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Abstract: VLS (Vehicle-borne Laser Scanning) can easily scan the road surface in the close range with
high density. UAV (Unmanned Aerial Vehicle) can capture a wider range of ground images. Due to the
complementary features of platforms of VLS and UAV, combining the two methods becomes a more
effective method of data acquisition. In this paper, a non-rigid method for the aerotriangulation of
UAV images assisted by a vehicle-borne light detection and ranging (LiDAR) point cloud is proposed,
which greatly reduces the number of control points and improves the automation. We convert the
LiDAR point cloud-assisted aerotriangulation into a registration problem between two point clouds,
which does not require complicated feature extraction and match between point cloud and images.
Compared with the iterative closest point (ICP) algorithm, this method can address the non-rigid
image distortion with a more rigorous adjustment model and a higher accuracy of aerotriangulation.
The experimental results show that the constraint of the LiDAR point cloud ensures the high accuracy
of the aerotriangulation, even in the absence of control points. The root-mean-square error (RMSE) of
the checkpoints on the x, y, and z axes are 0.118 m, 0.163 m, and 0.084m, respectively, which verifies
the reliability of the proposed method. As a necessary condition for joint mapping, the research based
on VLS and UAV images in uncontrolled circumstances will greatly improve the efficiency of joint
mapping and reduce its cost.

Keywords: vehicle-borne laser point cloud; UAV images; aerial triangulation; non-rigid methods;
point cloud registration

1. Introduction

Under the global trend of intelligent development, intelligent transportation construction is in full
swing. The acquisition of high-precision road geometry information is the foundation of intelligent
transportation construction. Aerotriangulation of UAV (Unmanned Aerial Vehicle) images is an
important way to obtain three-dimensional (3D) geometric information. However, the control points
need to be manually deployed and measured in order to obtain high-precision results, resulting in a
low degree of automation. Although the presence of a global positioning system (GPS) and an inertial
measurement unit (IMU) has reduced the number of ground control points (GCPs), it is difficult to
obtain GPS/IMU data with higher accuracy, which makes it difficult to meet application requirements
in the absence of control points [1,2]. Phantom 4 RTK, produced by DJI, appeared on the market in
2018. The accuracy of the uncontrolled mapping technology based on RTK has reached 5 cm, but its
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point cloud elevation accuracy and density are still lower than those of VLS (Vehicle-borne Laser
Scanning) [3].With the heterogeneity of the sensors, how to use the information obtained by multiple
sensors to form an intelligent service system and avoid the insufficiency of limited data sources is the
current research direction [4].

The emergence of light detection and ranging (LiDAR) provides a new technological approach for
sparsely controlled aerotriangulation. Compared with photogrammetry, LiDAR can quickly obtain the
three-dimensional coordinates and reflection intensity information of the object surface, which is called
LiDAR point cloud. In particular, the LiDAR point cloud acquired by a vehicle-borne laser scanning
system has the characteristics of both high density and high accuracy. However, this technology also
has its disadvantages, i.e., it cannot directly obtain surface texture information [5–7]. On the basis of
the complementarity between LiDAR and photogrammetry, the vehicle-borne LiDAR point cloud
data is employed as a control to constrain the aerotriangulation of UAV images, thereby achieving
high-precision aerotriangulation under sparse control [8,9].

In this paper, the road point cloud acquired by a vehicle laser scanning system and the UAV
images is utilized, and a point cloud-assisted aerotriangulation method based on non-rigid registration
is proposed, which can achieve higher-precision orientation elements under sparse control. In the
platform, the UAV is professional, and the type is M600. Its flight time without load is 60 minutes, and
its maximum horizontal flight speed is 18 m/s in the windless environment.

The method firstly uses GPS/IMU data for rough absolute orientation, and generates a 3D feature
point cloud of images in the geodetic coordinate system by aerotriangulation [10]. LiDAR point cloud
is then used to correct this point set point-by-point. The corrections are combined with the bundle
block adjustment as a virtual observation, and then new orientation elements and a 3D feature point
cloud from the image are solved. Finally, the above-mentioned point-by-point correction and joint
adjustment process are continuously repeated until the distance correction between the two point sets
is small enough or the maximum number of iterations is reached, then the iteration ends. While the
relative positions between images will be changed, the external orientation elements of each image are
corrected by different parameters. Therefore, it is called a non-rigid method.

