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Abstract: Ship detection is an essential maritime security requirement. Current state-of-the-art synthetic
aperture radar (SAR) based ship detection methods employ fully focused images. The time-consuming
processing efforts required to generate these images make them generally unsuitable for real time
applications. This paper proposes a novel real time oriented ship detection strategy applicable to
range-compressed (RC) radar data acquired by an airborne radar sensor during linear, circular and
arbitrary flight tracks. A constant false alarm rate (CFAR) detection threshold is computed in the
range-Doppler domain using suitable distribution functions. Detection in range-Doppler has the
advantage that principally even small ships with a low radar cross section (RCS) can be detected if
they are moving fast enough so that the ship signals are shifted to the exo-clutter region. In order
to determine a robust threshold, the ocean statistics have to be described accurately. Bright target
peaks in the background ocean data bias the statistics and lead to an erroneous threshold. Therefore,
an automatic ocean training data extraction procedure is proposed in the paper. It includes (1) a novel
target pre-detection module that removes the bright peaks from the data already in time domain,
(2) clutter normalization in the Doppler domain using the remaining samples, (3) ocean statistics
estimation and (4) threshold computation. Various sea clutter models are investigated and analyzed in
the paper for finding the most suitable models for the RC data. The robustness and applicability of
the proposed method is validated using real linearly and circularly acquired radar data from DLR’s
(Deutsches Zentrum für Luft- und Raumfahrt) airborne F-SAR system.

Keywords: synthetic aperture radar (SAR); clutter; target detection; oceanography

1. Introduction

Target detection and monitoring in the maritime environment is an imperative measure to ensure safety
and security on the open sea. The outputs of such activities are used by various agencies for the sustainable
management of the ocean and its resources. One of the most popular maritime surveillance services is the
automatic identification system (AIS) for the precise positioning of moving ships [1]. However, most of
the vessels and small boats are not equipped with the AIS transceivers. Moreover, some vessels turn off
their receivers to execute illegal activities which make it harder to detect them. Remotely sensed images
acquired over the sea surface are able to provide wide area coverage and repetitive monitoring in such
situations. Among the different imaging sensors, synthetic aperture radar (SAR) is considered to be one of
the most effective due to its all-weather independent and day-night acquisition capabilities.

SAR sensors mounted either on spaceborne or airborne platforms illuminate the ground to record
the backscattered signals. These signals are used to generate two-dimensional (2D) images with high
resolution and wide swath coverage. In SAR images, ships generally appear as bright spots compared
to its background, known as “sea clutter” due to their metallic structures and corners. Therefore, there
exist a vast number of publications exploring the potential of fully focused SAR images to detect
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ships, e.g., based on ship wakes [2], generalized likelihood ratio test (GLRT) [3], as well as sublook
decomposition and analysis [4]. Algorithms based on ship wake and polarimetric ship wake detection
can provide additional information about the ship velocity and the moving direction [5–7] without
using along-track interferometry. One of the widely used methods for detecting ships is to model
the background ocean clutter by a stochastic clutter model to derive a detection threshold based on a
constant false alarm rate (CFAR) [8].

The detections may be further used to generate high resolution images using, e.g., inverse SAR
(ISAR) imaging techniques [9,10]. These images may be utilized for target recognition and identification
purposes. For such applications, airborne platforms are very beneficial due to their flexibility to collect
data with very high resolution and with short revisit and long observation times [11–13]. Furthermore,
the use of multiple receiving channels offers additional advantages like clutter cancellation which
leads to efficient target detection [14,15].

Additionally, keeping in mind the potential real time requirements of ship monitoring, the use
of fully focused SAR images is not always the desirable choice. Extra processing efforts in terms of
range cell migration correction and an additional azimuth compression using reference functions are
necessary to generate these SAR images. Instead, using range-compressed data (RC) is very attractive,
especially taking into account that no conventional computation time-consuming SAR processing has
to be carried out. In [9,16], we have demonstrated the advantage of RC radar data to detect and image
moving ships for different radar platforms.

