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Abstract: Bamboo forests, due to rapid growth and short harvest rotation, play an important role in
carbon cycling and local economic development. Accurate estimation of bamboo forest aboveground
biomass (AGB) has garnered increasing attention during the past two decades. However, remote
sensing-based AGB estimation for bamboo forests is challenging due to poor understanding of the
mechanisms between bamboo forest growth characteristics and remote sensing data. The objective of
this research is to examine the remote sensing characteristics of on-year and off-year bamboo forests
at different dates and their AGB estimation performance. This research used multiple Sentinel-2 data
to explore AGB estimation of bamboo forests in Zhejiang Province, China, by taking into account
the unique characteristics of on-year and off-year bamboo forest growth features. Combining field
survey data and Sentinel-2 spectral responses (spectral bands and vegetation indices) and textural
images, random forest was used to identify key variables for AGB estimation. The results show that
(1) the on-year and off-year bamboo forests have considerably different spectral signatures, especially
in the wavelengths between red edge 2 and near-infrared wavelength (NIR2) (740–865 nm), making
it possible to separate on-year and off-year bamboo forests; (2) on-year bamboo forests have similar
spectral signatures although AGB increases from as small as 40 Mgha−1 to as high as 90 Mgha−1,
implying that optical sensor data cannot effectively model on-year bamboo AGB; (3) off-year bamboo
AGB has significant relationships with red and shortwave infrared (SWIR) spectral bands in the
April image and with red edge 2 in the July image, but the AGB saturation problem yields poor
estimation accuracy; (4) stratification considerably improved off-year bamboo AGB estimation but
not on-year, non-stratification using the April image is recommended; and (5) Sentinel-2 data cannot
solve the bamboo AGB data saturation problem when AGB is greater than 70 Mgha−1, similar to other
optical sensor data such as Landsat. More research should be conducted in the future to integrate
multiple sources—remotely sensed data (e.g., lidar, optical sensor data) and ancillary data (e.g., soil,
topography)—into AGB modeling to improve the estimation. The use of very high spatial resolution
images that can effectively extract tree density information may improve bamboo AGB estimation
and yield new insights.

Keywords: bamboo forests; on-year and off-year; aboveground biomass; random forest; Sentinel-2

1. Introduction

Bamboo forests occur extensively in tropical and subtropical regions, playing important roles
in improving economic conditions by providing construction materials and food (bamboo shoots)
and influencing carbon cycling due to their unique characteristics of rapid growth and short harvest
rotation [1–3]. The continuous increase of bamboo forest area in the world and its important role
in carbon sequestration make mapping its distribution and modeling aboveground biomass (AGB)
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urgent tasks [4–7]. The ability to repeatedly capture land surface features makes remote sensing
a major data source for quickly updating spatial distribution of bamboo forests and estimating
AGB [1–3,8]. However, compared to broadleaf and coniferous forests, bamboo forests have some
unique characteristics during growth stages [9] that result in challenges when using remote sensing
techniques to model AGB in large areas [10,11].

As shown in Figure 1, bamboo forests can change quickly in a short time and have some unique
characteristics: (1) On-year and off-year phenomena: An “on-year bamboo forest” represents many
bamboo shoots growing during spring (Figure 1a), whereas in an “off-year bamboo forest” almost no
bamboo shoots grow (Figure 1b). (2) Rapid growing period of bamboo shoots to fully developed trees
(Figure 1c): In the on-year bamboo forest, bamboo shoots emerge between mid-March and mid-April,
then take about 40 to 60 days to attain full size (usually until May), depending on soil conditions,
and the leaves develop completely in June [9]. (3) Visibility of bamboo canopy: The boundary
between on-year and off-year bamboo forest canopy is very clear from April to September (Figure 1d).
(4) Intensive management of bamboo forests: In a typical site, forest owners may remove some bamboo
shoots in early spring and cut old bamboo trees during fall and early winter; they also remove tree
crowns (about 2 to 3 m) of the newly grown bamboo trees in November to make brooms and to avoid
tree falls due to snow in the winter. (5) On-year and off-year bamboo forests have different stand
structures between April and November but are similar after removal of crowns (Figure 1d), mainly
between December and March.
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year and off-year bamboo forests. 

Due to the unique growth stages resulting in a change in stand structure within one year [9], on-
year and off-year bamboo forests display different or similar colors on the images, depending on the 
season (Figure 2). The on-year and off-year bamboo forests in April and May have clear color 
differences (Figure 2a,b), implying that they can be easily separated, while in July such differences 
almost disappear (Figure 2c) and they are difficult to distinguish based on spectral signatures. In 
particular, the difference of on-year and off-year bamboo forests in color composites disappear after 
summer and before spring seasons (Figure 2d–f). The color changes in the true color composites from 
Sentinel-2 images at different dates throughout a year imply the importance of selecting suitable 
image acquisition dates for separation of on-year and off-year bamboo forest distribution and for 
AGB estimation, which previous research has not explored.  

Figure 1. Photos showing on-year and off-year bamboo forests. (a) New bamboo shoots; (b) off-year
bamboo forests; (c) new bamboo trees in the on-year bamboo forests; (d) clear boundary between
on-year and off-year bamboo forests.

Due to the unique growth stages resulting in a change in stand structure within one year [9],
on-year and off-year bamboo forests display different or similar colors on the images, depending on
the season (Figure 2). The on-year and off-year bamboo forests in April and May have clear color
differences (Figure 2a,b), implying that they can be easily separated, while in July such differences
almost disappear (Figure 2c) and they are difficult to distinguish based on spectral signatures.
In particular, the difference of on-year and off-year bamboo forests in color composites disappear
after summer and before spring seasons (Figure 2d–f). The color changes in the true color composites
from Sentinel-2 images at different dates throughout a year imply the importance of selecting suitable
image acquisition dates for separation of on-year and off-year bamboo forest distribution and for AGB
estimation, which previous research has not explored.

