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Abstract: Identifying the natural and anthropogenic mechanisms of vegetation changes is the basis
for adapting to climate change and optimizing human activities. The Beijing-Tianjin-Hebei megacity
region, which is characterized by significant geomorphic gradients, was chosen as the case study
area. The ordinary least squares (OLS) method was used to calculate the NDVI trends and related
factors from 2000 to 2015. A geographic weighted regression (GWR) model of NDVI trends was
constructed using 14 elements of seven categories. Combined with the GWR calculation results, the
mechanisms of the effects of explanatory variables on NDVI changes were analyzed. The findings
suggest that the overall vegetation displayed an increasing trend from 2000 to 2015, with an NDVI
increase of ca. 0.005/year. Additionally, the NDVI fluctuations in individual years were closely related
to precipitation and temperature anomalies. The spatial pattern of the NDVI change was highly
consistent with the gradients of geomorphology, climate, and human activities, which have a tendency
to gradually change from northwest to southeast. The dominant climate-driven area accounted for
only 5.98% of the total study area. The vegetation improvement areas were regionally concentrated
and had various driving factors, and vegetation degradation exhibited strong spatial heterogeneity.
The vegetation degradation was mainly caused by human activities. Natural vegetation was improved
because of natural factors and reductions in human activities. Moreover, cropland vegetation as well
as urban and built-up area improvements were related to increased human actions and decreased
natural effects. This study can assist in ecological restoration planning and ecological engineering
implementation in the study area.
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1. Introduction

Under the combined effects of global climate change and regional socioeconomic activities,
vegetation at different spatial scales is undergoing complex change processes [1,2]. Thus, rationally
distinguishing the natural and anthropogenic drivers of vegetation change has become the basis for
ecological restoration. The normalized difference vegetation index (NDVI) is an important parameter of
the vegetation environment [3,4], and its spatial differentiation and dynamics have become important
indicators for ecological environment monitoring [5]. Therefore, many researchers have applied
different types and multi-temporal NDVI products [6-8] to study the patterns and driving forces of
vegetation changes.
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At a global scale, vegetation differentiation and trends are affected by various factors, such as
climate [9,10], landforms [11,12], land cover types [13,14], and human activities [14-17]. For example, de
Jong et al. [18] believed that global terrestrial vegetation activities had generally declined with climate
change from 1982 to 2008. Strong ENSO events and volcanic activity made significant effects on dramatic
changes in vegetation. Zhang et al. [19] found that global vegetation showed a remarkable greening
trend from 2000 to 2015 based on MODIS-C6 vegetation index product, and stronger association
between the climate and vegetation in the boreal and arid regions than other areas. Chen et al. [14]
pointed out that global MODIS data revealed increasing leaf area of vegetation from 2000 to 2017,
which is caused by human land-use management and climate change, CO, fertilization, nitrogen
deposition, and recovery from natural disturbances. Liu et al. [15] found that global NDVI increased
from 1982 to 2012. However, it is unclear how natural and human factors together affect NDVI trends
and how their effects evolve over time.

At the regional scale, especially in urban agglomerations, natural and anthropogenic factors are
strongly coupled [20]. Researchers face the interaction of them [21], especially multidimensional and
multivariant human activities [22], because various factors have different effects on NDVI differentiation
and trends, such as convergence, divergence, nonlinearity, threshold, and feedback [23-25]. For example,
Barrera and Henriquez [26] studied three urban agglomerations in Chile located in different climates
found that urban expansion led to reduced vegetation from 1986 to 2015, and also promoted the
improvement of vegetation inside the cities [26]. Zewdie et al. [27] monitored the NDVI dynamics
in Northwestern Ethiopia from 2000 to 2014, which found that climate variables were not the main
explaining factors, and the decline in vegetation was affected by the increasing pressure of human
activities. Peng et al. [28] found the NDVI generally increased in Eastern China from 1999 to 2008 with
complex differences driven by precipitation and temperature, and the impact of anthropogenic activities
on vegetation dynamics had accumulative effects and a phase effect. Hu et al. [29] found that the NDVI
overall improved from 2000 to 2016, which was influenced by climate change, topographic factors,
afforestation, resident lifestyles, and economic development policies in the Pearl River Delta of China.

Previous research has revealed the differentiation pattern, change dynamics, and driving mechanism
from various angles. However, there is no consensus on the types, strengths, spatial distributions,
and time series evolution of natural and anthropogenic drivers of vegetation changes at the global or
regional scale, and impacts such as geomorphic gradients and land cover types have not been fully
considered. Can we solve these problems to a certain extent through reasonable geographic division
and matching data selection and regional scale method application? We chose the Beijing-Tianjin-Hebei
megacity region with significant geomorphic gradients as the research area, which is experiencing
high-speed economic development and facing complex ecological problems. This study was performed
to (i) detect the overall trend of the NDVI changes from 2000 to 2015, (ii) reveal the spatial differentiation
characteristics of the NDVI trends, and (iii) distinguish the natural and anthropogenic drivers of NDVI
trends in different land cover types and different geomorphic units.

2. Materials and Methods

2.1. Study Area

The Beijing-Tianjin-Hebei megacity region (abbreviated as BTH) is China’s political and cultural
center and an important core area for the economy of Northern China (Figure 1a). The geographical scope
(GCS_WGS_1984) is 113.457-119.8526°E, 36.0431-42.6216°N, which covers an area of approximately
218,000 km?. The region belongs to the continental semi-humid and semiarid monsoon climate
zone, where the annual mean precipitation was 534 mm, and the average temperature was 9.87 °C
from 1980-2015, according to the data from the Resources and Environmental Data Cloud Platform
(http://www.resdc.cn). The types of vegetation in BTH include natural vegetation and crops, of which
natural vegetation includes warm temperate deciduous broad-leaved forests and temperate grasslands,
and crops mainly include wheat, corn, and cotton (Figure 1b). The study area was divided into three
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primary geomorphic units and 14 secondary geomorphic units (Figure 1c). Each geomorphic unit
presents gradient changes from northwest to southeast in the spatial distribution of geographic elements
such as precipitation, temperature, elevation, slope, vegetation, and human activity intensity (Table A1).
Due to the policy of national economic development and environmental protection, the ecological
environment of BTH has gradually improved [30].
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Figure 1. (a) Location and elevation map. (b) Land cover type map. (c) Geomorphic unit division,
and secondary geomorphic units, including Plateau Hills (I;), High Plain (I;), Mountain-Yinshan
Eastern Section (II1;), Mountain-Yanshan Section (II12), Mountain-Taihang Section (II;3), Hilly Yanshan
Section (II1), Hilly Taihang Section (II;), Mountain Basin (II3), Alluvial-Proluvial Fan (III;), Flood
Plain (III), Yellow River Floodplain (Ill3), Depression (IIl4), Alluvial and Coastal Plain (Ill5), and
Marine Plain (IIlg).