The present paper proposes a novel processing chain for ship detection using RC radar data that
is suitable for real time applications. More details on the use of RC data for target detection are given
in Section 2. The target detection is carried out in the range-Doppler domain. The advantage of using
the range-Doppler domain is that even ships with a low radar cross section (RCS) can be detected
when they are moving with a certain line-of-sight velocity and are shifted to the exo-clutter region as
discussed in detail in Section 2. Sea clutter models are used to derive a CFAR threshold. To get a valid
threshold, such models need a careful selection of ocean training samples which correctly describe
the background ocean statistics. Therefore, an automatic ocean training data selection approach is
also proposed. Various CFAR-based sea clutter models are studied and compared to choose the best
models for the RC data. To validate the proposed detection algorithm, experimental results from
single-channel RC data acquired linearly and circularly with DLR’s (Deutsches Zentrum für Luft- und
Raumfahrt) F-SAR airborne sensor are presented.

It has to be pointed out, although not further discussed in the paper, that the proposed method also
can be used for ship detection in multi-channel RC data. Almost without modifications the proposed
methodology can be applied on the sum-channel or on the clutter-suppressed channel obtained, e.g.,
after space-time adaptive processing (STAP) [17].

The remainder of this paper is organized as follows: Section 2 gives a brief description on the principle
of the algorithm proposed in the paper. Details regarding the training data selection methodology are
provided in Section 3. Various CFAR based sea clutter models implemented in this study are explained in
Section 4. The clustering and tracking algorithms used in the paper are briefly explained and discussed
in Section 5, followed by the experimental results, discussions and a final conclusion.

2. Principle of the Algorithm

Target detection is carried out in range-Doppler domain. If the ship moves with certain line-of-sight
velocity vr0 it will be shifted to a different Doppler frequency fDC. The relation between vr0 and fDC is
given as

fDC = −
2
λ

vr0, (1)

where λ is the radar wavelength. When this shift is larger than half the clutter bandwidth, i.e.,∣∣∣ fDC
∣∣∣ > Bc/2 where Bc is the clutter bandwidth, then the target is shifted to the exo-clutter region.

In this region generally a detection is possible.
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For smaller line-of-sight velocities a detection may be prevented by the presence of strong clutter.
Previous studies have shown that effective clutter suppression generally is only possible when multiple
receiving channels are available [17,18]. For instance, techniques like post-Doppler space-time adaptive
processing (STAP) [19] effectively suppress the clutter and normalize or whiten the Doppler spectrum
so that directly a single CFAR threshold can be applied once the clutter statistics are estimated.

For normalizing or whitening single-channel data over Doppler, first the average Doppler spectrum
has to be estimated. Once the Doppler spectrum is known, the data can be normalized to 0 dB before
estimating the sea clutter statistics and computing the CFAR threshold.

The major processing steps of the proposed algorithm for ship detection in range-Doppler domain
using RC data can be summarized as:

1. Extraction of a small data block from the RC radar data in time domain.
2. Transformation of the data block to range-Doppler domain via azimuth fast Fourier transform (FFT).
3. Normalization over Doppler for achieving a “flat” spectrum.
4. Estimation of the ocean clutter statistics.
5. Computation of a CFAR detection threshold based on the ocean clutter statistics.
6. Clustering of multiple detections to a single “physical object”.
7. Tracking of the clusters, i.e., of the cluster centroid positions.

Figure 1 illustrates the principle of the algorithm proposed in the paper. In this example, the images
are generated using 128 azimuth and 512 range samples from F-SAR [20] X-band data. For visualization
purposes, the images are normalized to a noise level of 0 dB.
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Figure 1. (a) Range-Doppler image of real X-band RC F-SAR data. The clutter with a bandwidth of
around 800 Hz and a ship appearing at −500 Hz are clearly visible. (b) Normalized image. (c) Clustered
detections with their centroids and bounding boxes at azimuth times t = 15 s, t = 20 s and t = 30 s,
respectively. (d) Target trajectory obtained from a tracking algorithm (orange) and cluster centroids (blue).
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2.1. Importance of Clutter Normalization

Clutter normalization is an important step in the proposed processing chain. The idea of clutter
normalization is further illustrated in Figure 2.
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Figure 2. Illustration of the average Doppler spectrum of a range-Doppler image containing clutter
and ship targets (a) before and (b) after normalization over Doppler. The red curve in (a) is the
average Doppler profile estimated without considering the targets. The green line in (b) is the detection
threshold computed based on clutter plus noise level.