When remote sensing data and sample plots are determined, selection of suitable variables and
use of proper modeling algorithms are two critical steps for AGB studies in a given region [12,13].
Many studies have examined the mapping of bamboo forest distribution and modeling AGB using
remote sensing data such as Landsat [2,14]. In addition to spectral bands, vegetation indices,
image transform algorithms such as principal component analysis (PCA), and textures are often
used, and stepwise regression is used to identify the variables for AGB modeling [2,14–16]. Meanwhile,
radar data such as ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band
Synthetic Aperture Radar) are also used for AGB estimation, but the estimation accuracy is not much
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better than with Landsat images [11]. Since different remote sensing (e.g., optical, radar, lidar) data
with various spectral and spatial resolutions are available, a large number of potential variables may
be used [12,17]. However, properly identifying key variables is critical for accurately estimating AGB,
and the selected variables may vary considerably depending on the characteristics of forest types
under investigation and remotely sensed data itself [10,11,18]. The impacts of forest phenology, growth
conditions, and external factors such as moisture on remotely sensed data in representing forest canopy
structure make AGB model transfer difficult [19]. Due to the intensive management (e.g., fertilization,
selective logging) and the short growth period from bamboo shoots to fully developed bamboo trees [9],
remote sensing-based AGB estimation for bamboo forests becomes especially challenging.Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 25 
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Figure 2. Comparison of on-year and off-year bamboo forests in true color composites using red, green,
and blue spectral bands of the Sentinel-2 data at different dates. (a) 19 April 2018; (b) 4 May 2018; (c) 18
July 2018; (d) 31 October 2017; (e) 25 December 2017; (f) 23 February 2018.

In addition to the selection of suitable variables, another critical step is to determine which
algorithm should be used for developing the AGB estimation model [12]. Lu et al. [12] summarized
the major characteristics of common algorithms used for AGB modeling, including parametric-based
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algorithms (e.g., regression-based methods) and non-parametric algorithms (e.g., k-nearest neighbor
(kNN), artificial neural network (ANN), support vector regression (SVR)). The regression-based
modeling approach is often used for developing AGB estimation; in particular, stepwise regression
can automatically identify the variables for AGB modeling [13,14]. However, regression-based
approaches require the assumption that the selected variables have linear relationships with AGB.
In reality, the relationships between AGB and remote sensing-derived variables may be nonlinear,
resulting in poor estimation accuracy, for example, the relative root mean squared error can be
over 40% [13]. Therefore, in recent years, many studies have explored the use of machine learning
algorithms such as kNN, ANN, SVR, and random forest (RF) for bamboo AGB estimation [5,13,20,21].
In particular, RF can provide the importance ranking of the variables [13] and is extensively employed
for AGB modeling [22–25]. RF is a nonparametric ensemble modeling approach that can effectively
construct numerous small regression trees for predictions [26]. Compared with other machine learning
algorithms such as ANN and kNN, one key advantage of using RF is its ability to provide the
importance ranking of the variables. This characteristic is especially valuable when key variables need
to be identified from many potential variables. Another advantage is RF’s ability to deal with noise
and large datasets [27,28] because it is insensitive to noisy data in training datasets.

In remote sensing-based AGB estimation, one important factor influencing AGB estimation
accuracy is the data quality, including ground-truth and remotely sensed data [12]. The dates of sample
collection and image acquisition are often inconsistent due to the variable availability of remotely
sensed data in frequently cloud-covered tropical and subtropical regions [10,29]. Most previous
studies assumed that different dates between sample collection and image acquisition would not
significantly influence the relationships between AGB and remote sensing-derived variables [30].
This assumption may be valid for some forest types because forest growth in a short time period will
not significantly change the forest stand structure, thus the spectral signature should be similar too.
However, this assumption may not be valid for bamboo forests because of the completely different
growth stages of bamboo forests (see Figure 1) and broadleaf or coniferous forests [10].

Although studies for modeling bamboo forest AGB have gained increasingly attention,
some critical questions remain to be answered. For example, how do different bamboo growth stages
affect AGB estimation performance? How do the unique features of on-year and off-year bamboo
forests affect AGB estimation? Can the increase of spectral bands in red edge and NIR wavelengths
in Sentinel-2 data compared to the common Landsat data improve AGB estimation? In subtropical
regions, acquiring cloud-free Landsat images is often difficult due to the cloud-cover problem and
relatively low re-visit frequency. The higher spatial and temporal resolutions and more spectral bands
in red edge and NIR wavelengths in Sentinel-2 data than in Landsat may provide new insights in
bamboo forest AGB studies, but they have not been examined yet.

The overall goals of this research are to explore the impacts of on-year and off-year bamboo
forests on AGB modeling effects and the potential role of increased spectral bands in Sentinel-2 data
in improving AGB estimation. Specifically, the objectives of this research are to (1) better understand
the impacts of on-year and off-year bamboo forests on AGB estimation, (2) understand the impacts of
suitable image acquisition dates for AGB estimation, (3) examine AGB saturation in Sentinel-2 data,
and (4) better understand the mechanism of bamboo forest AGB estimation using optical sensor data.
The new contribution of this research is to better understand the impacts of the unique characteristics
of bamboo growing stages on AGB estimation, the impacts of on-year and off-year bamboo forests on
AGB estimation, and the roles of multi-seasonal Sentinel-2 images in mapping on-year and off-year
bamboo forest distribution and AGB estimation.
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2. Materials and Methods

2.1. Study Area

The study area is located in northwest Zhejiang Province, China (Figure 3), covering about
538.06 km2. The terrain is undulating with elevations between 20 and 846 m and average slope of 16
degrees. Five soil types—red, yellow, lithologic, fluvoaquic, and paddy—were found [31]. The climate
in this region is subtropical monsoon that has abundant illumination and precipitation with four
distinct seasons: Warm in spring, hot and humid in summer, cool in fall, cold and damp in winter.
The average annual temperature is 15 ◦C with the lowest temperature of 2 ◦C in winter and the highest
temperature of 37 ◦C in summer. Annual rainfall is 1400 mm with the highest rainfall in June and
lowest rainfall in December [32].

