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Abstract: Cropland maps are useful for the management of agricultural fields and the estimation
of harvest yield. Some local governments have documented field properties, including crop
type and location, based on site investigations. This process, which is generally done manually,
is labor-intensive, and remote-sensing techniques can be used as alternatives. In this study, eight
crop types (beans, beetroot, grass, maize, potatoes, squash, winter wheat, and yams) were identified
using gamma naught values and polarimetric parameters calculated from TerraSAR-X (or TanDEM-X)
dual-polarimetric (HH/VV) data. Three indices (difference (D-type), simple ratio (SR), and normalized
difference (ND)) were calculated using gamma naught values and m-chi decomposition parameters
and were evaluated in terms of crop classification. We also evaluated the classification accuracy of four
widely used machine-learning algorithms (kernel-based extreme learning machine, support vector
machine, multilayer feedforward neural network (FNN), and random forest) and two multiple-kernel
methods (multiple kernel extreme learning machine (MKELM) and multiple kernel learning (MKL)).
MKL performed best, achieving an overall accuracy of 92.1%, and proved useful for the identification
of crops with small sample sizes. The difference (raw or normalized) between double-bounce
scattering and odd-bounce scattering helped to improve the identification of squash and yams fields.

Keywords: crop; multiple kernel extreme learning machine (MKELM); multiple kernel learning
(MKL); polarimetric parameters; radar vegetation index; TerraSAR-X

1. Introduction

The extent of a cultivated area is an important factor in estimating crop harvest. Crop maps,
documenting field properties, including crop type and location, have been generated by some local
governments in Japan. However, the documentation of field properties is generally done manually,
and the development of easier methods, such as techniques based on satellite remote sensing, is required
due to the high cost of existing methods [1].

Optical remote sensing is one of the most attractive options; in particular, Landsat series data
have potential in land characterization applications due to their spatial, spectral, and radiometric
qualities [2–5]. Furthermore, the Sentinel-2 satellites have contributed to create greater opportunities
for monitoring plant constituents, such as pigments, leaf water contents, and biochemicals [6,7],
and the vegetation indices calculated from Sentinel-2 Multispectral Instrument (MSI) data were useful
to identify the specific crop types [8,9]. However, optical data are influenced by atmospheric or
weather conditions, and the number of available scenes may be restricted. Data from synthetic
aperture radar (SAR) systems are an alternative, offering a significant amount of information related
to plant phenology, soil moisture, which affects the timing of seeding, transplanting, and harvesting,
and vegetation parameters, such as crop height or crop cover rate [10–13]. SARs are not subject to
atmospheric influences or weather conditions, making them suitable in multi-temporal classification
approaches [14,15]. Previous studies have shown the potential of C and L-band SAR data to discriminate
crop types [16,17], and a significant improvement in classification accuracy has been reported when

Remote Sens. 2019, 11, 1148; doi:10.3390/rs11101148 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8330-3730
http://www.mdpi.com/2072-4292/11/10/1148?type=check_update&version=1
http://dx.doi.org/10.3390/rs11101148
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1148 2 of 16

SAR data and a Landsat8 satellite image time series were integrated [2,18]. Sentinel-1 data have
been applied for mapping crop fields with the support of Sentinel-2 data or Landsat-8 data [19–22].
Besides these, TerraSAR-X and TanDEM-X provide X-band SAR data of high geometric accuracy at
a high spatial resolution of 2.5–6 m in 30-km swaths in Stripmap mode [23]. X-band SAR data are
now widely available. The backscattering coefficient calculated from SAR data is a function of the
geometry and dielectric properties of the target and the amount of biomass in agricultural fields [24].
Therefore, temporal changes can be distinguished using multi-temporal SAR data. The major change
in backscatter intensity occurs as a result of ploughing and seeding; smaller changes occur due to
variations in the biomass and plant water content, and, for X-band SAR data, in plant structure.
Harvesting also causes large backscatter intensity changes [25]. At times, however, no change in
backscatter intensity is observed despite geometric changes; this is typically observed for dense
vegetation, such as grasslands, and for high-frequency SAR data, such as C-band data [25], and this
feature could help us to discriminate some specific crop types, such as grasslands and wheat fields.

Polarimetric decomposition is a promising technique for resolving this problem. In particular,
quad-polarimetric observations provide more information than a single polarization and show
potential for monitoring and mapping various crops. Several polarimetric decomposition methods
have been developed to obtain more information about scattering. However, the doubled pulse
repetition frequency leads to a reduced swath width when scanning all polarizations, which limits
the opportunities to obtain quad-polarization SAR data. To overcome these problems, compact
polarimetric techniques, such as m-chi decomposition [26,27] and dual polarization entropy/alpha
decomposition [28], have been proposed. In this study, we examined crop classifications using
the polarimetric parameters obtained from the TerraSAR-X dual-polarimetric data (HH and
VV polarization).