The black curve in Figure 2a is the average Doppler spectrum of a range-Doppler image that
includes both the clutter and the targets. Efficient clutter normalization requires the estimation of the
red curve to perform normalization over Doppler [21,22]. This means that the potential targets have to
be pre-detected first and cancelled before the estimation. Otherwise it will lead to a distorted power
spectrum causing target self-whitening. After target pre-detection and clutter normalization the data
can be considered as training data and can be used for fitting sea clutter models and computing a valid
CFAR detection threshold (green line in Figure 2b).

A frequent update of the training data is very important, especially in case of ship detection using
airborne platforms. This is because atmospheric disturbances cause variations in the aircraft’s Euler
angles (roll, pitch and yaw) and these variations induce a change of the Doppler centroid over range
and azimuth time. In the special case of a non-moving ocean surface, i.e., in case of stationary clutter,
the clutter Doppler centroid is given as [23]

fclutter[r, t] ≈
2vp

λ
[cos(θinc[r] + θroll[t]) tan

(
θpitch[t]

)
+ sin(θinc[r] + θroll[t]) tan

(
θyaw[t]

)]
(2)

where vp, λ, θinc, θroll, θpitch and θyaw are the platform velocity, wavelength, incidence angle, roll,
pitch and yaw, respectively.

For a non-moving ocean surface, the computed clutter Doppler centroid fclutter[r, t] as a function
of range r and azimuth time t is shown in Figure 3 for a real circular flight of F-SAR. For computation,
the Euler angles measured with the aircraft inertial measurement system were used.

From Figure 3 it is clear that, due to the change of the clutter Doppler centroid along range and
azimuth time, a regular training data update is essential for obtaining a stable CFAR detection.

Note that in reality the ocean surface moves for itself and therefore will cause additional Doppler
shifts. However, these shifts are anyhow considered by a regular training data update.
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2.2. Algorithm Block Diagram

Figure 4 gives a detailed block diagram of the proposed methodology for ship detection in
range-Doppler domain using single–channel RC radar data as input. Note that, as already mentioned in
Section 1, instead of single-channel RC data, the sum-channel or the clutter-suppressed channel data
obtained, e.g., after STAP applied on RC multi-channel data, can principally be used as input data as well.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 39 
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Figure 4. Block diagram of the proposed algorithm which uses RC airborne radar data as input. The
individual blocks and processing steps are numbered from 1 to 17 and are discussed in detail in the text.



Remote Sens. 2019, 11, 1270 6 of 36

In Figure 4, the RC radar data (top) are initially divided into “green” regions, where each green
region is further partitioned along range into “red” sub-regions. Each red sub-region consists of a
group of “blue” data blocks where each data block consists of a certain number of azimuth samples
commonly known as coherent processing interval (CPI). The selection of the optimum number of
azimuth samples is system dependent. For the F-SAR system, the typical acquisition geometry and
the pulse repetition frequency (PRF) of 2400 Hz, we found that 128 azimuth samples per CPI are
well suited.

First, an average amplitude profile over azimuth is estimated for a red sub-region (labelled with
(1) in Figure 4). A trend along range is derived after performing median filtering (2). Then, for each
blue data block this median filtered range trend is used for performing range de-trending (3). This is
important for normalizing the range varying amplitude of the data to a constant value (4). After range
de-trending, each data block is transformed into range-Doppler domain by performing an azimuth
FFT (5).

From the “target pre-detection” module (6), the azimuth lines corresponding to “potential targets”
at certain range positions are detected and cancelled in range-Doppler domain for each data block
of the red sub-region (7). More details on the significance of target pre-detection and the proposed
method are presented in Section 3.1. Afterwards, an average Doppler spectrum without target signals
is estimated using all data blocks (8).

Normalization over Doppler is performed (9) individually for each “red” group of data blocks
using the estimated average Doppler spectrum (10). As result a normalized Doppler spectrum is
obtained (11).

More details on the average Doppler spectrum estimation and normalization are given in
Section 3.2. The normalized, target free data are used as training data to estimate the local ocean
clutter statistics (12). By setting a desired probability of false alarms (PFA) and by using the estimated
statistics from the sea clutter model, a CFAR detection threshold is computed (13).

The average Doppler power spectrum (10), which was estimated before, is further used to
normalize the “original” “blue” range-Doppler data blocks (14) (see also Figure 1a,b). The CFAR
threshold is then applied individually to each of these data blocks to detect the ship pixels (15). This
procedure is repeated until all “red” groups of data blocks along range (i.e., within the “green” region
at the top of Figure 4) are covered.