Our key contributions are summarized as follows: we propose a vehicle-borne LiDAR point
cloud-assisted aerotriangulation method based on non-rigid registration. By adding virtual observations
to the bundle block adjustment, the high-precision orientation elements are calculated under sparse
control. This process is simple and easy without complicated feature extraction and matching
operations. Compared with the point cloud-assisted aerotriangulation method based on iterative
closest point (ICP) rigid registration, this method corrects the non-rigid distortion of the 3D feature
point cloud. Moreover, there is no need to generate a dense point cloud, speeding up non-rigid
registration and avoiding the effects of noise in dense point clouds.

The remainder of the paper is organized as follows: We begin with a review of related work in
Section 2. The main steps of our method are described in detail in Section 3. Our experiment results
are discussed in Section 4, and conclusions are drawn in the final section.

2. Related Work

The LiDAR-assisted aerotriangulation process is essentially a problem of applying the registration
of LiDAR point clouds and multi-images to aerotriangulation in order to improve the localization
accuracy of the images. Common methods include the following two:

One is a feature-based point cloud-assisted aerotriangulation method. This method finds similar
features directly between LiDAR point cloud and aerial images and establishes a direct mapping
relationship between point clouds and images. Commonly used features are mainly corner features, line
features, and planar features [11,12]. Habib et al. [13,14] used the same line features and plane features
on LiDAR point cloud and images to calculate the transformation parameters between the two types of
data and to perform self-calibration of the camera while improving the accuracy of image positioning.
However, the process requires manual extraction of the line segments or planar features in the LiDAR
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point cloud, so automation level is low. To improve automation, Zhang et al. [15] automatically
extracted corner features, and then used the initial orientation element to project the corner features
of the airborne LiDAR point cloud onto the related image and search the same corner features on
the image. The corner points of the LiDAR point cloud served as GCPs, while the corresponding
corner points on the images served as image points. Finally, the bundle block adjustment improved
the positioning accuracy of the images. Additionally, Sheng et al. [16] comprehensively analyzed
the direction and position information of line features and proposed a registration method based on
line feature vectors. The authors stated the line features’ vector description method in detail, and
deduced the mathematical model of the registration. Cui et al. [4] did similar research but focused
on aligning the panoramic image and the LiDAR point cloud using a line-based registration method.
Yang et al. [17] estimated the external orientation element parameters by extracting and matching the
building outlines on the LiDAR point cloud and images.

Another method is a point cloud-assisted aerotriangulation method based on point set registration.
The method firstly generates the 3D feature point cloud of the aerial images by computer vision [18,19]
or photogrammetry [20]. Then, the 3D feature point cloud is registered with the LiDAR point cloud,
and the registration results are involved in aerotriangulation. Thus, the LiDAR point cloud-assisted
aerotriangulation is converted into a registration between the LiDAR point cloud and the 3D feature
point cloud. The registration of two point sets is generally divided into two processes—rough
registration and fine registration. Rough registration is a process of rough absolute orientation of the
3D feature point cloud, which is roughly aligned to the LiDAR point cloud, to initially prepare for the
fine registration. GPS/IMU data, for instance, is often used for rough absolute orientation. Under the
absence of GPS/IMU data, Abayowa et al. [21] achieved rough alignment through feature extraction
and match. The ICP algorithm [22] is often used to minimize the global error between a 3D feature point
cloud and LiDAR point cloud in fine registration. Chen et al. [23] improved the ICP algorithm by using
the constraint of relative motion threshold. The ICP registration process, however, does not consider
the consequences of non-rigid distortions appearing in both the images and the generated 3D point
cloud. In current related research work, reducing the impact of non-rigid distortion to the precision is
only applied to simple scenes, such as close-range photogrammetry. Li et al. [24] and Zheng et al. [25],
given the distance between the 3D feature point cloud and the LiDAR point cloud, established an
error equation and added it to the bundle block adjustment for iterative calculation. They handled the
problem of non-rigid distortion between the LiDAR point cloud and images, however, whether this
method is suitable for large scenes such as aerial images still needs to be verified. Swart et al. [26]
performed ICP on a 3D feature point cloud on the basis of continuous segmentation of the trajectory,
and then applied it to bundle block adjustment. Although this method reduces the non-rigid distortion
in large scene data such as aerial images, the accuracy is not high and other methods are required to be
combined to improve the performance.