The radar vegetation index (RVI) is another technique that enhances the characteristic features of
vegetation based on SAR data [29,30]. The original RVI is calculated from backscattering coefficients of
HH, HV, and VV polarization; this index cannot be extracted from TerraSAR-X dual polarimetric data.
However, based on the concept of vegetation indices (VIs) based on optical data that are calculated
from simple formulas consisting of a combination of two or more reflectance wavebands, some indices
can be calculated using gamma naught or m-chi decomposition parameters. In this study, indices
based on differences (D-type index), simple ratios (SRs), and normalized differences (NDs), as well as
combinations of these, were considered.

In addition to effective predictors, some supervised learning models may allow for accurate
classification; however, different classification algorithms produce different results, even when the same
training data are used [31,32]. Support vector machine (SVM) and random forests (RF) are the most
effective classification approaches, and some previous studies have shown the strong potential of these
techniques for identification of vegetation or soil types using remote-sensing data [33,34]. Extreme
learning machines (ELMs) [35] have also exhibited strong performances in terms of classification and
regression, and kernel-based ELMs (KELMs) may offer the highest accuracy [32,36–38]. In addition to
these techniques, recent major advances in Deep Learning Neural Networks are making it possible
to solve problems that have resisted the best attempts of the artificial intelligence community [39,40].
Deep learning has a powerful learning capability feature that has been applied to optical remote-sensing
data. Other recent techniques based on machine learning are multiple kernel methods, which consist
of a convex combination of kernels, with the weight of each kernel optimized during training, and the
multiple kernel learning (MKL) [41,42] and multiple kernel extreme learning machines (MKELMs)
have been proposed [43]. Although some previous studies provided a comparison of results among
various machine-learning algorithms [32], imbalanced data may result in poor classification results,
providing worse results than those reported in other studies. In the present study, the abilities of six
classification algorithms to identify imbalanced data were evaluated and compared.
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The main objectives of this paper are (1) to evaluate the potential of TerraSAR-X data with respect
to crop type classification and (2) to identify which algorithms are most suitable for classification in the
study area.

2. Materials and Methods

2.1. Study Area

The experimental area of this study is the farming area of the western Tokachi Plain, Hokkaido,
Japan (142◦42′51′′ to 143◦08′47′′ E, 42◦43′20′′ to 43◦07′24′′ N, Figure 1). The study area has a humid
continental climate characterized by warm summers and cold winters. The average annual temperature
was 6 ◦C and annual precipitation was 920 mm. The precipitation during the snow-covered period
accounts for 32.5%. The cultivated land area per farmhouse is 41.7 ha, which is twice the average area
in Hokkaido; however, the agricultural fields are highly fragmented, with many smaller than 1 ha.
The dominant crops are beans, beetroot, grassland, maize, potatoes, and winter wheat. Some new crop
types have recently been confirmed, although on a much smaller proportion of fields. In particular,
squash and yam have become increasingly important crops, with the latter increasing rapidly and
having been exported to Taiwan since 1999. The cultivation calendar for this study area is shown in
Table 1. For most of the crop types, seeding or transplanting is conducted in late April to mid-May,
except for winter wheat (September) and grass (not defined). The harvesting periods are late September
to early November for beans, November for beetroot, late August to September for maize and potatoes,
mid-September for squash, early to mid-August for winter wheat, and late October for yams. There are
two harvesting periods for grasses (timothy and orchard grass), with the first harvest in late June to
early July and the second in late August.
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Table 1. The cultivation calendar for crops.

May June July August September October

mid late early mid late early mid late early mid late early mid late early mid late

Beans Sowing Sprouting Harvesting
Beetroot Transplanting Harvesting
Grass Appearance of ears of grain 1st Harvesting 2nd Harvesting
Maize Sowing Sprouting Appearance of ears of grain Harvesting
Potatoes Sowing Sprouting Harvesting
Squash Transplanting Harvesting
Wheat Appearance of ears of grain Harvesting Sowing
Yams Sowing Netting Harvesting
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2.2. Reference Data