Finally, clustering (16) is performed using all the available detections along the complete range of
the scene and 128 azimuth samples (cf. black box in Figure 4 bottom right). The 2D positions of the
computed cluster centroids for each “black” data block are then used for “Tracking” (17). The refined
target positions obtained after tracking in range-Doppler domain are then projected back to time
domain. An example of this processing step is shown in Figure 1d.

Although not shown in the block diagram in Figure 4 and not topic of the paper, by using
the tracking information the RC data belonging to each detected ship can be extracted and used
for generating high-resolution ISAR image sequences [9,24]. Furthermore, in the case of using
multi-channel data, the target track or the target positions can also be converted easily to geographical
coordinates using the estimated direction-of-arrival angle. Even a tracking directly applied on the
geographical positions is then possible, either as the main tracking step or as a second tracking step,
with the main goal of improving the accuracy of the geographical positions.

The proposed algorithm is mainly foreseen for airborne radar but not for spaceborne radar
vessel detection. The major reason is because the algorithm only uses a relatively small number
of azimuth samples for the azimuth FFT and the ship detection. This generally is too less for
obtaining a sufficiently high peak signal-to-noise ratio (SNR) required for successful spaceborne vessel
detection. In contrast, for the airborne case, a short integration time in the order of a few milliseconds,
and hence, a small number of azimuth samples is sufficient for obtaining high enough peak SNR
values. Therefore, for the spaceborne radars, either single-channel algorithms optimized for fully
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focused SAR images [10] or more sophisticated multi-channel algorithms, for instance the powerful
EDPCA or ISTAP algorithms [25], should be used.

3. Training Data Selection

An appropriate selection of training data and sea clutter statistics estimation lead to an accurate
computation of the detection threshold. In reality, training samples within a region of interest may be
contaminated by target peaks and high clutter peaks. A typical example of the presence of a bright
ship signal in the RC radar data in the time domain is shown in Figure 5.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 39 
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Figure 6. Logarithmic plot of the PDFs of the ocean only (red) and ocean with a ship signal (blue) are
shown. For visualization purposes, the intensity axis is truncated as the maximum intensity due to the
ship is around 600.

Figure 6 shows how the presence of the target and other high peaks in the background clutter
skews the histogram to extremely high intensity values (blue). Such high intensities can severely
degrade the performance of clutter models. The detection threshold may be raised to a very high value
which lowers the probability of detection. In the literature, such effects are termed as “capture effects”.
Other complications in the modeling of sea clutter arise due to the presence of high clutter peaks that
causes sudden transition and shift in the background intensity values. These effects are known as
“clutter edge effects” [26].
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Several versions of CFAR detectors were developed in the past to improve the target detection
performance by eliminating these outliers. Order statistic CFAR, trimmed CFAR, censored mean level
detector, iterative censoring are some of the state-of-the-art methods used to remove interfering targets.
Despite showing relatively good performance in homogeneous scenarios, these techniques either have
limited performance in heterogeneous environments, require wise choice of the parameters or are
computationally ineffective [27–30]. More recently, a new algorithm based on truncated statistics CFAR
(TS-CFAR) was developed in [31] where the threshold is estimated from the truncated distribution
functions. TS-CFAR has been shown as a very effective way to eliminate the outliers and estimate a
robust threshold. Although being a powerful method, the truncation depth has first to be fixed to a
certain value and the truncated statistical distribution functions have to be derived afterwards. Fixing
the truncation depth is tedious and deriving the truncated version of the sophisticated sea clutter
models is both complex and time-consuming.

All these aforementioned developments and their associated problems led us to propose a simple,
robust and effective method to pre-detect the potential targets with real time capability. In the following,
the target pre-detection method in the time domain, the clutter normalization step and the importance
of training data update are explained in detail.

3.1. Target Pre-Detection

The proposed target pre-detection method is based on deriving an adaptive threshold which
varies along range. Such a threshold is needed because the backscatter received by the radar system
is range and incidence angle dependent. The proposed target pre-detection algorithm contains the
following major steps:

• RC radar data extraction in time domain (cf. green region in Figure 4).
• Incoherent summation over azimuth.
• Range-dependent adaptive threshold computation.
• Target peak detection and cancellation.

