Conversely, our method showed favorable detection
performance in face of the above situations.

Figure 9. Precision and recall curves of different algorithms.
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Figure 10. Comparison of target detection results in different methods under different scenarios.
The first column is the result of our method, the second column is the result of CNN, and the third
column is the result of HOG.

4. Conclusions and Future Work

This study proposes a method for ship detection in optical remote sensing images by combining
anomaly detection and spatial pyramid pooling of PCANet algorithms. First, the method adopts the
sea–land segmentation strategy to overcome the difficulty of detecting the ships close to land, therefore
reducing the large number of false alarms. Then, the anomaly detection algorithm is used to extract
the candidate areas of the ships. Finally, within the scope of the false alarms, our method further
improves the detection rate by joining SPP-PCANet with the concept of non-maximum suppression.
A comparison with three algorithms, namely LBP, HOG and CNN, verifies that our method can achieve
a high recall rate and reduce the rate of missed detections. In conclusion, the method developed in this
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study can achieve considerable robustness and effectiveness in the case of false alarm disturbances
such as low contrast ships, ships with complex backgrounds, clouds and mists, and reefs.

Although our algorithm obtains desirable test results, some important problems still need to
be solved. First, we will identify the types of ships in optical remote sensing images with high
resolution so that the algorithm proposed here will find wider applications in military and civilian
fields. In addition, to alleviate the difficulty in obtaining the sample of warships, we will integrate the
concept of transfer learning into the algorithm and employ a large number of civilian ship samples to
assist the detection of warship targets. Finally, we will create a target dataset with a manually labeled
ground truth to better evaluate the performance of our proposed ship detection method.
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