The first method is not suitable for terrain without obvious features, but the matching process of
this method is complicated. When the features are extracted from the LiDAR point cloud, the error is
relatively large with lots of mismatches. The difficulty lies in the automatic extraction and matching of
the characteristics between the LiDAR point cloud and the images, and the degree of automation is
not high enough. In contrast, the second method avoids finding similar features between images and
LiDAR point cloud and is able to be used in the absence of obvious features. Additionally, the operation
is simpler, the applicability is stronger, and the reliability is higher in the actual application process.
However, strong non-rigid distortion exists when point cloud-assisted aerotriangulation based on ICP
rigid registration is used in a big scene, resulting in low accuracy of aerotriangulation [19,27].This paper
proposed a point cloud assisted aerotriangulation method based on non-rigid registration to solve this
problem. Our approach can be used in large-scale scene photogrammetry, and greatly decreases the
number of GCPs while increasing the automation of aerotriangulation.
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3. Methodology

Compared with traditional aerotriangulation, we propose a LiDAR point cloud-assisted
aerotriangulation method based on non-rigid registration and make full use of the fact that the
LiDAR point cloud has comprehensive 3D coordinate information. We add virtual observations to
the bundle block adjustment, that is, we take the LiDAR point cloud as a constraint to participate in
the aerotriangulation. We aim to correct the non-rigid distortion of the 3D feature point cloud and
improve the image localization accuracy. The flow chart of this method is comprehensively shown in
Figure 1. Our method mainly includes the following key processes:
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Figure 1. Flow chart of light detection and ranging (LiDAR) point cloud-assisted aerotriangulation.

(1) Aerotriangulation of UAV images: during aerotriangulation, GPS and IMU data are employed
during the rough absolute orientation to generate a 3D feature point cloud of images in the geodetic
coordinate system, which is roughly aligned to the LiDAR point cloud.

(2) LiDAR point cloud constraints: The LiDAR point cloud performs point-by-point correction on
the 3D feature point cloud. The correction parameters are combined with the bundle block adjustment
to solve the new exterior orientation elements and generate a 3D feature point cloud, which takes the
most computation.

(3) Tolerance threshold check-out: Check the distance between the 3D feature point cloud and the
corresponding LiDAR plane. If the distance correction is sufficiently small between two iterations or
the maximum number of iterations is reached, the accuracy evaluation process is entered, otherwise
step (2) is continued.

3.1. UAV Image Aerotriangulation

The premise of the LiDAR point cloud-assisted aerotriangulation is to unify the coordinates of the
UAV images and the LiDAR point cloud so that the 3D feature point cloud is roughly aligned with
the LiDAR point cloud. The main coordinate reference system for this process is shown in Figure 2,
where S1 and S2 are image space coordinate systems, L is the laser scanner coordinate system, and W
is the geodetic coordinate system. For the laser scanning system, the position and attitude parameters
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of the laser scanner are obtained by GPS and an inertial navigation system (INS), and then the 3D
coordinates of the ground laser point in the geodetic coordinate system can be solved according to the
angle and the round-trip time of the laser beam emission. For the UAV images, the 3D feature point
cloud in the geodetic coordinate system can be obtained through aerotriangulation. Thus, the LiDAR
point cloud-assisted aerotriangulation is turned into the problem of two point-sets registration in the
geodetic coordinate system.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 16 
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On the basis of the basic principles of aerotriangulation, we use the self-calibration bundle
block adjustment [28] as the basic adjustment model to generate the 3D feature point cloud in the
geodetic coordinate system. The self-calibration bundle block adjustment is based on the Collinearity
Equations [19] as a mathematical model for adjustment. The expression is as followings:

x− x0 − ∆x = − f a1(XA−XS)+b1(YA−YS)+c1(ZA−ZS)
a3(XA−XS)+b3(YA−YS)+c3(ZA−ZS)

y− y0 − ∆y = − f a2(XA−XS)+b2(YA−YS)+c2(ZA−ZS)
a3(XA−XS)+b3(YA−YS)+c3(ZA−ZS)

(1)

In the above expression, (x0, y0) are the coordinates of the projection center on the image plane, f
is the focal length, (XA, YA, ZA) are the coordinates of the object point, (Xs, Ys, Zs) are the projection
center coordinate parameters, and ai, bi, ci are the cosine value of the image attitude angles. ∆x and ∆y
represent lens distortion parameters, expressed as Equation (2):