For incoherent summation over azimuth let us consider a set of complex amplitude pixels z
spanning over N azimuth samples and R range bins of the scene (cf. green region from Figure 4).
The average amplitude profile A(r) for r = 1, 2, 3, . . . .R of these data is given as

A(r) =
1
N

N∑
n=1

∣∣∣z(r, n)
∣∣∣, (3)

Figure 7 shows A(r) which is plotted for different polarization channels of an F-SAR data patch
which is free of target.
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It can be seen in Figure 7 that the amplitude variation is a function of range and incidence angle,
respectively. Generally, high backscatter is received at low incidence angles, the amplitude decreases as
the incidence angle increases. The intensity of the backscatter observed is highest in HH channel and
lowest in HV channel. It is now clear that for detecting potential targets at any range, the pre-detection
threshold has to be adaptive along range. Therefore, the pre-detection threshold ηpre(r) is defined as a
function of range ηpre(r) = f (r) where r is the range.

Referring to (3), the samples are incoherently added along azimuth and an average amplitude
for each range is computed. Applying a moving average filter to A(r) will not be an effective step
to cancel the target peaks. These peaks might be extremely high which could significantly alter the
center mean computed from the samples within the moving window. Instead, we suggest applying a
one-dimensional moving median filter of a certain window size because the median is more robust
and less sensitive to such outliers. The median Ã(r) of the data vector A(r) is written as

Ã(r) = median(A(r)), (4)

Instead of using the standard deviation around the mean to compute a pre-detection threshold, we use
the median absolute deviation (MAD). Compared to the standard deviation computed from the mean,
the MAD is a more robust estimator to measure the statistical dispersion and it is resilient to the outliers
present in the data [32]. The MAD(r) is given as

MAD(r) = median
(∣∣∣∣A(r) − Ã(r)

∣∣∣∣), (5)

The MAD(r) is then used to estimate the standard deviation σ(r) defined as

σ(r) = k ·MAD(r), (6)

where k is a scale factor with k ≈ 1.4826 representing the 0.75 quantile of the standard
Gaussian distribution.

The standard deviation σ(r) is further smoothened by applying a Savitky Golay (SG) filter [33]
with the window size being same as the one used in median filtering. This filter performs a moving
polynomial fit to the data in order to further reduce the noise without greatly affecting the signal.
The SG filter becomes a simple moving average filter when the polynomial order is 0. Unlike the
moving average filter, which along with the noise also removes the high frequency component of
the signal, the SG filter of a certain polynomial order is able to preserve these components in the
data. There are no general guidelines to choose an appropriate parameter for the SG filter, however a
polynomial order of two is a good compromise which leads to reasonable results for the F-SAR data.

The final mathematical expression for the adaptive pre-detection threshold ηpre(r) can then be
written as

ηpre(r) = Ã(r) + f · SG(σ(r)), (7)

where f > 1 is a factor used to determine the decision criterion to set the pre-detection threshold.
Figure 8 shows the influence of different factors f on the outlier detection.
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Figure 8. Average amplitude range profile with range dependent pre-detection thresholds. A high
target peak (=ship) is present at a range of approximately 7500 m. The effectiveness of the MAD based
pre-detection is evaluated in three different zones; near (red), mid (green) and far range (blue). Details
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Figure 9. Details of the pre-detection thresholds computed for different factors f in (a) near (b) mid
and (c) far ranges.

From Figures 8 and 9 it is noticed the pre-detection threshold is not only able to detect target peaks
but also other high clutter peaks. A threshold based on a setting of f = 1 or 2 would cancel most of the
peaks which might have originated from the ocean. The goal of target pre-detection is to cancel only
the bright targets and high clutter peaks. Therefore, the best value for f has to be found empirically.
For F-SAR X-band HH data it was found that a value of f = 3.5 or 4 effectively detects the outliers.

To demonstrate the effectiveness of the proposed pre-detection algorithm, it is applied to a real
X-band HH polarized RC data in time domain. Exemplary data containing a ship signal are shown
in Figure 10. For this particular case, the suitable window size of the median filter was set to 625.
For an F-SAR range sample spacing of 0.3 m this value corresponds to an approximately 188 m slant
range distance. It is recommended that the window size of the median filter should be in the order of
the maximum expected slant range length of the ships to be pre-detected. This ensures proper peak
detection capability.
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is indicated in the figure.

The binary pre-detection map of the bright targets and outliers after applying the proposed
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Figure 11. Binary detection map after applying the proposed pre-detection algorithm. The pre-detected
ship signal (left) as well as spiky clutter peaks can clearly be seen.