This study area is in subtropical evergreen forests, including coniferous evergreen, broadleaf
evergreen, and bamboo. There are also other plantations such as pines, Chinese fir, and agroforestry.
Moso bamboo forest (Phyllostachys pubescens) is the most widely distributed bamboo forest type in
this study area, accounting for 86% of the total bamboo forests [31]. Moso bamboo trees are taller
and have larger diameter at breast height (DBH) than any other bamboo forests such as Phyllostachy
snuda [32]. The average height of Moso bamboo is between 9 and 12 m and the average DBH is between
8 and 11 cm. In addition, Moso bamboo forests have single species and stand structure, but stand
densities may vary greatly in sites and different seasons because of their on-year and off-year growth
characteristics and intensive management, such as selective logging of trees 3 du or older in the on-year
bamboo forests during winter [33].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 25 
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2.2. Data Preparation

The datasets used in our research are summarized in Table 1, including field survey data,
multitemporal Sentinel-2 multispectral images, and digital elevation model (DEM) data. The fieldwork
was conducted between 2016 and 2018. A total of 517 sample plots covering different land-cover types,
especially forest types, were collected during this period. The coordinates of each plot were recorded.
Of these sample plots, about 300 were bamboo forests, including on-year and off-year bamboo forests.
These sample plots were used to support mapping of on-year and off-year bamboo forest distribution.
Meanwhile, 62 20 × 20 m sample plots of bamboo forests (31 each for on-year and off-year) were
measured in May to August 2018. Within each plot, the DBH and age were measured for each tree.
The age of a bamboo tree was determined by visually checking the stem colors: White ring in the
bamboo joint, cyan in stem, and un-dropped shell in the stem bottom indicate 1 du (Figure 1a,c);
powder ring in the bamboo joint and green in stem indicate 2 du; yellow-green in stem and lignified
stem indicate 3 du; tan in stem and sparsely scattered because of selective logging indicate 4 du
and older [9].

Table 1. Data used in research.

Data Description

Field survey

1. A total of 517 sample plots covering different land-cover types were collected in 2016 to
2018. Of these sample plots, about 300 were bamboo forests, including on-year and off-year.
2. A total of 62 sample plots, including 31 on-year and 31 off-year, with plot size of 400 m2

each, were inventoried in May to August 2018.

Sentinel-2

Sentinel-2 data cover 13 spectral bands:
1. Three visible bands (blue, green, red—490, 560, and 665 nm, respectively) and one NIR
band (NIR1—842 nm) with 10 m spatial resolution.
2. Three red edge bands (RedEdge 1,2,3), one NIR (NIR2), and two SWIR (SWIR1,2) (705, 740,
783, 865, 1610, and 2190 nm, respectively) with 20 m spatial resolution.
3. Other spectral bands (443, 945, and 1375 nm) with 60 m spatial resolution. Due to coarse
spatial resolutions, these three bands were not used.
The Sentinel-2 L1C products were downloaded from
https://scihub.copernicus.eu/s2/#/home. Sentinel-2 L1C images acquired on 13 February
2018, 19 April 2018, 4 May 2018, and 18 July 2018 were used in this research.

DEM ALOS GDEM data with spatial resolution of 12.5 m were collected for the study area.
The DEM data were downloaded from http://earthdata.nasa.gov/about/daacs/daac-asf.

Note: GDEM, global digital elevation model; NIR, near-infrared; SWIR, shortwave infrared; ALOS, advanced land
observing satellite.

The bamboo AGB is often calculated using an allometric equation based on DBH and age [28]
because the special physiological characteristics in bamboo tree species have high relationships between
age and AGB. In this research, the AGB for a single bamboo tree was calculated using Equation (1) [34]:

M = 747.787 D2.771 [0.148 A/(0.028 + A)]5.555 + 3.772, (1)

where M is the dry aboveground biomass for a single bamboo tree in kg, D is the DBH in cm, and A is
the bamboo tree age in du. In each plot, all bamboo tree AGBs were totaled to produce the AGB density
in Mgha−1. Table 2 summarizes the AGB statistical results for all collected sample plots. According to
the statistical results, off-year samples have wider AGB ranges than on-year samples, but the mean
AGB in on-year samples is significantly higher than in off-year samples (64.4 vs. 48.6 Mgha−1).

Three scenes of Sentinel-2 multispectral images with acquisition dates closest to field collection
dates were selected for AGB estimation (Table 3). Four spectral bands with 10 m spatial resolution
and six spectral bands with 20 m spatial resolution were used, but another three spectral bands with
60 m spatial resolution were not used because of their coarse spatial resolutions. The atmospheric
calibration was implemented using the Sen2Cor software, which is specific for Sentinel-2 data [35].

https://scihub.copernicus.eu/s2/#/home
http://earthdata.nasa.gov/about/daacs/daac-asf
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Due to the different spatial resolutions in the Sentinel-2 spectral data, this research used the nearest
neighbor resampling approach to resample the Sentinel-2 spectral data into a cell size of 10 × 10 m.
Meanwhile, the ALOS global digital elevation model (GDEM) data with spatial resolution of 12.5 m
was also resampled to a cell size of 10 m, and was used for topographic correction of the Sentinel-2
data using the C-correction model [36].

Table 2. Statistics of collected sample plot data.

Number of
Samples

AGB Range
(Mgha−1)

Mean
(Mgha−1)

Standard Deviation
(Mgha−1)

Number of total samples 62 24.82–93.95 56.50 15.05
Number of on-year samples 31 41.74–87.10 64.39 11.56
Number of off-year samples 31 24.82–93.95 48.60 14.08

Table 3. Sentinel-2 data used in this study.