Field location and attribute data, including crop types and area, were obtained based on manual
surveys conducted by Tokachi Nosai (Obihiro, Hokkaido), and recorded in a polygon shape file.
TerraSAR-X data covered a total of 10,712 fields (1884 bean fields, 1426 beetroot fields, 1445 grasslands,
1029 maize fields, 1564 potato fields, 131 squash fields, 3035 winter wheat fields, and 135 yam fields)
that covered the area in 2013. The field size was 0.22–14.85 ha (median 1.88 ha) for beans, 0.25–9.68 ha
(median 2.38 ha) for beetroot, 0.20–17.99 ha (median 2.21 ha) for grassland, 0.17–18.72 ha (median
2.56 ha) for maize, 0.26–16.00 ha (median 1.93 ha) for potatoes, 0.21–5.57 ha (median 2.56 ha) for squash,
0.15–17.03 ha (median 2.50 ha) for wheat, and 0.36–6.35 ha (median 1.77 ha) for yams.

2.3. Satellite Data

Ten TerraSAR-X images were acquired in StripMap mode (incidence angle of 42.3◦) during
ascending passes between 15 May 2013 and 11 August 2013 with an 11-day interval (Table 2). Gamma
naught (γº) images (equally spaced, radiometrically calibrated power images) were used, since they
are better suited for crop classification than σº images and are less dependent on the incidence angle.
In addition to the γº values of HH (γºHH) and VV(γºVV), the polarimetric parameters of the m-chi
decomposition (single- or odd-bounce (Odd), double- or even-bounce (Dbl), and randomly oriented
(Rnd) scattering) [26,27] and the dual polarization entropy/alpha decomposition (averaged alpha angle
and entropy) [28] were obtained using the European Space Agency (ESA)’s PolSARpro SAR Data
Processing Educational Tool [44]. The polarimetric parameters were orthorectified using the Alaska
Satellite Facility’s MapReady Remote Sensing Toolkit [45], the 10-m mesh digital elevation model (DEM)
produced by the Geospatial Information Authority of Japan (GSI), and the Earth Gravitational Model
2008 (EGM2008). The German Aerospace Centre (DLR) commissioning results indicate a geolocation
accuracy of 0.3 m in range and 0.53 m in azimuth for TerraSAR-X data [46]; thus, further geometric
correction was not conducted. However, all fields were buffered inward by 10 m to avoid selecting
training pixels from the edge of a field, which would create a mixed signal and would affect assessment
accuracy [15]. To compensate for spatial variability and to avoid problems related to uncertainty in
georeferencing, average values of SAR data were calculated for the fields and for each observation
using field polygons (shape file format) provided by Tokachi Nosai (http://www.tokachi-nosai.or.jp/).
These processes were conducted using QGIS software (version 2.18.27).

Some radar vegetation indices have been proposed for more accurate estimation of vegetation
properties, such as height, leaf area index, dry biomass [47], and water content [30]. Difference
(D-type), simple ratio (SR), and normalized difference (ND) indices have been widely applied for
the development of vegetation indices, including in optical remote sensing. These indices were
calculated using gamma naught (γºHH and γºVV) values and m-chi decomposition parameters (Odd,
Dbl, and Rnd):

D(λ1,λ2) = Parameter 1− Parameter 2, (1)

SR(λ1,λ2) = Parameter 1/Parameter 2, (2)

ND(λ1,λ2) = (Parameter 1− Parameter 2)/(Parameter 1 + Parameter 2), (3)

where Parameter 1 and 2 are one of two gamma naught values or m-chi decomposition parameters,
and all 10 combinations were calculated for each index type for all TerraSAR-X data acquired between
16 May 2013 and 22 August 2013.

For dimensionality reduction, which is one of the most popular techniques to remove noisy data,
linear discriminant analysis (LDA) was adopted following a previous study [48] using the ‘stepclass’
algorithm, which is included in the ‘klaR’ package [49], before generating classification models. LDA is
one of the linear transformation techniques that represents the axes that maximize the separation
among multiple classes. At first, the d-dimensional mean vectors are calculated for each class. Next,
the eigenvectors and corresponding eigenvalues are calculated from the scatter matrices. After that,
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the eigenvectors are sorted in descending order and k eigenvectors with the largest eigenvalues are
chosen to form a d×k dimensional matrix. Finally, this d×k eigenvector matrix is used to transform the
samples onto the new subspace [50].

Table 2. Characteristics of the satellite data.