To further illustrate the robustness of the pre-detection algorithm, the ratio of the actual
(i.e., measured) false alarm rate PFAest and the desired false alarm rate PFAset was evaluated using
the K-distribution sea clutter model (cf. Section 4.1) applied before and after target pre-detection
and cancelation. In the optimum case, when the data contain no ships and no spiky clutter, the ratio
PFAest/PFAset should be one. Practically this cannot be achieved, since there is always a slight
difference between the chosen ocean clutter model and the actual ocean clutter statistics. The measured
actual false alarm rate PFAest is obtained from the ratio

PFAest =
ndetections

ntotal
, (8)

where ndetections is the total number of obtained detections assuming that the evaluated data patch
contains no ship targets, and ntotal is the total number of samples contained in the same data patch.

From the data shown in Figure 10 the HH, VV and HV polarization channels were chosen for the
evaluation. A K-distribution sea clutter model was fit to the data and a CFAR detection threshold was
computed for a desired false alarm rate PFAset = 10−6. The measured ratio PFAest/PFAset is shown in
Figure 12. The higher the ratio the worse is the detection performance.
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Figure 12. Ratio of the false alarm rates over range for X-band HH (top), VV (middle) and HV (bottom)
polarization before (blue) and after pre-detection and target cancellation (red). Note that a ship target is
present at around 42◦ incidence angle.

As observed in Figure 12, irrespective of the polarization channels, the presence of a target severely
degrades the estimated false alarm rate. After applying the proposed pre-detection algorithm which
also cancels the target, the actual false alarm rate around the target region gets drastically improved.
The value is in the order of the adjacent ranges which contain no target. However, the ratio is still higher
in the near and mid ranges of the HH and VV channels. This is due to the fact that the K-distribution
generally is not well suited for the RC F-SAR data. A further explanation and discussion on the proper
selection of the optimum sea clutter model is given later in Section 4.

In addition to this, the Doppler centroid map of the data is also generated to further examine the
potential of the pre-detection algorithm. The Doppler centroid is estimated from the data using the
energy balance algorithm proposed in [34]. A moving window of 512 range samples and 128 azimuth
samples for estimating the Doppler centroid were applied over linearly and circularly acquired RC
F-SAR L-band data. The results are shown in Figure 13.
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Figure 13. Doppler centroid map estimated from (a) linearly and (b) circularly acquired F-SAR L-band
HH polarized RC data. The ship histories in both (a,b) can be clearly seen. (c,d) Doppler centroid maps
re-estimated after cancelling the potential targets using the proposed pre-detection algorithm.
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It can be clearly seen in the second row of Figure 13 that any bright target signals, contained in
the first row, were cancelled after applying the proposed pre-detection module. It has to be further
noted, that the Doppler centroid in Figure 13d matches well with the one computed using the aircraft’s
Euler angles (cf. Figure 3 where a non-moving ocean surface is assumed). The observable difference
is among others given by the fact that the ocean surface moves itself. Principally the ocean surface
velocity can be estimated by exploiting the Doppler centroid differences. However, this is not the scope
of the paper.

The strange Doppler centroid values in Figure 13c are due to the presence of sandbanks in the
Wadensee area which lies in the southeastern part of the North Sea close to the town Cuxhaven.
The ocean surface is very heterogeneous in this area. This is confirmed by comparing the RC data and
the fully focused Pauli image of the scene with an optical Google Earth image (cf. Figure 14).Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 39 
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Figure 14. (a) RC radar data, (b) Google Earth image and (c) Pauli image corresponding to Figure 13a.
Sandbanks can be clearly observed in the Google Earth image. The bright spots in the Pauli image are
strong scatterers, e.g., buoys or ships.

3.2. Clutter Normalization

With the proposed pre-detection algorithm running in time domain, potential targets are well
detected and removed leaving behind the “ocean only” training data. These clean data can directly be
used to determine a single CFAR threshold using standard sea clutter models. However, the steps of
CFAR threshold computation in time domain cannot be applied one to one in Doppler domain because
the training sample amplitude varies along the Doppler frequency (cf. Figures 1a and 2a).
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If no whitening of the Doppler spectra is performed and if it is directly used as the training data,
then the CFAR threshold has to be estimated for each Doppler bin independently. Computing such a
threshold for each Doppler bin comes with higher computational cost. The idea is to derive a single
Doppler frequency independent threshold which is achieved by normalizing the clutter and noise
power to 0 dB (cf. Figure 2b).