Data Identification Product
Level

Cloud
Coverage Acquisition Date

S2B_MSIL1C_20180419T023549_N0206_R089_T50RQU_20180419T051329 L1C 0% 19 April 2018

S2A_MSIL1C_20180504T023551_N0206_R089_T50RQU_20180504T042739 L1C 7% 4 May 2018

S2B_MSIL1C_20180718T023549_N0206_R089_T50RQU_20180718T070956 L1C 1% 18 July 2018

The framework for modeling AGB using Sentinel-2 data is illustrated in Figure 4, including
three major steps: (1) Mapping on-year and off-year bamboo forest distribution using multitemporal
Sentinel-2 data; (2) extraction of variables from multi-seasonal Sentinel-2 images and selection of key
variables using the RF approach; and (3) development of AGB estimation model and evaluation of the
modeling results.
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2.3. Analysis of Spectral Signature and Mapping of Bamboo Forest Distribution

Accurately mapping bamboo forest distribution is required for bamboo AGB estimation. In order
to identify suitable variables for quickly extracting bamboo forests, spectral analysis of on-year and
off-year bamboo forests and other forest types was examined based on multitemporal Sentinel-2
images. Compared to Landsat multispectral bands, the Sentinel-2 multispectral bands provide two red
edge bands and one NIR band with improved spatial resolution. It is necessary to examine how the
newly added spectral bands can separate land-cover types, especially on-year and off-year bamboo
forests, which previous research has not examined, probably due to unavailable data sources in the
spring season.

As shown in Figure 2, the images acquired in the spring season have obviously different colors for
on-year and off-year bamboo forests. Based on the analysis of spectral curves among different dates,
a new index based on seasonal images was proposed and a decision tree classifier was then used to map
the distribution of on-year and off-year bamboo forests. The Normalized Difference Vegetation Index
(NDVI) for winter was first used to mask non-vegetation (e.g., impervious surface, bare soil, croplands,
and water) and deciduous forest in the Sentinel-2 image; that is, when NDVI(winter) was less than
0.5, those pixels were masked and the remaining pixels indicated evergreen forests, such as evergreen
broadleaf and needle-leaf forests and bamboo forests. The proposed seasonal index was then applied
to discriminate on-year and off-year bamboo forests from other evergreen forest types (e.g., teagarden,
evergreen broadleaf forest, coniferous forest). The index value of bamboo forests and other forest types
is greater than 1 because their spectral values began to increase during the growth season, but the
index value of teagarden is less than 1 because teagarden is pruned in May and its spectral value
decreases between April and May. In addition, because the spectral value of off-year bamboo forest
changes more obviously than other forest types between April and May while the spectral values of
on-year bamboo forests are almost unchanged, thresholds can be used to discriminate on-year bamboo,
off-year bamboo, and other forest types based on training samples.

Validation sample plots were collected during fieldwork and used to evaluate the classification
image. A total of 600 sample plots, including 150 on-year and 150 off-year bamboo forest samples,
and 300 other land-cover samples were collected from the field survey data and Google Earth
images. The traditional error matrix approach was used to evaluate the classification image [37,38].
Overall accuracy and kappa coefficient were used to evaluate the overall classification performance,
and user’s and producer’s accuracies were used to evaluate on-year and off-year bamboo forest
classification accuracy.

2.4. Selection of Variables for Development of Biomass Estimation Models

Selection of suitable variables is one of the critical steps in AGB modeling. The most common
variables from optical sensor data are spectral responses and textures [12]. Previous research has
indicated that the relationships between AGB and spectral responses (spectral bands, vegetation
indices) varied, depending on the complexity of forest stand structure and composition of tree
species [30]. Spectral bands are fundamental variables for AGB modeling, and proper use of vegetation
indices can improve their relationships with AGB [12,30] because external factors such as soil moisture
and atmospheric conditions have various impacts on spectral signatures while vegetation indices can
reduce these kinds of impacts [39]. Considering the extra red edge spectral bands in the Sentinel-2
data, this research included some vegetation indices that used the red edge wavelength of 750 nm
(see Table 4 for the vegetation indices used in this research), because previous research indicated that
this wavelength is more sensitive to vegetation health and chlorophyll contents than other red edge
wavelengths [40]. The Pearson’s correlation analysis was used to examine relationships between AGB
and these variables.
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Table 4. A summary of vegetation indices used in research.

Variables Equations References

Normalized Different Vegetation index (NDVI) NDVI = (NIR1 − RED)/(NIR1 + RED) [41]
Enhance Vegetation index (EVI) EVI = 2.5(NIR1 − R)/(NIR1 + 6R − 7.5B + 1) [42]

Soil Adjusted Vegetation Index (SAVI) SAVI = (NIR1 − R)(1 + L)/(NIR1 + R + L), L = 0.5 [43]
Green Chlorophyll Index (CIgreen) CIgreen = (NIR1/G) − 1 [44]

Canopy Vegetation Index (CVI) CVI = (NIR1 − SWIR1)/(NIR1 + SWIR1) [45]
Simple Ratio (SR) SR = NIR1/R [46]

RedEdge Chlorophyll Index (CIre) CIre = (NIR1/RedEdge1) − 1 [44]
RedEdge Simple Ratio (SRre) SRre = NIR1/RedEdge1 [47]

RedEdge Normalized Different Vegetation index (NDVIre) NDVIre = (NIR1 − RedEdge1)/(NIR + RedEdge1) [47]
MERIS Terrestrial Chlorophyll Index (MTCI) MTCI = (NIR1 − RedEdge1)/(RedEdge1 − R) [48]

Note: NIR, near infrared; SWIR, shortwave infrared

Spatial feature is another important factor used in AGB modeling. Textural images are often used
through a combination of spectral responses [10,11,17]. For effective extraction of a texture image,
the spectral band, texture measure, and moving window size must be determined [49]. The GLCM
(gray-level co-occurrence matrix) is often used to calculate textural images [10]. Based on our previous
research [10,11,17], the textural images were extracted from the first component based on a principal
component analysis (PCA) of the Sentinel-2 multispectral images and GLCM measures with a window
size of 9 × 9 pixels.

After extraction of variables using vegetation indices and texture measures, another important
step is to determine which variables should be used for AGB modeling [13]. Previous research usually
used stepwise regression to automatically select variables based on the assumption that the selected
variables have no or weak correlation to each other and have a linear relationship with the dependent
variable, AGB here. In reality, the remote sensing variables may not have linear relationships with
AGB. Thus, we used RF to identify key variables because it can provide the importance ranking of the
variables [26]. Some previous studies explored the use of RF for AGB estimation [13] and provided a
detailed description of this approach. Therefore, the theory of RF is not described here.