2.2. Data Sources and Preprocessing

Monthly MODNDIM China 500 m NDVI products were used as the most important remote
sensing data and were downloaded from the Geospatial Data Cloud (http://www.gscloud.cn) and the
International Scientific and Technical Data Mirror Site, Computer Network Information Center, Chinese
Academy of Sciences. This data set was obtained from MODNDI1D data using the maximum synthesis
method. The MODNDI1D data were processed by MODO09GA through splicing, cutting, projection
conversion, unit conversion, and other processing. The MODND1M data have good reproducibility for
MODIS NDVI 16-day synthetic data with 250 m spatial resolution [31]. The Savitzky-Golay filtering
method was applied to control the impact of noise in nonphysical data [32]. April to October was
identified as the growing season for the major crops [33] for the annual scale NDVI data synthesis.
The maximum synthesis method was used to synthesize the NDVI data during the growing season.

To study the spatial differentiation characteristics of the NDVI and analyze the relationship
between NDVI trends and different geographical elements, the index selection and processing methods
of other researchers were referenced [34-36], and the geographic factors were grouped into seven
categories and 14 variables (Table 1).

The annual precipitation data and annual average temperature data were collected from the
Data Center for Resources and Environmental Sciences, the Chinese Academy of Sciences (RESDC).
The data set with a 1-km spatial resolution was based on daily observation data from more than
2400 meteorological stations nationwide and was generated by collation, calculation, and spatial
interpolation. The monthly temperature and precipitation point data were downloaded from the
China Meteorological Data Network. Meteorological observation stations in the BTH and surrounding
areas were selected. ANUSPLIN software [37] (Fenner School of Environment and Society at the
Australian National University, Linnaeus Way, Acton ACT, Australia) was used to generate monthly
raster data with a 1-km spatial resolution, and precipitation and temperature data were synthesized
for the growing season.
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Table 1. Factors used as explanatory variables for NDVI trends.
Variable Class Variable Name Definition and Units Data Source Spatla'l
Resolution
PRE_MN*! Annual mean precipitation 1980-2015 (mm/yr) Data Center for Resources and Environmental 1km
Climatic and TEM_MN* Annual mean temperature 19802015 (°C/yr) Sciences, Chinese Academy of Sciences 2 1km
PRE_ BT*! t-test grading of precipitation trends (OLS) during the growing season 2000-2015 . . 1 km
roundwater - b

& TEM_ BT*! t-test grading of temperature trends (OLS) during the growing season 2000-2015 China Meteorological Data Network 1km

GRACE*! Liquid water equivalent thickness trend (OLS) from GRACE 20032015 (cm) JPL/GRACE-TELLUS ¢ 1°
. ELEVATION*! Elevation represents macroscopic landform (m) . 30m

G h d
comorprie SLOPE*! Slope represents microtopography (°) Geospatial data cloud 30 m
SOC;SEi?E:?IC NLIGHT*? Nighttime light intensity trend (OLS) from DMSP/OLS 2000-2013 NOAA'’s National Geophysical Data Center € 1 km
Accessibility DIST_RIV*! Euclidean distance from river (m) National Catalogue Service vector
DIST_ROAD*? Euclidean distance from main road (m) for Geographic Information f
. . . Beijing Municipal Bureau of Statistics &
+2 t-test grad f fertil trend (OLS) 2000-2015
Aig\l;ilttizzal FERT est grading of fertilizer uses trend ( ) Tianjin Bureau of Statistics h vector
IRRI*? t-test grading of effective irrigated area trend (OLS) 2000-2015 Hebei Provincial Bureau of Statistics |
Land cover change LAND*? Land cover type change between 2000 and 2015 (6 classes) Research Cep ter for Eco—Env1ronmental_ Sciences, 30m
Chinese Academy of Sciences)

Initial NDVI 2000NDVI*3 NDVI in the growing season of 2000 Geospatial data cloud ¢ 500 m

*! represents natural variables. *2 represents anthropogenic variables. *> represents a variable with both natural and anthropogenic attributes.  http:/www.resdc.cn. ® http://data.cma.cn/

¢ http://upwell. pfeg.noaa.gov. dhttp://www.gscloud.cn. © https://www.ngdc.noaa.gov. { http://www.webmap.cn. 8 http://www.bjstats.gov.cn. ™ http:/stats.tj.gov.cn. T http://www.hetj.gov.cn.
) http://www.rcees.ac.cn.
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The composition, distribution, and growth of vegetation are closely related to groundwater,
especially shallow groundwater [38]. The Gravity Recovery And Climate Experiment (GRACE) satellite
contributed to the information on the distribution of terrestrial water reserve changes by measuring
the gravity fluctuations caused by mass anomalies in different regions of the world. This provided a
new method for indirectly monitoring NDVI trends [39]. The GFZ GRACE Products (version RL0O5)
(https://grace.jpl.nasa.gov/) from April 2002 to July 2016 were collected, and monthly data for 2003 to
2015 were selected to calculate the trend of the groundwater changes.

As a major indicator of temperature, humidity, and illuminance, ELEVATION was used to
characterize the geomorphic gradient effect at the macroscopic scale [40]. SLOPE describes the degree
of microscopic changes in surface morphology [25], which was used to reflect the stability of surface
material and movement and retention of water.

The Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) nighttime
imagery data derived from the National Oceanic and Atmospheric Administration (NOAA) and the
National Geophysical Data Center (NGDC) revealed information closely related to the distribution of
factors such as population and urban area. When using DMSP/OLS light data, socioeconomic factors
need not be considered separately [41]. Stable lighting data products were synthesized from 1992 to
2013 global nighttime light time series data. The NLIGHT from 2000 to 2013 was calculated and used
as a substitute for the change in human activity intensity over the same period.

Water systems reflect the spatial distribution of surface water and groundwater and control
the hydrological conditions of vegetation distribution. Roads indicate human disturbance to natural
vegetation and the intensity of the control over artificial vegetation, such as croplands [42]. Data
on agricultural facilities, water systems, and roads (including national roads, provincial highways,
highways, railways, and urban roads) were collected from the National Catalogue Service for
Geographic Information (http://www.webmap.cn). The Euclidean distance calculation method was
used to generate DIST_RIV and DIST_ROAD.

Irrigation and fertilization are important for artificially planted crops, and both factors have an
impact on crop growth [43]. Data on effective irrigated area and fertilizer use (quantity) from each
county except the built-up area in Beijing from 2001 to 2016 were collected from the Economic Yearbook.
The annual data were assigned to the administrative unit of each county or district and then converted
from vector data into raster data.

Land cover types in BTH include woodland/shrubland, grassland, wetland, cropland, urban, and
built-up areas, etc. The dataset was provided by the Research Center for Eco-Environmental Sciences
of the Chinese Academy of Sciences (RCEES) (http://www.rcees.ac.cn). Changes in land cover type and
the corresponding NDVI trends from 2000 to 2015 were detected, and a numerical reduction in the
NDVI was defined as degraded, while an increase was defined as improved. Land cover change was
assigned values from —5 to +5 at intervals of 1 depending on the intensity of the change.

The initial NDVI has important effects on the rate, trend, and persistence of NDVI changes, while
the factors influencing the changes in the NDVI also have diversity and phase characteristics. The NDVI
during the growing season of 2000 was taken as one of the factors influencing the NDVI trends.

2.3. NDVI Trend Detection

The ordinary least squares (OLS) method was used to detect the NDVI trend (6sjgpe) [44] from
2000 to 2015, where 6oy . > 0 represents NDVI improvement, Osjqpe < 0 represents NDVI degradation,
and Osjope = 0 represents almost no change in the NDVL To evaluate the consistency of the NDVI
trend, a two-sided Student’s t-test for the 055y, Was calculated [45]. Two confidence levels (p < 0.05
and p < 0.01) were identified such as the null hypothesis HO: (6;jope) = 0. When the confidence level
was statistically significant, two types of significance were defined: significant (0.01 < p < 0.05) and
extremely significant (p < 0.01).
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2.4. Analysis of NDVI Trends Based on GWR

The geographic weighted regression (GWR) model was used to analyze the influence mechanisms
of 14 explanatory variables on the NDVI trends. Brunsdon et al. [46] provided a detailed introduction
to the principles of GWR, which is expressed in Equation (1).

n
yi = Bio(ui,vi) + 2 Bir (i, vi) X + i 1)
k=1

where 7 is the size of the sample, (1;,v;) is the spatial position of the ith sample point, Bjo(1;, v;) and
Bir (14, v;)x; are the constant estimates of the ith sample point and the parameter estimate, and ¢; (i = 1,
2,3, ...,n)is the random error of the ith sample point. The influence of the observations around the
spatial position i on the parameter estimation of the i-point decreases with the increase of the distance,
which is represented by the distance attenuation effect. The distance-weighted ordinary least squares
method can be used to estimate the parameters below.

Blui,0;) = (XTW(u;, Uz‘)X)_leW(”i/ i)Y 2

where f is the estimated value of the parameter 8, which is a matrix composed of the independent
variable observations. Y is the variable composed of the independent variable observations and W is the
spatial weight matrix, which is generally determined by using the Gaussian distance weight method.

L di; 2
W(u;,v;) = e_z(%) 3)

where W (u;, v;) is the spatial weight of the observation point j for the ith sample point, b is the baseband
width of the kernel function, and d;; is the Euclidean distance from the regression point i to the
observation point j. When there is no spatial difference between the dependent variable and the
independent variable, the data has spatial stability. Brunsdon et al. [47] introduced a stationarity index
to evaluate the data stationarity in a regression model.

BGWR_igr
~ 2x GLM_se
where Sl is the stationarity index, SGWR_igr is the interquartile range of the standard error of the x,
coefficient, and GLM_se is the standard error based on the global ordinary least square regression. If
SI <1, the relationship between the dependent variable and the independent variable is stationary,

SI 4)

and the smaller the value, the higher the stationarity. The significance test of the model and the spatial
autocorrelation of the model error term is performed on the GWR model. AIC [48] was commonly
used to test the significance of different models.

©)

AIC = 2nln(6) + nln(2m) + H[M]

n—2-tr(S)

where 1 is the size of the sample, 6 is the standard deviation of the error term estimate, t7(S) is the trace
of the projection matrix S of the GWR model, which is a function of the bandwidth, and the model
with a smaller AIC value is better [49].

In the present study, the GWR model was implemented in the GWR4 software [35,50], which was
developed at NCG (National Center for Geocomputation, National University of Ireland Maynooth)
and Department of Geography, Ritsumeikan University, Japan (http://gwr.nuim.ie). The GWR4 software
was used to complete the regression analysis of the NDVI trends and influencing factors. All the data
involved in the calculation were resampled to raster data with a spatial resolution of 1 km, and a point
file covering the study area was constructed with each data point controlling nine grids (3 km X 3 km),
and the mean value of the nine grids was assigned to the center point. The NDVI change trend was
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defined as the independent variable, and it was divided into six scenarios: extremely significant decrease
areas (abbreviated as NDVI-ESD), significant decrease areas (NDVI-SD), nonsignificant decrease areas
(NDVI-ND), nonsignificant increase areas (NDVI-NI), significant increase areas (NDVI-SI), and extremely
significant increase areas (NDVI-ESI). These six scenarios were assigned values of -3, -2, -1, 1, 2, and
3. Fourteen factors were defined as the dependent variables, in which the change trends of PRE_BT,
TEM_BT, FERT, and IRRI exhibited significant differentiation patterns at the regional scale, so the NDVI
trend classifications at the six levels were assigned by these factors. The change trends of GRACE
and NLIGHT did not exhibit significant differentiation patterns in the BTH area, and their change
trends were still used as dependent variables. In the GWR4 software, the local regression method was
chosen, and the accuracy was controlled by optimizing the calculation bandwidth. The GWR-estimated
coefficients of the 14 independent variables were used to assess the magnitudes of their influence on the
NDVI trends.