For the normalization, let us consider a data block in Doppler domain consisting of R′ range and
a number of Doppler bins. The clutter normalization is based on the estimation of the average spectra
Âs( fa) (cf. red curve in Figure 2a) which can be expressed [21,22]

Âs( fa) =
1
R′

R′∑
k=1

∣∣∣Z(rk, fa)
∣∣∣2, (9)

where Z(rk, fa) is the frequency domain representation of z(r, n) and fa is the Doppler frequency.

For simplicity we write
∣∣∣Z(rk, fa)

∣∣∣2 = Pk( fa) which is known as power spectral density or Doppler
spectrum of the data Z(rk, fa). The clutter normalized data ZCN(rk, fa) can then be written as∣∣∣ZCN(rk, fa)

∣∣∣2 = Pk( fa)/Âs( fa), (10)

By estimating Âs( fa) with (9) for each Doppler bin and by using (10) the clutter and noise are scaled to
0 dB. An example of clutter normalization is shown in Figure 15 (cf. also Figure 1b).
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Figure 15. Range-Doppler image of a target free image patch (a) before and (b) after clutter normalization.
The normalized average power profiles of (a,b) are shown in (c).

The data in Figure 15b are the training data used to estimate the ocean clutter statistics. However,
when the range-Doppler image additionally contains a ship signal, which may be the case if no target
pre-detection is carried out, the clutter normalization causes target self-whitening. This negative and
unwanted effect is shown in Figure 16b,c.
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Figure 16. Data containing a ship target: (a) range-Doppler image before clutter normalization,
(b) average Doppler spectrum estimated without using pre-detection for removing the target from
(a,c) normalized image after using the average Doppler spectrum from (b,d) target free estimation of
average power spectrum after using pre-detection algorithm, (e) normalized image after using (d).

To avoid target self-whitening and a significant bias of the ocean statistics (cf. Figure 16a,b), it is
essential to apply the proposed pre-detection and target cancellation algorithm before estimating the
average Doppler spectrum used for clutter normalization (cf. Figure 16d,e).

To show the effects of target self-whitening, the signal-to-clutter-plus-noise ratio (SCNR) is
estimated and listed in Table 1. The SCNR was computed by extracting a cut along Doppler at the
maximum peak value of the image in Figure 16c,e. By using a guard zone around the peak value,
the SCNR is measured.

Table 1. Measured target SCNR before and after clutter normalization.

Range-Doppler Image Target SCNR [dB]

Before normalization (Figure 16a) 24.02
After normalization but without pre-detection (Figure 16c) 14.20

After normalization with pre-detection and target cancellation (Figure 16e) 23.08
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From Table 1, it is clear that the proper estimation of an average Doppler spectrum to perform
normalization over Doppler maintains the target SCNR. However, if the high peaks are not removed
beforehand using pre-detection, then after normalization the target SCNR is severely degraded (≈10 dB
in this case).

3.3. Importance of Training Data Update

As discussed in Section 2 the clutter statistics are estimated for each red sub-region within the
green region (cf. Figure 4 top). This is how the training data is extracted locally and updated first along
range and then along azimuth. Training data update is an important step because of two main reasons.
The first reason was already explained in Section 2 where the contribution of the aircraft’s Euler angles
is discussed (cf. Figures 3 and 13). The second reason is due to the varying motion of the ocean surface.
With a moving ocean surface, the clutter statistics tend to change significantly over range and time.
To show this behavior, the texture (or shape) parameter from the K-distribution (cf. Section 4.1 and
cf. (21)) is estimated. The variation of the texture both along range and azimuth is shown in Figure 17
for X-band HH polarized data acquired during a linear and circular flight. Lower values of texture
indicate spiky clutter and higher values indicate Rayleigh like characteristics of the clutter intensity.
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Figure 17. Estimated texture parameter of the K-distribution along (a,c) range and (b,d) azimuth using
data acquired during a linear and circular flight.