According to the importance ranking of selected variables, Pearson’s correlation analysis was
used to examine the relationships between these variables. The backward feature elimination method
was used to remove the less important variables while keeping the minimum of root mean squared
error (RMSE). By repetitively implementing the RF procedure, we can identify the minimum number
of variables but produce the most accurate AGB estimation. A detailed description of the RF-based
variable selection and modeling is provided in Gao et al. [13].

After optimization of the parameters in RF, this RF-based model with the finally selected variables
was used to estimate bamboo forest AGB for the entire study area. The RF optimization procedure
was conducted based on the following scenarios separately: Individual Sentinel-2 data in April,
May, and July and combination of all images based on non-stratification (all bamboo forests as one
population) and stratification (on-year and off-year groups) for AGB modeling. For non-stratification,
40 samples were used for AGB modeling and 22 samples for validation. For stratification, 20 samples
were used for on-year bamboo AGB modeling and 11 samples for AGB estimation validation; the same
numbers of samples were used for off-year AGB study. The common evaluation approach with RMSE,
relative RMSE (RMSEr), and MAE (mean absolute error) was used, in addition to R2. System error (SE)
was calculated to examine whether the results were under- or over-estimated. In order to compare the
AGB estimation results using different scenarios, Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) [50,51] were calculated, in which the lowest AIC or BIC value represents
the best modeling result.

R2 =

n
∑

i=1
(yei − ym)2

n
∑

i=1
(ymi − ym)2

(2)
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RMSE =

√√√√√ n
∑

i=1
(yei − ymi)

2

n
(3)

RMSEr =
RMSE

ym
(4)

MAE =
1
n

n

∑
i=1
|yei − ymi| (5)

SE =
1
n

n

∑
i=1

(yei − ymi) (6)

AIC = n ∗ log
(

SSE
n

)
+ 2K (7)

BIC = n ∗ log
(

SSE
n

)
+ log(n) ∗ K (8)

where yei is the estimated AGB value from the model, ymi is the measured AGB value, n is the number
of sampling plots, ym is the mean value of the measured AGB value, SSE is the sum of square errors,
K is the number of parameters, and K = p + 1 where p is the number of predictors. Meanwhile,
the scatterplots between AGB reference data and estimates and the residual images were used to
examine the AGB modeling performance.

3. Results

3.1. Spectral Analysis of On-Year and Off-Year Bamboo Forests and Mapping of Bamboo Distribution

Different spectral signatures of on-year and off-year bamboo forests over time provide the
possibility to effectively separate them (Figure 5). In particular, the spectral signatures of on-year
and off-year bamboo forests in RedEdge2, RedEdge3, NIR1, and NIR2 (between 740 and 865 nm)
have considerably different values in May, indicating that on-year and off-year bamboo forests can be
separated, and vegetation indices based on RedEdge2, RedEdge3, NIR1, and NIR2 with visible bands
may further improve the separability.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 25 
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The different spectral curves among the dates indicate the value of using the combination of
different dates in classification of on-year and off-year bamboo forests, which previous research had
not examined. Based on this idea, a seasonal bamboo index is proposed here:

SBI = (NIR1S5 + NIR2S5 + RedEdge3S5)/(NIR1S4 + NIR2S4 + RedEdge3S4), (9)

where S5 and S4 represent Sentinel-2 data in May and April. The on-year and off-year bamboo forests in
April and May have obvious forest stand structure change, resulting in high variation of SBI compared
to other forest types. Therefore, the thresholds of SBI were used to separate on-year and off-year
bamboo forests; that is, when SBI > 1.35, the pixels were grouped as off-year bamboo forest, and when
SBI < 1.1, the pixels were grouped as on-year bamboo forest. The final results were classified as three
classes: On-year bamboo, off-year bamboo, and others, as illustrated in Figure 6. In 2018, the on-year
bamboo forests were mainly distributed in the central part of this study area, while off-year bamboo
forests were in the southeast, west, and north. The accuracy assessment result (Table 5) indicates that
on-year and off-year bamboo forests can be accurately extracted from the bi-seasonal images with
producer’s accuracy of 90% to 93% and user’s accuracy of 91% to 93%.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 25 
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Table 5. Accuracy assessment results of on-year and off-year bamboo forests classification.

Reference Data
Producer’s
Accuracy

User’s
Accuracy

Overall
AccuracyOn-Year

Bamboo
Off-Year
Bamboo Others

Classified
data

On-year bamboo 140 3 7 93.3 93.3
OCA: 92.6
OKC: 0.88

Off-year bamboo 1 137 12 90.1 91.3
Others 9 12 279 92.9 93.0

3.2. Correlation Analysis and Identification of Biomass Saturation in Sentinel-2 Data

The correlation coefficients indicate that AGB has different relationships with spectral bands,
depending on dates (Table 6). For example, in April, visible, RedEdge1, and SWIR bands have
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significant correlations with AGB, but RedEdge2, RedEdge3, NIR1, and NIR2 bands do not. In May,
all spectral bands except blue have significant correlations with AGB; in particular, the red edge
and NIR bands have stronger correlation with AGB than visible and SWIR bands; however, in July,
only green and RedEdge1 have a significant correlation with AGB. One interesting thing is in the
on-year bamboo forests, no spectral bands have a significant correlation with AGB, whether in
April, May or July, while in off-year bamboo forests, only red and SWIR2 bands have a significant
correlation with AGB in April, but none do in May. On the other hand, in July, the spectral bands
from RedEdge1 to SWIR1 (705–1610 nm) have a significant correlation with AGB. The correlation
coefficients in Table 6 show that the on-year bamboo forests do not have linear relationships with
AGB, implying that traditional linear regression models are not suitable for on-year bamboo AGB
estimation; however, with proper selection of seasonal image and spectral bands, linear regression
may be suitable for off-year bamboo AGB estimation. In contrast, if both on-year and off-year bamboo
forests are combined as one population, the high correlation coefficients (0.52–0.59) between AGB
and red, RedEdge1, and SWIR in the April image may imply that the April image provides the most
accurate AGB estimation.

Table 6. Pearson’s correlation analysis results.