∆x = (x− x0)(k1r2 + k2r4) + p1[r2 + 2(x− x0)
2] + 2p2(x− x0)(y− y0)

∆y = (y− y0)(k1r2 + k2r4) + p2[r2 + 2(y− y0)
2] + 2p1(x− x0)(y− y0)

r =
√
(x− x0)

2 + (y− y0)
2

(2)

In the above formula, (k1, k2) represent the radial distortion parameters, and
(
p1, p2

)
are the

tangential distortion parameters.
By expanding the Collinearity Equation using the Taylor series to obtain the error equation, we then

employ the camera orientation elements and lens distortion as virtual observations by assigning
appropriate weights. If the ground control point coordinates are also treated as weighted observations,
then we get a self-calibration bundle block adjustment. It can be expressed as the following equations:

Vx,y = Ax,y ∆t+ Bx,y ∆P+ Cx,y ∆XN+ Dx,y ∆c+ Ex,y ∆k −Lx,y

VN = ∆XN −LN

Vc = ∆c −Lc

Vk = ∆k −Lk

(3)
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When Vx,y =
[
Vx, Vy

]T
is the residual vector of image-point observations (x, y), VN represents

the error correction vector of the control point coordinates, Vc and Vk represent the error correction
vectors of the virtual observation equations corresponding to the interior parameters and the lens
distortion parameters. The correction of exterior orientation parameters could be represented
by ∆t = [∆Xs, ∆Ys, ∆Zs, ∆ϕ, ∆ω, ∆k]T, where ∆P = [∆X, ∆Y, ∆Z]T is the correction of object point
coordinates, ∆XN represents the correction of the coordinates of the control points, ∆c represents

the correction of the interior orientation parameters, and ∆k =
[
∆k1, ∆k2, ∆p1, ∆p2

]T
represents the

correction of the lens distortion parameters. Ax,y, Bx,y, Cx,y, Dx,y, and Ex,y are coefficient matrices,
respectively. We define Lx,y = [x− (x), y− (y)]T, where x denotes the measurement value of the
coordinates of the image point and (x) denotes the approximate value of the coordinate of the image
point. LN, Lc, and Lk are the corresponding constant items, separately.

3.2. Non-Rigid Vehicle-Borne LiDAR Point-Assisted Aerotriangulation

Due to the poor quality of GPS, the 3D feature point cloud generated by the aerotriangulation is
not very accurate—there is an apparent performance gap in both the position and the shape against
the LiDAR point cloud. In this paper, the high-precision 3D coordinates of the LiDAR point cloud
are treated as constraints to correct the coordinates of the 3D feature point cloud. We combine the
correction parameters as virtual observations into the self-calibration bundle block adjustment to
calculate new exterior orientation elements. The distance between the 3D feature point cloud and the
LiDAR point cloud is recurrently getting smaller and smaller in iteration, so that the image positioning
accuracy is continuously improved.

The premise of using the LiDAR point cloud as a constraint is to find the correspondence point
between the 3D feature point cloud and the LiDAR point cloud. The LiDAR point cloud density is
sparse and thin, therefore the constraining method of the nearest point is not perfect, so we prefer
to search the corresponding plane of the 3D feature point cloud on the LiDAR point cloud [29] and
use the distance from the point to the corresponding plane as the constraint condition. The specific
process of searching for a corresponding plane is described as follows: Firstly, the point-to-point
nearest neighbor search method is used to search for the closest point P0(X0, Y0, Z0) of the 3D feature
point cloud P(X, Y, Z) on the LiDAR point cloud. In this process, we use k-d tree [30–32] to organize
the point cloud and speed up the search efficiency for the nearest point. Fit the P0 and its neighboring
point as a plane PL, set any point in the plane as PX(X, Y, Z), then the PL plane can be expressed as
Formula (4). Where (a, b, c, d) are the parameters of the fitted plane equation.

aX + bY + cZ + d = 0 (4)

Although the position represented by the 3D feature point cloud P cannot be exactly found on the
LiDAR point cloud, it is generally assumed that P is on the LiDAR point cloud surface, as shown in
Figure 3. Therefore, the constraint of the LiDAR point cloud is actually the process of continuously
reducing the distance between the 3D feature point cloud P and the LiDAR point cloud surface.
Distance between P and LiDAR surface PL is expressed by formula (5):