2.5. Calculation of the Ratio of Human to Natural Factors

To distinguish the combined effects of different types of explanatory variables on the NDVI trends,
the ratio of human to natural factors (Ratioy, /,,) was constructed.

n
sum_human X[ lest_human;|

sum_natural Z;.":llest_naturalil

Rationy,/,, = (6)
where 7 is the number of natural variables, sum_human is the sum of the absolute values of all estimated
human variable coefficients, est_natural; is the estimated coefficient of the ith natural variable, m
is the number of human variables, sum_natural is the sum of the absolute values of all estimated
natural variable coefficients, and est_human; is the estimated coefficient of the ith human variable.
The comprehensive result of both natural and human effects was 2000NDVI. Thus, it was not considered
in this Ratioy, /,, calculation.

3. Results

3.1. Spatial Characteristics of NDVI Trends

The average NDVI from 2000 to 2015 generally increased with a NDVI growth rate (abbreviated
as NDVIGR) of approximately 0.005/yr in the BTH area. The area with high NDVI values remained
unchanged or slightly increased, and the areas with relatively low and median NDVI values showed
a constant or decreasing trend. The fastest NDVIGR in the primary geomorphic units occurred in
the North China Mountains (0.006/yr), the slowest NDVIGR occurred in the North Plain (0.0044/yr),
and the NDVIGR was 0.005/yr in the Inner Mongolia Plateau. In the edge and transition zones of
geomorphic units, the improvement in the NDVI was relatively lower than that in the interior of
geomorphic units. For example, the NDVIGR of the Alluvial-Proluvial Fan was only 0.0025/yr. Among
the six types of land cover, the NDVIGR of grassland was 0.0072/yr, that of woodland/shrubland was
0.0057/yr, and that of cropland was 0.0053/yr. From 2000 to 2015, the average NDVI of BTH was
positively correlated with PRE_MN (coefficient = 0.54, p-value = 0.03) and not significantly negatively
correlated with TEM_MN (coefficient = —0.30, p-value = 0.25). NDVI showed a significant reduction
when precipitation decreased and temperature increased, and this impact lasted until the following
year. This scenario occurred in 2002, 2007, 2009, and 2014 (Figure 2).
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Figure 2. Average NDVI, precipitation anomaly, and temperature anomaly from 2000 to 2015.

The NDVI trends were divided into six scenarios (Figure 3), as shown in Section 2.4. The degraded
vegetation area accounted for 8.96% of BTH, of which NDVI-ESD accounted for 0.02%, NDVI-SD
accounted for 0.75%, and NDVI-ND accounted for 8.19%. The improvement area accounted for
91.04%, of which NDVI-NI accounted for 40.81%, NDVI-SI accounted for 45.94%, and NDVI-ESI
accounted for 4.29%. The total area percentages of NDVI-SI and NDVI-ESI in various land cover types
were woodland/shrubland (61.78%), grassland (59.16%), cropland (46.20%), other (39.30%), wetland
(34.42%), and urban and built-up areas (31.31%). Meanwhile, the geomorphic gradient exhibited
a significant differentiation effect on vegetation changes. NDVI degradation mainly occurred on
urban and built-up areas and cropland, and high degradation rates in BTH occurred in the Marine
Plain (2.91%), Alluvial-Proluvial Fan (2.12%), and Mountain Basin (2.10%) areas. The highest rates of
nonsignificant changes in the NDVI occurred in the Alluvial-Proluvial Fan (73.30%), Hilly Taihang
Section (71.98%), and High Plain (70.99%) areas, where the main land types were cropland and
grassland. In general, the NDVI improvements at the edge and transition zones of geomorphic
units were small, and the greatest improvements occurred inside geomorphic units, in which the
Alluvial-Proluvial Fan with the highest population density and high intensity of human activity
experienced the most complex changes in the NDVL
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Figure 3. Spatial distribution of the NDVI trends. NDVI-ESD represents an extremely significant
decrease, NDVI-SD represents a significant decrease, NDVI-ND represents a nonsignificant decrease,
NDVI-NI represents a nonsignificant increase, NDVI-SI represents a significant increase, and NDVI-ESI
represents an extremely significant increase.
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3.2. Multivariate Regression of NDVI Trends

The results of GWR showed that each independent variable (Figure A1) had a clearly different
interpretation effect (Figure 4). GWR estimated coefficients (abbreviated as GWRec) indicated the
correlation of the independent variables with the NDVI changes. The larger the absolute value of
GWRec was, the greater the influence was. In general, the initial NDVI had the greatest impact on the
NDVI trends, which was followed by socioeconomic activities, geomorphic factors, climatic factors,
groundwater, and agricultural activities, land cover changes, and accessibility factors. All independent
variables in grassland, woodland/shrubland, and cropland were highly sensitive to NDVI changes.

£
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Legend

* Capital
Ratio of human to #  Province-level administrative center
natural fators [JProvince-level boundary
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e High : 2.81

oo How: 030 & owne

Figure 4. (a) GWRec of initial NDVI. (b) GWRec of land cover type change. (¢) GWRec of elevation.
(d) GWRec of slope. (e) GWRec of annual average precipitation. (f) GWRec of changes in precipitation
during the growing season. (g) GWRec of annual average temperature. (h) GWRec of changes in
temperature during the growing season. (i) GWRec of GRACE changes. (j) GWRec of NLIGHT changes.
(k) GWRec of river Euclidean distance. (1) GWRec of road Euclidean distance. (m) GWRec of irrigation
change. (n) GWRec of fertilization change. (0) Sum of the absolute values of the GWRec of natural
factors. (p) Sum of the absolute values of the GWRec of human factors, and (q) ratio of human to
natural factors.