Satellite Acquisition
Date

Mode
Incidence Angle (◦) Orbit

Cycle
Pass

DirectionNear Far

TerraSAR-X 15 May 2013 StripMap 41.736 42.977 197 Ascending
TerraSAR-X 26 May 2013 StripMap 41.734 42.975 198 Ascending
TerraSAR-X 6 June 2013 StripMap 41.739 42.979 199 Ascending
TerraSAR-X 17 June 2013 StripMap 41.737 42.976 200 Ascending
TerraSAR-X 28 June 2013 StripMap 41.733 42.973 201 Ascending
TerraSAR-X 9 July 2013 StripMap 41.738 42.977 202 Ascending
TanDEM-X 20 July 2013 StripMap 41.712 42.952 203 Ascending
TerraSAR-X 31 July 2013 StripMap 41.737 42.977 204 Ascending
TanDEM-X 11 August 2013 StripMap 41.730 42.971 205 Ascending
TanDEM-X 22 August 2013 StripMap 41.737 42.978 206 Ascending

2.4. Classification Procedure

Based on a previous study [51], a stratified random sampling approach was applied, and the
samples were divided into three datasets: a training set (50%), which was used to fit the models;
a validation set (25%) used to estimate the prediction error for model selection; and a test set (25%)
used for assessing the generalization error in the final selected model (Table 3). This procedure was
repeated 10 times (hereinafter, referred to as 1–10 rounds) to produce robust results.

Table 3. Crop type and number of fields.

Training Data Validation Data Test Data

Beans 942 471 471
Beetroot 713 356 357

Grass 722 361 362
Maize 546 273 273

Potatoes 782 391 391
Squash 65 33 33
Wheat 1517 759 759
Yams 67 34 34

Performance evaluation was carried out for the six algorithms: support vector machine (SVM),
random forest (RF), multilayer feedforward neural network (FNN), kernel-based extreme learning
machine (KELM), multiple kernel learning (MKL), and multiple kernel extreme learning machine
(MKELM). All processes were implemented using R version 3.5.0. [52].

SVM was applied with a Gaussian radial basis function (RBF) kernel, which has two
hyperparameters that control the flexibility of the classifier: the regularization parameter C, which is
the trade-off parameter between error and margin, and the kernel bandwidth γ, which defines the
reach of a single training example. RF is an ensemble classifier that builds multiple decision trees
using bootstrapped sampling and a randomly selected subset of the training dataset. In this study,
five hyperparameters were optimized: the number of trees (ntree), the number of variables used
to split the nodes (mtry), the minimum number of unique cases in a terminal node (nodesize), the
maximum depth of tree growth (nodedepth), and the number of random splits (nsplit). Classification
approaches based on RF and SVM are equally reliable [53]. Artificial neural network (ANN) and FNN,
a neural network trained to a back-propagation learning algorithm, are the most commonly used
neural networks and are composed of neurons that are ordered into layers. As a regularization method,
dropout was used, and the learning rate and momentum were tuned to overcome the poor convergence
of standard back-propagation [54]. In this study, the following parameters were optimized: number
of hidden layers (num_layer), number of units (num_unit), dropout ratio (dropout) for each layer,
learning rate (learning.rate), momentum (momentum), batch size (batch.size), and number of iterations
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of training data needed to train the model (num.round). Although the extreme learning machine (ELM)
is expressed as a single hidden layer FNN, a vast number of nonlinear nodes and the hidden layer bias
are defined randomly in this algorithm; consequently, it is not necessary to tune the initial parameters
of the hidden layer and almost all non-linear piecewise continuous functions [55]. We applied the RBF
kernel, which is similar to SVM, and the hyperparameters of the regulation coefficient (Cr) and kernel
parameter (Kp) were optimized. In some previous studies, grid search strategies have been applied to
optimize the hyperparameters of machine-learning algorithms [56]. However, Bergstra and Bengio [57]
pointed out that grid search strategies may constitute a poor choice for configuring algorithms for
new data sets and the use of Bayesian optimization, which is a framework for sequential optimization
of the hyperparameters of noisy, expansive black-box functions and represents one possible method
to unify hyperparameter tuning for performance comparison among machine-learning algorithms,
has been suggested. In this study, Bayesian optimization with a Gaussian process [58] was applied for
optimizing the hyperparameters of the machine-learning algorithms.

In addition, two multiple kernel methods were evaluated in this study. MKL obtains suitable
combinations of several kernels over several features in the framework of SVMs, and again great
performances have been reported [59]. In this study, a localized multiple kernel learning (LMKL)
algorithm [42], which has been claimed to achieve a higher accuracy compared with canonical
MKL with classification problems, was applied with the Gaussian radial basis function (RBF) kernel,
the polynomial kernel, the linear kernel, the hyperbolic tangent kernel, the Laplacian kernel, the Bessel
kernel, the ANOVA RBF kernel, the spline kernel, and the string kernel, with kernel parameters
optimized for each kernel. In the LMKL framework, multiple kernels are used instead of a single
kernel, but local weights are computed for kernels in the training phase, unlike canonical MKL where
fixed weights for kernels are computed in the training phase and the weighted sum of kernels is
computed [60]. The second method was MKELM, whose main concept is based on MKL; details can
be found in [43].