Bands
Total Samples (62) On-Year Samples (31) Off-Year Samples (31)

April May July April May July April May July

Blue −0.502 ** −0.155 0.229 0.131 0.163 0.04 −0.353 −0.065 0.131
Green −0.474 ** −0.389 ** 0.456 ** 0.213 0.166 0.24 0.252 −0.091 0.299
Red −0.594 ** −0.273 * 0.242 −0.05 0.105 −0.027 −0.502 ** −0.215 0.097

RedEdge1 −0.523 ** −0.424 ** 0.488 ** 0.083 0.092 0.194 −0.237 0.187 0.376 *
RedEdge2 −0.216 −0.412 ** 0.064 0.165 0.149 0.202 0.222 0.253 0.483 **
RedEdge3 −0.028 −0.398 ** −0.053 0.181 0.127 0.157 0.324 0.278 0.442 *

NIR1 −0.096 −0.413 ** −0.01 0.176 0.103 0.171 0.239 0.238 0.423 *
NIR2 −0.105 −0.401 ** −0.038 0.168 0.121 0.156 0.271 0.263 0.438 *

SWIR1 −0.346 ** −0.295 * 0.152 0.083 0.115 0.111 −0.243 0.156 0.448 *
SWIR2 −0.538 ** −0.304 * 0.13 0.095 0.136 0.069 −0.503 ** −0.04 0.219

** significance at 0.01 both-side confidential level; * significance at 0.05 both-side confidential level.

The relationships between spectral bands and AGB are illustrated in scatterplots (Figure 7).
For on-year bamboo forests, the correlation results in Table 6 show that spectral bands have no
relationships with AGB, and Figure 7 confirms that even as AGB increases from about 40 to about
90 Mgha−1, their spectral values remain almost the same, implying that spectral bands cannot be used
for on-year bamboo AGB estimation. For off-year bamboo forests, as AGB increases, spectral values in
green, red, and RedEdge1 decease to AGB values of about 50 Mgha−1 in April and May. In contrast,
as AGB increases, spectral values of green and red bands in July increase, while spectral values in NIR
and SWIR bands are almost the same in April, May, and July, even as AGB increases. This implies that
visible bands may be used for off-year bamboo AGB estimation, but because of data saturation (when
AGB is greater than about 50 Mgha−1) spectral values cannot be effectively used for AGB estimation.

Figure 7 also indicates that with the combination of on-year and off-year bamboo forest as one
population, the linear relationships between AGB and spectral bands in green, red, and RedEdge1
in April, green, RedEdge1, and NIR1 in May, and green and RedEdge1 in July have obviously linear
relationships until AGB reaches about 60 Mgha−1. The better linear relationships and higher AGB
saturation values in the combination of on-year and off-year bamboo forest than in on-year or off-year
alone imply that stratification of on-year and off-year bamboo forests may not be necessary.
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3.3. Identification of Key Variables for Biomass Modeling

The key variables identified using RF (Table 7) indicate that spectral responses (spectral bands
and vegetation indices) are more important than textures in bamboo AGB modeling according to the
importance ranking. Under the non-stratification condition, one texture in May and two textures in
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April were selected, but no textures were selected in July or in the combination of multiple seasons.
With stratification of on-year and off-year bamboo forests, no textures were selected for on-year bamboo
AGB modeling, and only one texture was selected in off-year bamboo AGB modeling using the May
or July imagery. Table 7 implies that texture may not be a critical variable in bamboo AGB modeling.
Although Figure 7 indicates that AGB has weak linear correlation with most of the spectral bands,
especially for the on-year bamboo forests, the high R2 and relatively low MAE and RMSE values in
Table 7 imply that the RF-based approach may be valuable for bamboo AGB estimation. For example,
in non-stratification, the April image provides the best overall AGB estimation performance, the May
image provides the best performance for on-year bamboo forest, and the combination of April and
July imagery provides the most accurate estimation for off-year bamboo forest.

Table 7. A summary of key variables used in random forest.

Dates Variables
Non-Stratification

Variables
On-Year Bamboo

Variables
Off-Year Bamboo

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

Comb.
seasons

EVIS4,
SRS4,

RedEdge1S7

0.86 5.37 6.59
BlueS5,

SWIR2S7,
SWIR2S5

0.84 4.51 5.60
SWIR2S4,

EVIS4,
SWIR1S7

0.85 5.32 7.04

April

EVIS4,
TW9SECS4,
SWIR2S4,
TW9VAS4

0.90 4.90 5.94
SRS4,

NDVIreS4,
REDS4

0.75 5.73 7.20

RedS4,
SWIR2S4,
SRreS4,
EVIS4

0.85 5.73 7.25

May
RedS5,
BlueS5,

TW9MES5

0.86 5.62 7.13

BlueS5,
RedS5,

SWIR2S5,
EVIS5

0.89 4.40 5.30
SWIR1S5,
CIgreenS5,
TW9MES5

0.78 6.69 8.77

July
RedEdge1S7,
CIgreenS7,

MTCIS7

0.89 5.41 7.03
SWIR2S7,
SRreS7,
CVIS7

0.84 5.61 6.75
NIR2S7,

SWIR1S7,
TW9ENS7

0.84 6.08 7.67

Note: NIR, near infrared; SWIR, shortwave infrared; RedEdge, vegetation red edge band; S4, Sentinel-2 multispectral
data in April; S5, Sentinel-2 multispectral data in May; S7, Sentinel-2 multispectral data in July; NDVI, normalized
difference vegetation index; T, texture. Different texture measures: EN, entropy; SEC, second moment; ME, mean;
VA, variance; EVI, enhanced vegetation index; CIgreen, green chlorophyll index; CVI, canopy vegetation index;
MTCI, MERIS terrestrial chlorophyll index; SRRE, RedEdge simple ratio; SR, simple ratio.

3.4. Analysis of Bamboo Forest Biomass Estimation Results

The accuracy assessment results (Table 8) show that under the non-stratification condition,
the April image provides the best estimation performance with the highest R2 value and lowest
values of other evaluation parameters (e.g., RMSE, RMSEr, MAE, AIC and BIC). The overall estimation
results based on this stratification condition using the July image slightly improved the AGB estimation
over the best estimation with non-stratification using the April image. On the other hand, the highest
R2 value (0.46) and the lowest error evaluation parameter values imply that the stratification-based
AGB estimation model using the July image can predict the best AGB estimates

Table 8. Evaluation of estimation results using the non-stratification- and stratification-based models.