To further characterize the influences of natural, human, and their integrated effects on NDVI
trends, we calculated three combined parameters of sum, 01, SUMy e, and Ratioy, ;. The sumy, g,
presented an overall east-west differentiation pattern and further showed a north-south difference
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(Figure 40), with two high-value areas in Beijing-Zhangjiakou and Baoding-Cangzhou. The largest
SUM e Occurred in Inner Mongolia, and the value in the North China Plain was slightly larger than
that in the North China Mountains. The su,,,,,,; values of each land cover type are ranked as follows:
grassland (1.76), other (1.55), urban and built-up areas (1.51), cropland (1.50), woodland/shrubland
(1.45), and wetland (1.41).

As shown in Figure 5a in the Inner Mongolia Plateau, the vegetation of all land cover types except
for wetlands generally changed from degradation to vegetation improvement as the natural factors
weakened. The vegetation in grasslands, woodlands/shrublands, and other land cover types had the
largest response to s, while the vegetation response was smallest in croplands and urban and
built-up areas with the same changes. In the North China Mountains, except for woodland/shrubland
and cropland, with the increase in sum,,;,,,,;, the NDVI of all other land cover types were more inclined
to improve. The low sumt 4, in the woodland/shrubland was conducive to the improvement of
vegetation. The NDVI improvements in croplands had high requirements for natural conditions
even though the sum, ) was significantly weaker than that in the significant improvement area.
In the North China Plain, from the NDVI-ESD to NDVI-ESI, the sum, ;.. of cropland and wetland
increased slightly but decreased slightly after the NDVI-SI. The sum,,;4,,,, of urban and built-up areas
showed a continuous state of small increases. The woodland/shrubland and other land cover types
showed a monotonous decreasing trend. The sui,;;,,, of grassland first decreased and then increased.
The NDVI-ESI had the highest value.

(a)
22 4
4 o
- 20 ‘\é—:\sﬂ .
S 18+ ISR
= \\ - o _q
= 164 < Other \_‘: s Sa >
[ +— Wetland . Kcwln ——
g 1.4 o —o— Grassland < . /!Kg._:: : 2 oS
75} 124 * Cropland v—/ & L]
—=— Artificial surface o
1.0 4 —— Woodland / shrubland o
LR\ S\ S\ S PN SN LI PR LN [0 e e e
MRS LS LSS N g S eSS T SR SRS S as
0.55 )
—=—Woodland / shrubland
0.50 Grassland W
g - 2 Cropland 4
g 045 —— Artificial surface
= . o Wetland & NS
-;‘ 0404 ¢ Other h j(:
& 035 M,’E""i
g
0.30
L AR R PRI CI R OO T ) IR I e e e
LURRRDIFVIRN AN T e e e e (RGO ¢. (e
RSOSSN S o il s SRS 2 S oSy
(c)
0 —=— Woodland / shrubland 2
0.40 o— Grassland ¢ G
—_— 4 Cropland . o A
£ 033 —— Alificial surluce \.’__j- e——.: a ‘N
£ 030 —o Weland P /_" .
2 025 4 Other a < 5. g
£ g
& 020 =7
o
0.15 v.-S—-d)_'Q
NP\ PN\ S\ S\ AR D D S S b . e o3
o, % o o o oF ORI e

Geomorphic-NDVItrend unit

Figure 5. (a) Sum of natural variables of different land cover types in each geomorphic-NDVItrend
unit. (b) Sum of human variables of different land cover types in each geomorphic-NDVItrend unit.
(c) Ratio of human to natural factors of different land cover types in each geomorphic-NDVItrend
unit. The geomorphic-NDVItrend unit represents different NDVI trends in the primary geomorphic
units, 1_ to 6_ represents NDVI-ESD to NDVI-ESI, IMP represents the Inner Mongolia Plateau, NCMs
represents the North China Mountains, and NCP represents the North China Plain.
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The sumy,;;;,, showed an overall north-south differentiation pattern, followed by an east-west
difference (Figure 4p). The high-value areas were mainly distributed in Tianjin and Shijiazhuang in the
North China Plain, and the low-value areas were mainly located in the northern and northwestern
areas of Zhangjiakou and Chengde. The sumy,;;,,,, values of the different land cover types were ranked
as follows: urban and built-up areas and wetland (0.49), cropland (0.47), woodland/shrubland (0.43),
other (0.42), and grassland (0.39). As shown in Figure 5b, from the Inner Mongolia Plateau to the North
China Plain, the intensity of human activity increased to approximately 1.5 times that of the plateau.
Compared with sy, the sumy,,,,, values of the six land cover types generally exhibited the same
trends in the three primary geomorphic units, and the difference in sumy,;,,,,, was small. The vegetation
easily improved with the increase in suj,,,,, in the Inner Mongolia. However, the regions with less
human activity were more prone to vegetation improvements in the North China Plain. In the North
China Mountains, the vegetation remained unchanged when the intensity of human activity was high.
The vegetation degraded with limited or low-intensity human activity, and the human activity was the
weakest in the vegetation improvement area.

The Ratioy,/,, value reflects the combined effects of human factors and natural factors and was
generally characterized by an east-west differentiation pattern (Figure 4q), which has two high-value
areas. The first high-value area occurred in the curved zone of Qinhuangdao-Tianjin-Langfang-Baoding,
which forms a diamond-shaped enclosure with the North China Plain-North China Mountains
boundary. The second high-value area was roughly parallel to the boundary with the North
China Plain-North China Mountains and was distributed in the central and western regions of
Shijiazhuang-Xingtai-Handan. The low-value areas were mainly distributed in Zhangjiakou, Beijing,
and Northwestern Chengde. The average of Ratioy,/, with a distinct geomorphological gradient was
0.16 in the Inner Mongolia Plateau, 0.33 in the North China Mountains, and 0.37 in the North China
Plain. The Ratioy, /,, values of each land cover type were ranked as follows: wetland (0.38), urban and
built-up areas (0.36), cropland (0.34), woodland/shrubland (0.32), other (0.30), and grassland (0.26).