2.5. Accuracy Assessment

The classification results were evaluated based on their overall accuracy (OA) and two simple
measures: quantity disagreement (QD) and allocation disagreement (AD). The sum of QD and AD
indicates the total disagreement [61]. QD and AD are both defined as the difference between the
reference data and the classified data; however, QD evaluates the mismatch of class proportion,
while AD evaluates incorrect spatial allocations. An effective summary can thus be provided in
a cross-tabulation matrix. Since imbalanced data were used in this study, the F1 score was also
calculated based on the producer accuracy (PA) and user accuracy (UA).

2.6. Statistical Comparison

McNemar’s test [62] and the Z-test [63] have previously been used to compare the accuracy of
classification methods. The Z-test determines whether the independently computed kappa is better
than one based on a random model and whether two independently computed kappa values are
significantly different [64]. However, numerous studies point out the weaknesses associated with
kappa values [61]. McNemar’s test, which considers the use of non-independent samples by focusing
on how each point is either correctly or incorrectly classified in the two classifications being compared,
was applied to identify whether there were significant differences between the two classification
results [62]. A χ2 value greater than 3.84 indicates a significant difference between the two classification
results at the 95% level of significance.

2.7. Sensitivity Analysis

Data-based sensitivity analysis (DSA) [65], which assumes that the fitted models are pure black
boxes, was used to query the fitted models and to record their responses to evaluate the sensitivity of
predictors in the classification models. In this study, training data were used to evaluate the sensitivity.
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3. Results and Discussion

3.1. Acquired Data

The seasonal changes in the TerraSAR-X data are shown in Figure 2. After 26 May 2013, the highest
gamma naught values were confirmed for beetroot fields due to the rosette leaves, and persisted until
the end of August, the end of the beetroot-growing season. Beans, maize, and squash continued to
grow until the middle of August. As a result, the temporal changes in the predictors of these crops
were similar.
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Although a decrease in both gamma naught values was confirmed from 6 June 2013 to 17 June
2013 for wheat, increases were confirmed for other crops. The absorption of microwave radiation with
growth was reported for wheat and barley fields [66] since they can be assumed to represent aggregate
polarization. This period was the peak of the wheat-growing season in this study area, and the plant
density continued to increase. As a result, Odd, Dbl, Rnd and the gamma naught values decreased due
to absorption, although volume scattering was the main scattering pattern associated with increased
biomass. While grass also possessed low gamma naught values due to a similar structure to wheat,
the grasslands were mainly composed of two types of grass (timothy and orchard grass), and various
types of other vegetation, such as dandelion and goosefoot, were mixed in due to low weed control.
Such conditions reduced the microwave absorption ability.

Peak gamma naught values occurred on June 17 for potato but later for most of the other crops.
Pronounced furrow ridges (30–35 cm in height) were generated in potato fields between 6 June 2013
and 17 June 2013, and direct reflections from the ridges led to an increase in the simple scattering
patterns. The increase in Rnd was almost the same as for other crops, and a high alpha angle occurred
on 9 July 2013, which corresponds to the peak of the potato-growing season.

The gamma naught values for yam fields increased over the whole period. For yams, meshing was
applied from June and led to an increase in backscattering that stabilized at the end of June; the next
increase occurred after 20 July 2013 due to the high coverage rate.

3.2. Selected Indices Based on LDA

The selected predictors calculated from TerraSAR-X data for each round are listed in Table 4.
The numbers of predictors ranged from 8 to 11. Four predictors (γºVV acquired on 26 May 2013 and
9 July 2013; Rnd acquired on 28 June 2013; and ND (Dbl, Rnd) acquired on 6 June 2013) were selected
for all repetitions. Dbl acquired on 22 August 2013 was selected except for Round 6, and Entropy
acquired on 11 August 2013 was selected except for Rounds 5 and 6. Some combinations of gamma
naught values and Raney decomposition parameters were frequently selected, especially ND (γºHH,
Dbl) or ND(γºVV, Dbl), except for Round 7. Therefore, the usage of radar vegetation indices was more
effective than the use of only original backscattering coefficients or polarimetric parameters.

Table 4. Selected predictors based on linear discriminant analysis (LDA).