Data
Evaluation of Estimation Using Non-Stratified Models Evaluation of Estimation Using Stratified Models

R2 RMSE RMSEr MAE AIC BIC R2 RMSE RMSEr MAE AIC BIC

Comb. seasons 0.24 12.97 23.17% 9.91 54.96 52.99 0.34 12.00 21.45% 9.35 53.49 51.52
April 0.43 11.44 20.45% 9.43 54.28 51.95 0.25 12.72 22.72% 10.84 55.59 53.29
May 0.15 13.44 24.02% 10.81 55.65 53.68 0.29 12.35 22.07% 9.93 55.03 52.73
July 0.13 14.12 25.23% 10.77 56.59 54.62 0.46 10.68 19.09% 8.56 51.26 49.29

Note: R2—coefficient of determination; RMSE, RMSEr, and MAE—root mean squared error, relative root
mean squared error, and mean absolute error; AIC and BIC—Akaike’s Information Criterion and Bayesian
Information Criterion.
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When this non-stratification-based AGB model was used to map the entire study area, the April
image also provided the lowest errors for both on-year or off-year bamboo AGB estimations.
The combination of April and July images did not improve AGB estimation performance compared to
the April image alone. Although the RMSE, RMSEr, and MAE for on-year and off-year bamboo forests
in April have small values using the non-stratification-based AGB model, the low R2 values (0.05 for
on-year and 0.03 for off-year) may imply poor estimation results because the estimates and reference
data do not have a good linear relationship. With stratification of on-year and off-year bamboo forests,
the AGB modeling using the July image based on either on-year or off-year bamboo samples, the RMSE
and RMSEr are the lowest values compared to the April and May images, and combination of multiple
dates of images cannot improve AGB estimation performance. The off-year bamboo AGB estimation
based on the stratification indeed considerably improved estimation performance, with RMSE of
7.75 Mgha−1 and RMSEr of 17.88% using the July image, compared to non-stratification with RMSE of
10.0–14.6 Mgha−1 and RMSEr of 23.1% to 33.7%. For on-year bamboo AGB estimation, the estimation
results between stratification and non-stratification did not differ much; for example, RMSE was
13–14.1 Mgha−1 and RMSEr was 18.9% to 20.6% for stratification, and 12.7–15.1 Mgha−1, 18.5% to
22.1% for non-stratification, implying the difficulty of AGB estimation for on-year bamboo forest using
the Sentinel-2 data.

The scatterplots in Figure 8 indicate that the off-year bamboo forests are more prone to be
overestimated, especially when AGB is less than 40 Mgha−1, while on-year bamboo forests are more
apt to be underestimated. This situation is especially serious when AGB is greater than 70 Mgha−1

because of the data saturation problem as illustrated in Figure 7. Comparing the residual results
between non-stratification and stratification models, the under- or over-estimation problems were
slightly reduced but still very obvious in the stratification-based models. For example, when AGB is
greater than 80 Mgha−1, the underestimation value can be over 30 Mgha−1 (Figure 8).

Table 9. Evaluation of estimation results based on non-stratification- and stratification-based models
using the on-year and off-year validation samples.

Evaluation of Estimation Results Based on Non-Stratification Models

Data
Evaluation Using On-Year Samples Evaluation Using Off-Year Samples

R2 RMSE RMSEr MAE R2 RMSE RMSEr MAE

Comb 0.24 15.12 22.05% 11.52 0.01 10.37 23.92% 8.31
April 0.05 12.71 18.53% 10.54 0.03 10.02 23.11% 8.31
May 0.06 14.51 21.16% 11.00 0.16 12.27 28.33% 10.63
July 0.01 13.62 19.86% 11.17 0.02 14.60 33.69% 10.37

Evaluation of Estimation Results Based on Stratified Models

Data
Evaluation Using On-Year Samples Evaluation Using Off-Year Samples

R2 RMSE RMSEr MAE R2 RMSE RMSEr MAE

Comb 0.05 13.17 19.20% 9.68 0.04 10.71 24.71% 9.00
April 0.42 13.71 20.00% 11.06 0.13 11.64 26.85% 10.63
May 0.12 14.12 20.59% 10.93 0.06 10.28 23.72% 8.92
July 0.16 12.97 18.91% 10.89 0.20 7.75 17.88% 6.24
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Figure 8. With non-stratification, (a1–a4) represent the relationships between biomass estimates and
sample plots based on combined April and July images (a1), individual April (a2), May (a3), and July
(a4), respectively, and (b1–b4) are corresponding residuals; with stratification, (c1–c4) represent the
relationships between biomass estimates and sample plots based on combined two seasonal images
(c1), individual April (c2), May (c3) and July (c4), respectively, and (d1–d4) are corresponding residuals.

The spatial distributions of the predicted AGB using the most accurate AGB models under
non-stratification and stratification conditions are illustrated in Figure 9. Comparison of Figures 6 and 9
indicates that the lower right region in Figure 9a2 has many more AGB pixels with high AGB values
than the same region in Figure 9b2, confirming more accurate estimation using the stratification-based
AGB model for off-year bamboo forest AGB estimation, which is confirmed in Table 9. Based on
analysis of system errors, on-year bamboo AGB is underestimated, and off-year bamboo AGB is
overestimated (Table 10). The stratification-based AGB modeling approach is especially valuable in
reducing the on-year underestimation problem.
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(B) with highlighted sites (b1) and (b2).
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Table 10. Comparison of system errors for on-year and off-year bamboo forest biomass estimation
based on non-stratification and stratification conditions.