D = aXp + bYp + cZp + d→ 0 (5)

Taylor series expansion is performed on the above Equation (5) to obtain the error Equation (6):

VP =
∂D
∂Xp

∆Xp +
∂D
∂Yp

∆Yp +
∂D
∂Zp

∆Zp − (D−D0) (6)

Equation (6) is then changed to matrix forms and it can be expressed as:

VP = N∆P− LP (7)
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where N =
[
∂D
∂Xp

, ∂D∂Yp
, ∂D∂Zp

]
, ∆P = ∆P =

[
∆Xp, ∆Xp, ∆Zp

]T
indicates the correction of the generated 3D

feature point cloud and LP = D−D0 is a constant term of the error equation.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 16 

 

P

P0

p1

p2

p3

C1

C2

C3

D
PL LiDAR 

Point Cloud

Image Plane

 

Figure 3. The geolocation between LiDAR and images. 

Compared with the traditional self-calibration bundle block adjustment, the LiDAR point cloud-

assisted bundle block adjustment adds a cost function (7) to the adjustment formula (3). This formula 

evaluates the distance between the 3D feature point cloud and the LiDAR point cloud. The 

coordinates of the 3D feature point cloud are adjusted by the non-uniform transformation 

parameters. It means that the adjustment model we proposed can eliminate the non-rigid 

deformation between the LiDAR point cloud and the 3D feature point cloud. In this paper, the error 

equation of the LiDAR point cloud-assisted bundle block adjustment is shown as equation (8), and 

then the external orientation elements of the images are calculated. Among them, Wx,y,WP,WN,Wc,Wk, 

are corresponding weights. 

{
 
 

 
 
𝑉𝑥,𝑦 = 𝐴𝑥,𝑦∆𝑡 + 𝐵𝑥,𝑦∆𝑃 + 𝐶𝑥,𝑦∆𝑋𝑁 + 𝐷𝑥,𝑦∆𝑐 + 𝐸𝑥,𝑦∆𝑘       − 𝐿𝑥,𝑦   𝑊𝑥,𝑦
𝑉𝑃 =                       𝑁 ∆𝑃                                                               − 𝐿𝑃     𝑊𝑃

𝑉𝑁 =                                            ∆𝑋𝑁                                            − 𝐿𝑁     𝑊𝑁

𝑉𝑐 =                                                                ∆𝑐                          − 𝐿𝑐      𝑊𝑐
𝑉𝑘 =                                                                                 ∆𝑘         − 𝐿𝑘     𝑊𝑘 

 (8) 

Expressed in matrix form as: 

[
 
 
 
 
𝑉𝑥,𝑦
𝑉𝑃
𝑉𝑁
𝑉𝑐
𝑉𝑘 ]
 
 
 
 

=

[
 
 
 
 
𝐴𝑥,𝑦  𝐵𝑥,𝑦  𝐶𝑥,𝑦  𝐷𝑥,𝑦  𝐸𝑥,𝑦
 ∙       𝑁      ∙         ∙        ∙
 ∙        ∙        𝐸1      ∙        ∙
 ∙        ∙         ∙        𝐸2     ∙
   ∙        ∙         ∙        ∙       𝐸3 ]

 
 
 
 

[
 
 
 
 
∆𝑡
∆𝑃
∆𝑋𝑁
∆𝑐
∆𝑘 ]

 
 
 
 

−

[
 
 
 
 
𝐿𝑥,𝑦
𝐿𝑃
𝐿𝑁
𝐿𝑐
𝐿𝑘 ]
 
 
 
 

 (9) 

𝑉 = 𝑀  ∆  −  𝐿 (10) 

In Equation (9), E1,E2 ,E3are unit matrixes. Equation (10) is an abbreviation of Equation (9). 