Round Selected Predictors

1
γºVV_May26 γºVV_July09 γºVV_July20 EntropyAugust11 RndJune28 DblAugust22

ND(γºVV, Dbl)May15 ND(Dbl, Rnd)June06 ND(Odd, Rnd)June17 ND(γºHH, Dbl)June28

2
γºVV_May26 γºVV_July09 EntropyAugust11 RndJune28 DblAugust22 D(Dbl, Odd)June17

ND(γºHH, γºVV)May26 ND(Dbl, Rnd)June06 ND(γºVV, Dbl)June28

3
γºVV_May26 γºVV_July09 EntropyAugust11 RndJune28 DblAugust22 D(Dbl, Odd)June17

ND(Dbl, Rnd)June06 ND(γºHH, Dbl)June28 ND(γºHH, γºVV)July20

4
γºVV_May26 γºVV_July09 EntropyAugust11 RndJune28 DblAugust22 D(Dbl, Odd)June17

ND(γºVV, Dbl)May15 ND(Dbl, Rnd)June06 ND(γºVV, Dbl)June28

5
γºVV_May26 γºVV_July09 RndJune28 DblAugust22 D(Dbl, Odd)June17 ND(γºVV, Odd)June06

ND(Dbl, Rnd)June06 ND(γºHH, Dbl)June28 ND(Dbl, Rnd)June28

6
γºVV_May26 γºVV_July09 γºVV_July20 RndJune28 RndJuly31 SR(γºHH, γºVV)July20

D(Dbl, Odd)June17 ND(Dbl, Rnd)June06 ND(Dbl, Rnd)June28 ND(γºVV, Rnd)August22

7
γºVV_May26 γºVV_July09 γºVV_July20 EntropyAugust11 RndJune28 RndJuly09
DblAugust22 ND(Dbl, Rnd)June06 ND(Odd, Rnd)June17 ND(γºHH, Dbl)June28 ND(γºHH, γºVV)July09

8
γºVV_May26 γºVV_July09 γºVV_July20 EntropyAugust11 RndJune28 DblAugust22

D(Dbl, Odd)June17 ND(Dbl, Rnd)June06 ND(γºHH, Dbl)June28

9
γºVV_May26 γºVV_July09 EntropyAugust11 RndJune28 DblAugust22 D(Dbl, Odd)June17

ND(Dbl, Rnd)June06 ND(γºVV, Dbl)June28

10
γºVV_May26 γºVV_July09 EntropyAugust11 RndJune28 DblAugust22 D(Dbl, Odd)June17

ND(Dbl, Rnd)June06 ND(γºVV, Dbl)June28

3.3. Accuracy Assessment

The accuracies of the crop classification results, based on 10 repetitions, are shown in Table 5.
All algorithms achieved an OA higher than 91.5 % and performed well in classifying the agricultural
crops and MKL had the lowest overall AD+QD.

Identification of beetroot, grass, potatoes, and wheat was accurate for all algorithms, and their PA,
UA, and F1 scores were higher than 0.9. By contrast, some squash and maize fields were misclassified
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as beans, and associated accuracies were relatively low since they exhibited similar trends for their
predictors and the sample size of the bean fields was the largest. FNN and MKL were somewhat
robust in identifying crops whose sample sizes were very small. However, the four other algorithms
had PAs less than 0.5 for squash. When the small-sized fields (squash and yam) were ignored and the
number of crop types was equal to six, KELM performed more effectively than CART, SVM, RF, and
FNN [32,67]. However, the results showed that this algorithm was relatively weak with respect to the
addition of small fields. Slight improvements were observed in the identification of squash when the
multiple kernel version (MKELM) was applied, but the accuracy was not higher than that observed for
SVM and MKL. MKELM also had a poor ability to identify yam fields compared with KELM.

Table 5. Accuracy results for six classification algorithms: support vector machine (SVM), random
forest (RF), multilayer feedforward neural network (FNN), kernel-based extreme learning machine
(KELM), multiple kernel learning (MKL), and multiple kernel extreme learning machine (MKELM).
PA: producer accuracy; UA: user accuracy; OA: overall accuracy; AD: allocation disagreement; QD:
quantity disagreement.