On-Year Off-Year

Non-stratification model in April −9.61 +6.32
Stratification model in July −4.20 +5.37

4. Discussion

4.1. Impacts of Phenological Features of Bamboo Forests on Biomass Estimation Performance

In general, broadleaf and coniferous forests have relatively stable stand structures month to month
or even year to year if no serious disturbance is inflicted by external factors, such as selective logging
or serious drought. Therefore, previous studies often collected AGB field measurements and remotely
sensed data for AGB modeling on different dates due to the difficulty of acquiring data sources during
the same year [10,11,17]. However, bamboo forests change their canopies and structures rapidly,
especially in spring due to the rapid growth from shoots to fully developed trees, and during fall and
winter seasons due to selective logging of old trees (3 du or older). Therefore, the spectral values at
different image acquisition dates have high variation due to the bamboo phenological characteristics,
as shown in Figures 2 and 5. Thus, the inconsistency of dates between field measurements and image
acquisition for AGB calculation may considerably affect the relationships between the spectral bands
and AGB, and even produce spurious relationships [13]. Another big difference between bamboo
and other forest types is that bamboo forests have on-year and off-year growth features (see Figure 1),
while other forest types do not. As shown in this research, the on-year bamboo forests can seriously
affect AGB modeling effects due to the low AGB data saturation problem; that is, on-year bamboo
forests may have high AGB variation, but their spectral signatures are very similar, and there are no
significant relationships between on-year bamboo AGB and spectral responses, as shown in Table 6.
This implies that the spectral bands are not suitable for on-year bamboo AGB modeling, especially the
traditional linear regression models. More research is needed to use high spatial resolution images
(e.g., QuickBird, WorldView) with better than 2 m to examine how changes in stand structure of
on-year bamboo forests influence the relationships between AGB and spectral signatures.

4.2. The Potential to Improve Biomass Estimation Performance

Many previous studies have indicated that the combination of spectral responses and textures
is valuable to improve AGB estimation performance, either in tropical or subtropical forest
types [11,13–15]. However, our research indicates that textures are not critical variables for AGB
estimation in bamboo forests. This may be due to the fact that bamboo forests have a single tree species
with similar DBH, height, and stand structure. Thus, in bamboo AGB, the tree age and density caused
by on-year and off-year phenology play important roles.

The challenge in bamboo AGB estimation is the difficulty in modeling on-year bamboo AGB
because of the serious data saturation problem. Previous studies [1,2,10,11,14,20] as well as this study
confirm the difficulty of using optical sensor data, and the RMSEr can be over 20%. Incorporation
of remotely sensed data and ancillary data such as soil and topographic factors may improve AGB
estimation if proper modeling algorithms, such as support vector machine, are used [17]. The common
approaches, such as machine learning algorithms, that are valid for broadleaf and coniferous AGB
modeling may not be suitable for bamboo AGB modeling due to their completely different growth
characteristics. Researchers need to develop new algorithms that can effectively incorporate the
bamboo forest’s growth stage information, such as how shoots grow quickly to fully developed trees
causing a rapid increase in AGB within two to three months.

Optical sensor data can only provide land surface information and cannot provide vertical forest
stand structure information. Previous research using optical or radar data for AGB modeling has
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indicated that data saturation is an important factor resulting in poor estimation performance [10,11,17].
This research also indicates that when bamboo forest AGB is greater than 70 Mgha−1, Sentinel-2
data cannot effectively estimate off-year bamboo forest and yield very high underestimation values,
especially for on-year bamboo forests. Previous research has shown that incorporating tree height
can solve the data saturation problem; thus, using lidar or satellite stereo images can considerably
improve AGB estimation [52]. However, bamboo forests have very different growth characteristics
from other forest types, as described in the Introduction. The AGB in different bamboo forest sites may
be considerably different, but their average DBH and canopy height can be similar. The difference in
AGB is mainly caused by different bamboo ages and tree densities. Therefore, use of lidar or stereo
images for bamboo AGB estimation may not be as helpful as for other forest types. Researchers need
to develop new approaches to extract from bamboo forests the ages and densities of the trees. Bamboo
age is related to tree density, because the increase in tree density is due to new bamboo shoots in
the on-year bamboo forests. The Sentinel-2 or Landsat images with spatial resolution of 10 or lower
cannot effectively capture the subtle difference in tree densities. Higher spatial resolution images such
as QuickBird, WorldView, and Pleiades with sub-meter spatial resolution may be needed. To date,
there are no such studies for bamboo AGB modeling. In the near future, we need to explore how the
very high spatial resolution images can be used for bamboo forest AGB estimation. The available
high-speed computers and sub-meter resolution satellite images provide a new opportunity for
improvements. In particular, use of the Unmanned Aerial Vehicle (UAV) may provide a new way to
estimate bamboo AGB.

5. Conclusions

Remote sensing-based bamboo AGB estimation has been extensively explored, but the estimation
accuracy often has been very poor due to poor understanding of the impacts of the bamboo forest
growth characteristics on remote sensing spectral signatures. This research examined using multiple
dates of Sentinel-2 multispectral images in bamboo forest classification and AGB estimation based
on stratification of on-year and off-year bamboo forests. This research identified the major problems
that affect bamboo AGB estimation performance: Mismatch of dates of AGB sample collection and
acquisition of remotely sensed data, the high variation of the bamboo stand structures within one year
caused by rapid growth from shoots to full-size trees and selective logging, the on-year and off-year
bamboo growth features, and the AGB saturation in optical sensor data, especially for the on-year
bamboo forest. The on-year bamboo forests have a serious data saturation problem, thus, optical sensor
data such as Landsat and Sentinel-2 are not suitable for on-year bamboo AGB estimation. The off-year
bamboo forests had obviously linear relationships with AGB, especially when the July Sentinel-2 data
were used; the estimation RMSE can be as low as 7.75 Mgha−1. If an insufficient number of samples is
available for on-year and off-year bamboo forests, the non-stratification-based AGB model using the
April image can provide the most accurate estimation results. This research indicates the difficulty in
using optical sensor data alone for bamboo forest AGB estimation. More research should be explored
to incorporate multiple data sources such as lidar, optical sensor multispectral data, and ancillary data
into AGB modeling. An alternative is to use very high spatial resolution images such as Pleiades and
WorldView with sub-meter resolution for extraction of tree density that can be incorporated into the
AGB estimation models.
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