As shown in Figure 5c, a relatively consistent upward trend of six land cover types occurred in the
Mongolia Plateau from NDVI-SD to NDVI-ESI, where the grassland was most sensitive to the changes
in Ratioy /,,. In the North China Mountains, the Ratioy,/,, of each land cover type showed a decreasing
trend from NDVI-ESD to NDVI-ESI even though the improvement of the woodland/shrubland revealed
a high dependence of Ratioj,/,,. In the North China Plain, the Ratio /, changes presented the most
complex trend between the six land cover types. As the Ratioy,/,, decreased, the vegetation in cropland,
grassland, and urban and built-up areas easily improved. Vegetation in woodland/shrubland and
other land cover types tended to improve when the Ratioy, /,, increased. Degradation and invariance in
wetland vegetation occurred at high Ratioy, /,, values, whereas vegetation increased as Ratioy, /,, increased
with reasonably controllable human activities.

3.3. Regression Differences in Different Geomorphic Units

The Inner Mongolia Plateau exhibited the largest sum,;,,,,; and the lowest Ratioy, /,, in BTH, and
the NDVI was easily improved when the Ratio, /,, was high. Due to the conversion of cropland and
grassland to urban and built-up areas, NDVI-SD was scattered in the transition zone between the
High Plain and the Plateau Hills. NDVI-ND was mainly distributed in the north-central part of this
area where cropland was transformed to urban and built-up areas. NDVI-NI largely occurred in
cropland and grassland areas and was especially high in the High Plain areas. It was mainly affected
by elevation, temperature, precipitation, and agricultural activities. NDVI-SI was mainly distributed
in the southeastern part of the Plateau Hills, and it was influenced by geomorphic effect, precipitation,
human activities, and warming. The NDVI-ESI trends were generally consistent with that of the
NDVI-SI and with the improvement of agricultural technology, and it was mainly distributed in the
transition zone adjacent to the North China Mountains.

In the North China Mountains, vegetation changes were mainly driven by natural factors.
NDVI-ESD and NDVI-SD were affected by urban-rural expansion and facility construction, and were
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mainly distributed in the Hilly Yanshan Section, mountain basins, and river valleys. NDVI-ND was
mainly distributed in the transition zone of geomorphic units, and affected by urban expansion,
infrastructure construction, and precipitation. NDVI-NI was highly correlated with annual mean
precipitation and interannual temperature changes and mainly distributed in the Hilly Taihang
Section. NDVI-SI was mainly affected by the initial NDVI, elevation, human activities (e.g., returning
farmland to forests, small watershed management, ecological economy development), temperature,
and precipitation. It was widely distributed in mountains and hills, which was the largest contiguous
area of vegetation improvements in BTH and was also the main area of the Three-North Protection
Forest Project and the Beijing-Tianjin Sand Source Control Program in BTH. NDVI-ESI occurred in
the key area of the Three-North Shelterbelt and was mainly distributed in Chengde and Zhangjiakou.
Compared with NDVI-SI, NDVI-ESI had a better combination of precipitation, groundwater volume
change, and temperature. Human activities had a greater impact.

In the North China Plain, which had the strongest human activity and the largest Ratioy, /,,, the
high Ratioy,/,, values corresponded to nonsignificant changes and degradation in vegetation, and the
low values indicated vegetation improvement. The vegetation-degraded areas were mainly distributed
in the marginal expansion areas of megacities. The NDVI-ND was mainly distributed in the east of
the Alluvial-Proluvial Fan and the Marine Plain, where the initial NDVI, agricultural activities in
cropland, construction activities in urban-rural areas, and precipitation mainly led to nonsignificant
degradation in vegetation. Compared with the NDVI-ND, groundwater, slope, and temperature
had prominent effects on the NDVI-NI, which was distributed over large areas of cropland, urban
and built-up areas, and wetland. The NDVI-SI was mainly distributed in the eastern part of the
Alluvial-Proluvial Fan, where the cropland was mainly traditional low-yield and medium-yield fields
and influenced by the initial NDVI, socioeconomic activities, precipitation, temperature, groundwater,
and fertilization. NDVI-ESI was mainly distributed in Eastern Hengshui, Southeastern Cangzhou, and
Northern Handan. The roles of agricultural production and management technology in cropland and
greening projects in urban and built-up areas were more prominent. The traditional low-medium-yield
fields were transformed into medium-high-yield fields, which promoted the extremely significant
increase in vegetation. In general, vegetation improvements exhibited the characteristics of regional
concentration and convergence of driving factors and Ratio,/,,, while vegetation degradation had many
influencing factors and strong heterogeneity in the North China Plain.

4. Discussion

4.1. Impact of Climate on NDVI Trends

The NDVIGR of this study is 0.005/year, which is higher than the NOAA-GIMMS-NDVI in the
area [51,52] and is basically consistent with the SPOT-VGT-NDVI [28,53] and previous findings using
the MODIS NDVI [54,55]. The fluctuations in the NDVI throughout the region are closely related to
meteorological events such as droughts. The sharp decline in the NDVI in 2009 was attributed to the
impacts of the 2008 winter and 2009 drought [56]. The continuous decline in the NDVI from 2014 to
2015 was affected by drought events in the Northern Hemisphere in 2014 and 2015 [57,58].