SVM RF FNN KELM MKL MKELM

PA
Beans 0.928 ± 0.019 0.920 ± 0.021 0.924 ± 0.020 0.931 ± 0.020 0.925 ± 0.012 0.931 ± 0.019

Beetroot 0.966 ± 0.008 0.966 ± 0.008 0.963 ± 0.009 0.968 ± 0.009 0.966 ± 0.009 0.968 ± 0.009
Grass 0.901 ± 0.019 0.903 ± 0.019 0.910 ± 0.024 0.897 ± 0.024 0.905 ± 0.015 0.896 ± 0.025
Maize 0.827 ± 0.023 0.814 ± 0.027 0.823 ± 0.042 0.819 ± 0.020 0.825 ± 0.018 0.814 ± 0.020

Potatoes 0.923 ± 0.018 0.913 ± 0.011 0.915 ± 0.024 0.929 ± 0.019 0.925 ± 0.018 0.931 ± 0.017
Squash 0.479 ± 0.097 0.397 ± 0.042 0.500 ± 0.091 0.355 ± 0.082 0.573 ± 0.069 0.464 ± 0.069
Wheat 0.964 ± 0.007 0.964 ± 0.007 0.955 ± 0.011 0.962 ± 0.009 0.961 ± 0.010 0.965 ± 0.010
Yams 0.747 ± 0.067 0.671 ± 0.081 0.774 ± 0.061 0.674 ± 0.056 0.788 ± 0.046 0.579 ± 0.083

UA
Beans 0.894 ± 0.013 0.895 ± 0.015 0.897 ± 0.026 0.887 ± 0.012 0.902 ± 0.015 0.895 ± 0.009

Beetroot 0.964 ± 0.008 0.960 ± 0.010 0.969 ± 0.014 0.960 ± 0.012 0.964 ± 0.011 0.959 ± 0.011
Grass 0.889 ± 0.013 0.880 ± 0.016 0.870 ± 0.019 0.887 ± 0.008 0.892 ± 0.013 0.885 ± 0.010
Maize 0.843 ± 0.026 0.812 ± 0.023 0.844 ± 0.028 0.851 ± 0.018 0.849 ± 0.023 0.855 ± 0.020

Potatoes 0.916 ± 0.014 0.907 ± 0.016 0.916 ± 0.036 0.909 ± 0.016 0.919 ± 0.010 0.901 ± 0.018
Squash 0.786 ± 0.075 0.829 ± 0.106 0.740 ± 0.076 0.785 ± 0.089 0.700 ± 0.152 0.869 ± 0.105
Wheat 0.969 ± 0.009 0.968 ± 0.006 0.972 ± 0.012 0.965 ± 0.011 0.973 ± 0.006 0.963 ± 0.012
Yams 0.836 ± 0.087 0.844 ± 0.076 0.745 ± 0.117 0.871 ± 0.052 0.813 ± 0.152 0.916 ± 0.069

F1
Beans 0.911 ± 0.012 0.908 ± 0.012 0.910 ± 0.013 0.909 ± 0.010 0.913 ± 0.010 0.913 ± 0.010

Beetroot 0.965 ± 0.006 0.963 ± 0.007 0.966 ± 0.007 0.964 ± 0.009 0.965 ± 0.008 0.963 ± 0.008
Grass 0.895 ± 0.010 0.891 ± 0.012 0.890 ± 0.008 0.892 ± 0.010 0.898 ± 0.011 0.890 ± 0.010
Maize 0.835 ± 0.021 0.813 ± 0.015 0.834 ± 0.017 0.835 ± 0.015 0.836 ± 0.015 0.834 ± 0.016

Potatoes 0.919 ± 0.010 0.910 ± 0.005 0.915 ± 0.010 0.919 ± 0.009 0.922 ± 0.007 0.916 ± 0.008
Squash 0.595 ± 0.062 0.537 ± 0.042 0.597 ± 0.070 0.489 ± 0.086 0.620 ± 0.065 0.605 ± 0.066
Wheat 0.967 ± 0.005 0.966 ± 0.004 0.963 ± 0.006 0.963 ± 0.005 0.967 ± 0.006 0.964 ± 0.005
Yams 0.789 ± 0.060 0.748 ± 0.066 0.759 ± 0.075 0.760 ± 0.048 0.794 ± 0.085 0.710 ± 0.064

OA 0.921 ± 0.004 0.915 ± 0.004 0.918 ± 0.004 0.918 ± 0.004 0.921 ± 0.005 0.919 ± 0.005
AD 0.066 ± 0.007 0.070 ± 0.006 0.062 ± 0.004 0.064 ± 0.008 0.067 ± 0.005 0.062 ± 0.007
QD 0.013 ± 0.005 0.015 ± 0.005 0.021 ± 0.006 0.018 ± 0.004 0.012 ± 0.004 0.019 ± 0.003

AD+QD 0.079 ± 0.004 0.085 ± 0.004 0.082 ± 0.004 0.082 ± 0.004 0.078 ± 0.003 0.081 ± 0.005

3.4. Statistical Comparison

The McNemar’s test results were used to compare classification accuracies (Table 6). The differences
in classification results were significant among the six algorithms (p < 0.05) and MKL, which possessed
the lowest overall AD+QD, emerged as the best algorithm for crop classification in this area (Figure 3).