It should be noted that due to the limitations of LiDAR point cloud resolution and the complexity 

of ground conditions, it is difficult to assess the distance between the 3D feature point cloud and the 

LiDAR point cloud plane. For example, a 3D feature point that falls on a rough area of the LiDAR 

point cloud (such as a road edge) may lie on a nearby plane. Figure 4 shows the case where the flat 

region and the rough region are fitted to a plane. It is obviously that the fitting residual of the flat 

region is smaller than in the rough region. That means the distance between the 3D feature point and 

the LiDAR point cloud of the flat region is more reliable. Therefore, we propose that only the 3D 

feature points that lie in the flat areas of the LiDAR point cloud are constrained and participate in 

adjustment. This paper evaluates whether the 3D feature point P lies on the flat area by calculating 

the average distance dis between each point of the fitting plane and the fitting plane. The expression 

of the distance dis is expressed by Equation (11). 

Figure 3. The geolocation between LiDAR and images.

Compared with the traditional self-calibration bundle block adjustment, the LiDAR point
cloud-assisted bundle block adjustment adds a cost function (7) to the adjustment formula (3).
This formula evaluates the distance between the 3D feature point cloud and the LiDAR point cloud.
The coordinates of the 3D feature point cloud are adjusted by the non-uniform transformation
parameters. It means that the adjustment model we proposed can eliminate the non-rigid deformation
between the LiDAR point cloud and the 3D feature point cloud. In this paper, the error equation
of the LiDAR point cloud-assisted bundle block adjustment is shown as Equation (8), and then the
external orientation elements of the images are calculated. Among them, Wx,y, WP, WN, Wc, Wk, are
corresponding weights.

Vx,y = Ax,y∆t+ Bx,y∆P+ Cx,y∆XN+ Dx,y∆c+ Ex,y ∆k −Lx,y Wx,y

VP = N∆P −LP WP

VN = ∆XN −LN WN

Vc = ∆c −Lc WC
Vk = ∆k −Lk Wk

(8)

Expressed in matrix form as:
Vx,y

VP

VN

Vc

Vk


=


Ax,y Bx,y Cx,y Dx,y Ex,y

· N · · ·

· · E1 · ·

· · · E2 ·

· · · · E3




∆t
∆P

∆XN

∆c
∆k


−]


Lx,y

LP

LN

Lc

Lk


(9)

V = M ∆ − L (10)

In Equation (9), E1, E2, E3 are unit matrixes. Equation (10) is an abbreviation of Equation (9).
It should be noted that due to the limitations of LiDAR point cloud resolution and the complexity

of ground conditions, it is difficult to assess the distance between the 3D feature point cloud and the
LiDAR point cloud plane. For example, a 3D feature point that falls on a rough area of the LiDAR point
cloud (such as a road edge) may lie on a nearby plane. Figure 4 shows the case where the flat region
and the rough region are fitted to a plane. It is obviously that the fitting residual of the flat region is
smaller than in the rough region. That means the distance between the 3D feature point and the LiDAR
point cloud of the flat region is more reliable. Therefore, we propose that only the 3D feature points
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that lie in the flat areas of the LiDAR point cloud are constrained and participate in adjustment. This
paper evaluates whether the 3D feature point P lies on the flat area by calculating the average distance
dis between each point of the fitting plane and the fitting plane. The expression of the distance dis is
expressed by Equation (11).

dis =

√
d1

2 + d22 + · · ·+ dn2

n
(11)
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Among them, d = {d1, d2, · · · , dn} denotes the distance between the LiDAR point and its fitting
plane. Given a threshold τ, LiDAR points with dis < τ are considered as points on a flat area.

According to our method presented above, it is obviously that the vehicle-borne LiDAR point
cloud assisted bundle block adjustment is a continuous iterative process and the iterative processing
we designed is as follows:

(1) Find 3D feature points in a flat area and determine their corresponding planes in the
vehicle-borne LiDAR point cloud.

(2) Establish the error function and normal function described as Equation (10). Each 3D feature
points is corrected point by point.

(3) Solve the equations to get unknown parameter corrections. In this process, the unit-weighted
root mean square (RMS0) is used to evaluate the registration quality. Unit-weighted RMS0 is defined
as:

RMS0 =

√
VTWV

n− t
(12)

In the above formula, n is the number of observations and t is the number of unknown parameters.
(4) Check RMS0 and the parameter correction. If it is less than the tolerance, go to step five.