Since climate factors have long-term and cumulative effects and are highly integrated with human
activities, precipitation and temperature do not always have a decisive influence on the interpretation
of the causes of NDVI changes. From 2000 to 2015, the sensitivity between NDVI trends and PRE_MN
was stronger than that between NDVI trends and TEM_MN [55,59]. TEM_BT was more sensitive
than PRE_BT. Except for the Mountain-Yinshan Eastern Section, the rest of the BTH area exhibited a
warming pattern [60]. The sensitivity of TEM_MN to NDVI changes was great when TEM_BT was
low, and there was a certain reconciliation between them [61]. Except for the Marine Plain, PRE_MN
declined in each geomorphic unit. The correlation between the NDVI trends and precipitation and
temperature exhibited significant spatial differences. The areas with large geomorphological gradients
and climatic gradients, such as the low NDVI value areas in plateaus, plain croplands, and grasslands,
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were sensitive to climatic factors. The NDVI in mountainous forests was less sensitive to changes in
climatic factors, such as the >600 mm curved rainy belts distributed on the windward slopes of the
Yanshan and Taihang Mountains [62]. The NDVI in the north and northeast of the relatively humid
mountainous area of BTH did not always respond directly and proportionally to precipitation changes.
Although a nonlinear change in the soil water supply was caused by the increase in precipitation,
the water utilization rate of vegetation changed with the changes in temperature and humidity [63].
In general, the NDVI trends were mainly positively and not significantly correlated with PRE_MN or
TEM_MN, which accounts for 94.02% of the total area, while the significant and extremely significant
positive correlations accounted for only 5.98% of the area, which were mainly distributed in mountain
basins and depressions as well as the border area between the Mountain-Yinshan Eastern Section and
the Mountain-Yanshan Section. The variation in effective groundwater depth exhibited coupling and
hysteresis with precipitation. In the area with extensive groundwater exploitation in the North China
Plain [64], especially in the funnel area, the influence of the change in groundwater depth on the NDVI
trends correspondingly weakened [65]. Considering the comprehensive effects of climatic factors on
NDVI trends, climatic factors had no significant or negative effects on NDVI, which indicates that
climate change had a certain negative effect on vegetation changes [66], while human activities had a
great impact.

4.2. Influences of Non-Climatic Factors on NDVI Trends

4.2.1. Geomorphology

Both macroscopic and microscopic geomorphology had important impacts on the distribution
of soil and hydrothermal conditions, as well as strong coupling effects including the intensity of
human activity, land cover, vegetation distribution patterns, and its changes [67]. Land use regulations
under various slopes in the National Soil and Water Conservation Law directly affect the type of
vegetation cover. High elevations and steep slopes (>25°) in the Inner Mongolia Plateau and North
China Mountains are highly suitable for ecological conservation, such as the “Grain to Green Project”
and the “Natural Forest Conservation Program” [2]. However, low altitudes (<20 m) correspond to
improved water sources, and steep slopes (>4°) with better drainage conditions in the North China
Plain are conducive to cropland and woodland vegetation improvements. The combined effect of
elevation and slope on the NDVI trends would be further magnified when the internal geomorphic
gradient increases, such as in the six land cover types of the High Plateau, the cropland and urban and
built-up areas of the mountain basins in the North China Mountains, and the wetland in the depression
of the North China Plain.

4.2.2. Land Use

Land use is one of the most important factors in explaining the regional differences in the NDVI
attributes that were analyzed. The transformation of land cover type has a direct impact on NDVI [68]
in only the occurrence area, and the influences are limited in the areas at the edge and outside of
the boundaries. From 2000 to 2015, land cover type conversion occurred in 7.5% of BTH, with the
highest sensitivity to land conversion in the plain wetlands. The degraded NDVI areas were mainly
distributed within 200 to 500 m from the urban and built-up areas, and the improvement areas were
distributed by 1 km or more from the urban and built-up areas. Within 1 km of the land cover type
change area, the NDVI stability or improvement trends were suppressed, and the intensity of this
influence was gradually attenuated outside 3 km. The NDVI improvements caused by land cover
changes mostly occurred in mountainous and hilly areas, while, in plains and mountain basins, land
cover transformation mainly led to nonsignificant changes in vegetation.

4.2.3. Accessibility

Roads and rivers reflect the different needs of people and farming. Vegetation degradation is
concentrated in the residential areas near water and roads. The roads used in the present study are
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mainly high-grade roads, which mainly inhibit vegetation improvement, while low-grade roads closely
related to cropland are not all involved in the calculation. The water system in BTH is highly influenced
by human activities, such as the construction of reservoirs, water diversion, and river regulation.
Thus, the morphological structure of the water system does not fully represent the water volume
distribution. Urban and industrial production and agriculture have intensified water stress, especially
during the growing season. Surface water irrigation and groundwater irrigation have become the main
countermeasures in the North China Plain [69], which resulted in vegetation changes associated with
off-site water and groundwater. Therefore, the impact of the water system on local vegetation changes
is weakened. The water system distributed in the mountainous area is relatively closely related to the
vegetation of the catchment basin, which is associated with terrain, elevation, slope, and aspect [70].
Vegetation near the water system can be easily improved even though the effect of the water system
may also be weakened by the terrain effect [71].

4.2.4. Agricultural Production Technology

Cropland accounts for 42% of BTH, which is the largest land use type. The low GWRec associated
with the irrigation and fertilization practices in cropland reflect the direct impact of agricultural activities
on vegetation changes and reveal the indirect effects of other agricultural activities on vegetation changes,
such as soil improvement, seed improvement, new technology use, and planting structure improvement.
These activities are used to actively adapt to climate change and regional economic development and
have become important factors affecting cropland vegetation [72]. In the medium-yield and low-yield
fields, vegetation has been significantly increased through soil improvement, improving irrigation and
fertilization efficiency, and using other technologies and management measures. Except for the Inner
Mongolia Plateau and the Southeastern part of the North China Plain, the effects of irrigation and
fertilization on increasing yields have been reduced, especially in the medium-high-yield fields [73].

4.2.5. Socioeconomic Activities

This variable is negatively correlated with NDVI trends, which suggests that activities such
as urban-rural spatial expansion, spillover effects, and impervious surfaces may inhibit vegetation
improvements [74]. The statistics also show that the growth rate of NLIGHT in the plain vegetation
improvement area is only one-half or one-third of that in the vegetation degradation area, and
the rate decreases in mountains and plateaus. However, in cropland, ecological project areas, and
large cities, human activities can effectively promote vegetation improvement by addressing climate
and geomorphological factors. For example, the government has implemented ecological economic
development measures in forest and grassland and improved agricultural infrastructure in cropland.
These measures have promoted the adjustment of urban-rural industrial structure, and more optimized
human activities have accelerated the improvement of vegetation. The improvement of vegetation
in megacities is affected by many effects, such as urban green space improvement, urban heat island
effects, increased CO, concentrations, and increased active nitrides, all of which are highly correlated
with human activities [75]. However, the intensity of human activity may be affected by the saturation
effect of DMSP/OLS light data, especially in the bright cores of urban centers [76].