Remote Sens. 2019, 11, 1148 11 of 16

Table 6. Chi-square values from McNemar’s test performed on the six classification algorithms.
A chi-square value ≥ 3.84 indicates a significant difference (p < 0.05) between two classification results.

SVM RF FNN KELM MKL

RF 30.84 ± 5.26 55.78 ± 14.63 61.36 ± 13.62 43.55 ± 13.50 45.78 ± 11.57
FNN 59.14 ± 15.38 31.85 ± 7.45 62.30 ± 14.36 24.76 ± 9.40

KELM 31.25 ± 10.89 41.89 ± 8.59 67.10 ± 17.21
MKL 35.54 ± 10.39 33.91 ± 8.10

MKELM 36.76 ± 9.63
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3.5. Sensitivity Analysis

DSA was conducted to clarify which predictors contributed to crop identification within the
classification models based on MKL (Figure 4). Although γºVV acquired on 9 July 2013 was the
most important metric for identifying wheat fields, Rnd acquired on 28 June 2013 was the most
important metric for identifying beans, beetroot, and grassland and the second most important metric
for identifying squash, wheat, and yams. On 28 June 2013, which was the start of the growth period
for most crops except wheat, the differences in vegetation structure directly influenced the strength of
volume scattering from each crop type; the respective highest and lowest Rnd values were confirmed
for beetroot, whose rosettes caused efficient backscattering, and wheat, whose structure resulted in
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microwave absorption. It was easy to observe the differences between crop types due to the different
plant heights, except for the combination of maize and potato (Figure 2g). Dbl acquired on 22 August
2013 was another effective m-chi decomposition parameter and was the most important variable to
identify squash fields. The contribution of Entropy acquired on 11 August 2013, when beans reached
their maximum height and entered the ripening period, and the very small differences in scattering
patterns among soy, azuki, and kidney beans, were effective for bean field identification.

The contributions of some RVIs were also confirmed, and the importance of D(Dbl, Odd) acquired
on 17 June 2013 was 11.9%, 7.7%, 8.6%, 7.2%, and 4.4% for identifying beans, potato, squash, wheat,
and yam fields, respectively. Similarly, the values for ND (Dbl, Rnd) acquired on 6 June 2013 were
14.0% (beetroot) and 8.0% (maize field identification), that for ND (Dbl, Rnd) acquired on 28 June 2013
was 6.5% (for squash), and that for ND (γºHH, Dbl) acquired on June 28, 2013 was 6.4% for wheat.
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3.6. Relationship between Field Area and Misclassified Fields

Figure 5 shows the relationship between field area and misclassified fields when MKL was
applied. In total, 40.5% of the misclassified fields were less than 1 ha, 36.9% were 1–2 ha in area.
Therefore, a limitation related to the area of fields could improve the reliability of the classification
maps, which could then be particularly effective for identifying grasslands and maize fields. However,
smaller fields should not be ignored and some problems related to the borders of fields remain to
be resolved. Some studies have shown that the use of a few sets of optical data contributed to the
improvement of classification accuracies [32], and future research is planned to evaluate the degree of
certainty related to the edges.

Although a few misclassified fields were confirmed to cover an area greater than 5 ha, many grass
fields were misclassified since fewer cultivation control methods were employed, and numerous weeds
were present in the grasslands.
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4. Conclusions

Certain decomposition techniques were applied to TerraSAR-X dual-polarimetric data, and
polarimetric parameters were used for crop classification as well as gamma naught values of HH
and VV polarization. Furthermore, radar vegetation indices (RVIs), which were calculated from
gamma naught values and m-chi decomposition parameters, were also considered. Linear discriminant
analysis allowed for the selection of several well-performing RVIs, which can improve classification
accuracies. Six types of machine-learning algorithms were tested. While each algorithm achieved
an OA value higher than 91.5% and all performed well in classifying agricultural crops, significant
differences in classification results were observed. In this study area, the sample sizes of squash and
yams fields were very small, occupying ca. 1.2% of the total area; most algorithms failed to identify
these crops, especially squash. Of the tested algorithms, multiple kernel learning performed best,
achieving an F1 score of 0.62 for the identification of squash fields, as well as an overall accuracy of
92.1%. However, meshing was applied over the yam fields from June and wilting related to chemical
treatments was conducted over the potato fields in the study area. Therefore, agricultural practices
should be paid attention when the method proposed in this study is handled.
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