Otherwise, repeat steps two to four with the new value of the parameters.
(5) Check the distance DRMS (Distance Root Mean Square) between the 3D feature points and the

corresponding LiDAR plane. If the difference in DRMS between the two iterations is small enough or
the maximum number of iterations is reached, continue to the accuracy evaluation process; otherwise,
jump to step one. DRMS is defined as in Equation (13):

DRMS =

√√∑Np

i ‖d(Pi, Qi)‖
2

Np
(13)

Here, Pi represents the 3D feature points of the flat region, Np is the total number of 3D feature
points, and Qi expresses the LiDAR plane corresponding to Pi.

4. Experiment and Result Discussion

4.1. Experimental Data

The experimental data set includes UAV images, the vehicle-borne laser point cloud, and three
control points. To determine the effectiveness of our method, 17 checkpoints are collected to determine
the effectiveness of our method. The data set covers an area of 1.3 km × 1.3 km in Wuhan, Hubei
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Province, China. The UAV’s flying altitude is about 320 m. There are 10 strips and 245 images.
The Endlap is about 80%, and the Sidelap is about 50%. The vehicle-borne LiDAR point cloud cover
the same road area. Essential preprocessing must be done before aerotriangulation. However the
preprocessing stage is not what we mainly focused on. Thus, here we assume that the preprocessing
of the vehicle-borne LiDAR point cloud, including noise filtering and registration, is finished. The
detailed information of the optical images is shown in Table 1, and the details of the vehicle-borne
LiDAR point cloud are shown in Table 2.

Table 1. Detail information of UAV images.

Data Sensor
Image Size

(Pixels) Focal Length (mm) Cell Size (mm) Resolution (m)

Images SONY ILCE-7R 7360*4912 35.8 0.0048 0.04

Table 2. Detail information of vehicle-borne LiDAR.

Data Sensors
Distance between Point

Cloud (m)
The Number of Point

Cloud

LiDAR point Leica ALS50-II 0.13 0.5billion

The UAV camera location and image overlap degree are shown in Figure 5.
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The distribution of control points and checkpoints is shown in Figure 6a. Red dots indicate the
distribution of control points, yellow dots indicate the distribution of checkpoints, and the bottom
image is the orthographic image. The vehicle-borne LiDAR point cloud is shown in Figure 6b.
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Figure 6. Detail of study area: (a) Orthophoto image; (b) vehicle-borne LiDAR Data.

The 3D feature point cloud under the geodetic coordinate system is obtained by aerotriangulation
to roughly align with the LiDAR point cloud. The LiDAR point cloud and the 3D feature point cloud
are superimposed, as shown in Figure 7. It is clear that there are non-rigid distortions in the 3D feature
point cloud. Through the vehicle-borne LiDAR point cloud’s restraint effect on the 3D feature point
cloud, the distance between the 3D feature point cloud and the LiDAR point cloud is continuously
reduced, until the two point clouds are aligned gradually and a higher image positioning accuracy
is obtained.
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Figure 7. Overlap diagram of LiDAR and 3D feature point.

4.2. Quantitative Evaluation

We use the checkpoints to evaluate the accuracy. The measured ground truth checkpoints are
compared with the 3D feature points generated from the bundle block adjustment and constrained
by the vehicle-borne LiDAR. The RMSE of the checkpoints are statistically calculated during each
iteration. It can be seen from Figure 8 that during the loop iteration process, the RMSE of the checkpoint
continuously decreases until convergence, which reflects the effectiveness of the vehicle-borne LiDAR
point cloud constraint in this paper.
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Table 3 illustrates the error of each ground check point before and after the vehicle-borne LiDAR
point cloud constrained aerotriangulation. Before the LiDAR point cloud constraint, the RMSE of the
checkpoints on the x, y, and z axes are 0.140 m, 0.193 m, and 1.341 m, respectively. The RMSE of the
checkpoints on the x, y, and z axes after the LiDAR point cloud constraint are 0.118 m, 0.163 m, and
0.084 m, respectively, and the maximum residual is less than 0.3 m. On the basis of the comparison,
it is proved that, in the case of rare control, the image positioning accuracy can be improved by the
constraint of the LiDAR point cloud and the accuracy requirement can be satisfied.

Table 3. The RMSE of checkpoints before and after LiDAR point cloud constrain (m).