4.2.6. Initial NDVI

The 2000NDVI represents the initial state of vegetation and constrains the derived information,
such as the direction, strength, and reliability. The average estimated coefficient of BTH is approximately
—0.36, which is roughly similar to geomorphology and human activity factors. The negative correlation
between the 2000NDVI and NDVI trends reflects two points of information: first, there may be a
saturation effect on NDVI data as well as DMSP/OLS lighting data, especially in the high NDVI value
areas, and, second, the extremely low and very high-value regions of vegetation are inversely changed to
some extent [77]. For example, low-coverage vegetation was improved, such as various land cover types
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in the Inner Mongolia Plateau, and high vegetation cover was degraded, such as woodland/shrubland
and grassland in the North China Plain and woodland/shrubland in the North China Mountains.

4.3. Implications and Limitations

Following the gradient of climate and geomorphology, people should actively respond to changes
in the natural environment as well as regulate and optimize the layout and intensity of human
activities. The stability of vegetation in the North China Mountains should be maintained in the future.
The intensity of human activities in the Inner Mongolia Plateau should be reasonably controlled and
the planting structure and agglomerated woodland/shrubland should be optimized to effectively
control the scale of negative effects from urban and built-up areas in the North China Plain. Based
on functional ecological zoning, suitable ecological economic developments should be preferred in
different functional zoning units and the impact of human activities on the ecological environment
should be scientifically guided and controlled.

The spatial resolutions of the 14 interpretation factors used in this study are different and do not
match the spatial resolution of NDVI, such as groundwater data, irrigation data, and fertilization data.
Meanwhile, because of the saturation effect of NDVI, the maximum synthesis method may reduce
data accuracy at the interannual scale, which leads to unsustainable or noncontinuous conditions
in NDVI trends, especially those affecting the evaluation of the NDVI change trends. Although the
impacts of human activities were characterized by using nighttime light intensity, roads, water systems,
irrigation, fertilization, and other indicators, there is still a gap in the expression of diversity, complexity,
and dynamics of human activities, especially in cropland areas. Although collinearity is generally
evaluated, there may be individual factors in the interpretation of the GWR, which are repeated in the
local space and lead to the repeated or amplified interpretation of certain factors.

5. Conclusions

This study shows that the overall vegetation in the BTH region has improved over the last 16 years,
and NDVI fluctuations in individual years were closely related to climate events. Vegetation changes
showed a northwest-southeast pattern, which was highly consistent with the geomorphic gradient.
The main vegetation improvement areas were distributed in the North China Mountains where natural
effects were pronounced, and the main vegetation invariance and degradation areas were distributed
in the North China Plain where human effects were prevalent. Natural factors were generally more
sensitive than human factors to vegetation changes, and the Ratioy,/,, better reflected the combined
effects of human and natural factors. The Inner Mongolia Plateau had the largest sum,,;4,,,, and the
lowest Ratioy, /,, in the BTH, and the vegetation was more inclined to improve in areas with high Ratioy, /,,
values. In the North China Mountains, the high Ratioy, /,, corresponded to vegetation degradation
and invariance, while the low values implied vegetation restoration due to the implementation of
ecological engineering. The vegetation improvements had the characteristics of regional concentration
and convergence of driving factors and Ratio, /,,, while vegetation degradation had many influencing
factors and strong heterogeneity in the North China Plain. The results of this research can assist with
ecological functional zoning and ecological economic development in BTH. Future related research
should further refine the impacts of human activities, improve data accuracy, and reduce the saturation
of NDVI data.
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Appendix A Supplementary data

Table A1l. Basic information of each geomorphic unit.

Primary Geomorphic Unit Secondary Geomorphic Unit Area (km?) NDVI Elevation (m) Slope (°) POP GDP PRE TEM
Inner Mongolia Plateau Plateau Hills (I;) 7,376 0.55 1,455 5.35 71 144 432 3.06
& High Plain (I) 5,722 0.51 1,372 4.05 77 156 401 4.03
Mountain-Yinshan Eastern Section (II11) 24,192 0.67 1,277 12.48 91 279 494 4.63

Mountain-Yanshan Section (II15) 29,313 0.79 830 15.09 119 431 579 7.01

. . Mountain-Taihang Section (II;3) 20,638 0.76 945 18.03 204 727 549 8.42

North China Mountains Hilly Yanshan Section (IL;) 16,687 0.77 262 11.01 329 2045 616 1037
Hilly Taihang Section (II,;) 15,561 0.70 238 8.22 481 1,666 499 12.46

Mountain Basin (II3) 6,930 0.61 515 2.77 366 2,255 515 9.80

Alluvial-Proluvial Fan (IT1;) 42,450 0.74 30 1.99 1,200 7,696 533 13.09

Flood Plain (IIl) 16,643 0.74 13 2.19 615 1,682 528 13.63

. . Yellow River Floodplain (III3) 5,013 0.76 24 2.08 695 1,595 553 13.93

North China Plain Depression (I1l) 8,544 0.73 1 1.58 695 5371 538 1332
Alluvial and Coast Plain (I1l5) 10,955 0.68 5 1.51 1073 6,756 552 12.93

Marine Plain (I1lg) 4,627 0.47 6 1.27 799 17,389 559 12.74

Notes: NDVI-average NDVI, POP-population density in 2015 (people/km?), GDP-gross domestic product density in 2015 (Yuan/km?), PRE_MN-annual precipitation (mm), and
TEM_MN-annual average temperature (°C).
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Figure Al. Fourteen explanatory variable distribution maps. (a) initial NDVI. (b) Land cover type
change. (c) Elevation. (d) Slope. (e) Annual average precipitation. (f) Changes in precipitation during
the growing season. (g) Annual average temperature. (h) Changes in temperature during the growing
season. (i) GRACE changes. (j) NLIGHT changes. (k) River Euclidean distance. (1) Road Euclidean
distance. (m) Irrigation change (n) and fertilization change.
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