Checkpoint Before LiDAR Constrain After LiDAR Constrain
dx dy dz dx dy dz

1 0.237 -0.214 1.765 0.201 -0.181 -0.170

2 0.073 -0.125 1.998 -0.058 -0.118 -0.007

3 0.017 -0.022 1.670 -0.001 -0.010 -0.053

4 -0.184 -0.235 -1.090 -0.099 -0.238 -0.059

5 -0.063 -0.046 0.861 -0.062 -0.039 0.072

6 -0.036 0.127 0.230 -0.041 0.131 0.008

7 -0.075 -0.247 0.103 -0.079 -0.243 -0.100

8 0.090 -0.282 0.804 0.074 -0.252 -0.022

9 0.077 0.322 0.983 0.056 -0.140 0.030

10 0.159 -0.355 1.037 0.133 -0.293 -0.005

11 0.159 -0.050 1.736 0.122 -0.014 -0.123

12 -0.095 -0.220 1.788 -0.132 -0.190 -0.088

13 0.304 -0.033 1.808 0.267 -0.009 -0.059

14 0.016 -0.076 1.768 -0.021 -0.051 -0.042

15 0.134 -0.204 1.746 0.099 -0.182 -0.054

16 0.156 0.157 0.556 0.141 0.163 -0.038

17 0.120 0.028 0.208 0.109 0.043 -0.189

Maximum
error 0.304 0.355 1.998 0.267 0.293 0.189

Minimum
error 0.016 0.022 0.103 0.001 0.009 0.005

The mean
error 0.140 0.193 1.341 0.118 0.163 0.084



Remote Sens. 2019, 11, 1188 12 of 16

4.3. Visual Quality Evaluation

We perform dense matching using the corrected image external orientation elements, and in
comparison with the dense point cloud obtained by the original image external orientation elements,
we could visually find that the offsets in horizontal direction and in vertical direction are getting
smaller in Figure 9, after LiDAR point cloud-assisted aerotriangulation. Note that the black points are
vehicle-borne LiDAR points, while the gray-like points are dense points generated from UAV images.
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Again, in order to visually verify the accuracy of this method, the vehicle-borne LiDAR point
cloud of the road is extracted from the total vehicle-borne LiDAR point cloud, and it is back-projected
onto the corresponding images according to the external orientation elements obtained before and after
the LiDAR point cloud constraint. The accuracy of aerotriangulation can also be judged by observing
the coincidence degree between projection point and image.

As shown in Figure 10, the vehicle-borne LiDAR point cloud of the overpass is projected onto
the corresponding image, and the projection point of the LiDAR point cloud is colored according
to the elevation. The overpass points that own the lower elevation (bottom of the bridge, <32 m)
are green, and the higher elevation (bridge Upper, ≥32 meters) points are red. From the details of
the overpasses (1) and (2) in Figure 10, we can see that before the LiDAR point cloud constrained
aerotriangulation there are misalignments at the edges. In other words, part of the bottom of the
bridge is back-projected on the bridge, while some of the points on the bridge are back-projected on
the bottom of the bridge. However, after being constrained by the LiDAR point cloud, the coincidence
accuracy is significantly improved.
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Figure 10. Overpass point back projection: (a) Before LiDAR constrain; (b) After LiDAR constrain

Using the characteristics of obvious contrast between road markings and asphalt pavement, the
effectiveness of this method can also be verified by the deviation of road markings. In the LiDAR
point cloud, three kinds of common road markings, i.e., “entry entrance line”, “diverging line”,
and “indicating arrow” are selected and back projected, and the projected points are colored according
to LiDAR point cloud intensity. The contrast between the projection results before and after the
LiDAR point cloud constraint is shown in Figure 11. Before the LiDAR point cloud constraint, the
projected points of the road markings are significantly shifted. After the LiDAR point cloud constraint,
the projection point offset is very small, with an offset of about 3-5 pixels. The coincidence accuracy is
significantly improved.
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To address the problem of low accuracy of aerotriangulation under sparse control, this paper
proposes a non-rigid method of LiDAR point cloud-assisted aerotriangulation. The method does not
require complicated feature extraction and matching between the images and the point cloud, and can
handle the non-rigid distortion problem of the images. Through experiments and accuracy evaluation,
the results show that the RMSE of the checkpoints on the x, y, and z axes are 0.113 m, 0.158 m, and
0.082 m after being constrained by the LiDAR point cloud. The effectiveness and robustness of the
proposed method are verified. Since the number of control points has a great correlation with the
terrain and characteristics of experimental data, we will explore adding other feature constraints on
the basis of this research to achieve uncontrolled aerotriangulation.
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