From Figure 17, it can be clearly observed that the K-distribution based texture parameter varies
both over range and azimuth time. Significant changes are observed along range (incidence angle)
where the texture values vary from very low to very high. Along the azimuth, the variation tends to
follow a sinusoidal pattern which may be aligned with the wind direction [35]. Therefore, to consider
these changes accurately, the training data need to be updated frequently in order to obtain bias free
local sea clutter statistics [23].
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4. Clutter Statistics and Detection

As mentioned in the introduction section the ship detection method used in this paper is based
on a CFAR. CFAR algorithms are pixel-based. Therefore, for a given ith complex amplitude pixel Zi,
where i = 1, 2, . . .Tp and Tp is the total number of pixels, there exist two hypotheses H0 and H1 [17]

H0: Zi= Ci+Ni, Moving target is absent (11)

H1 : Zi = Ci + Ni + Si, Moving target is present (12)

where Ci, Ni and Si are the clutter, noise and target signals, respectively. The sea clutter models
discussed in this section are formulated based on the backscatter intensity in Doppler domain, therefore
for simplicity, |Z|2 = I is written. Once a distribution function f (I) is chosen to model the ocean
backscatter, and its parameters are estimated from the ocean samples, then the PFA for a given threshold
η is given by

Pfa =

∫
∞

η
f (I) dI. (13)

In the following sections, different sea clutter models and the methods used to determine the unknown
sea clutter statistics are discussed.

4.1. K-Distribution

Equations (11) and (12) are valid only when the clutter is Rayleigh distributed (=homogeneous
clutter). However, in the case of relatively low grazing angles (10◦–50◦) and high resolution systems,
the clutter is no longer Rayleigh distributed [36]. To address this problem, an additional independent
random variable called texture is introduced. This leads to the following expression [37]

Zi = ∇ ·Ci + Ni + Si, (14)

The introduction of the texture component ∇ leads to the product or compound clutter models.
Compound models with a PDF P(I) in general are represented by the following expression

P(I) =
∫
∞

0
PI|X(I|x)PX(x)dx, (15)

where x is the speckle and the underlying speckle component PI|X(I|x) is modulated by the texture
PX(x). One of the most popular and widely used compound models is the K-distribution. It is a
comprehensive representation of a Gamma distributed texture over Rayleigh distributed homogeneous
clutter. For L number of looks, it is represented as [36,38,39]

f (I, v, b, L) =
2Γ(v)−1

Γ(L)
(Lb)

L+v
2 I

L+v−2
2 Kv−L

(
2
√

LbI
)
, (16)

where v, b, L, Γ(·) and K(·) are the shape, scale, number of looks, gamma function and the modified
Bessel function of the second kind, respectively. The scale parameter b is related to the mean µ of the
data as b = v/µ.

The shape parameter v, also known as texture, mainly controls the shape of the K-distribution.
The range of v is [0.1,∞], where for v = ∞ the PDF reduces to a Rayleigh distribution. Lower values
of v represents spiky clutter (cf. Figure 17). For a given threshold η, above which a moving target is
declared, the PFA for a given threshold η can be written as

Pfa (η) = 2
L−1∑
l=0

(vL)
(v+l)

2

Γ(l + 1)Γ(v)
η

v+l
2 Kv−l

(
2
√

vLη
)
, (17)
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There are in total three unknowns; shape (v), scale
(

v
µ

)
and number of looks (L) to be determined to fit

the distribution. Different methods to determine the unknown parameters of the K-distribution are
presented in the following.

4.1.1. Method of Moments (MoM)

Estimating the unknowns of the K-distribution using the maximum likelihood method is
computationally intensive as it requires many iterations to maximize the likelihood function.
An alternative and rather fast way is to apply MoM based approaches. The number of looks L
is either known or can be estimated using the ratio of the square of the mean and the standard
deviation [40]. One way to solve µ and v is to use first and second moments of the data. This method
is referred to as MV (mean and variance), contrast based or V-statistic. The equations are [41]

µ̂ = 〈I〉, (18)(
1 +

1
v̂

)(
1 +

1
L

)
=
〈I2
〉

〈I〉2
, (19)

where <> is the expectation operator. Knowing the number of looks L and the mean µ̂, the shape
parameter v̂ can be estimated using (19). It is found that the V-statistic works quiet well in most of the
cases and is therefore preferred. Another estimator proposed in [42] is referred as X-statistic, which
is computationally faster and gives a more straightforward solution than other log based estimators.
The mathematical expression for the X-statistic is(1

v̂
+

1
L

)
=
〈I · log I〉
〈I〉

− 〈log I〉, (20)

The mean µ̂ is estimated using (18).

4.1.2. Non-Linear Least Squares Method (NLLSQ)

Another way to estimate the known parameters of K-distribution is to use the NLLSQ method.
This method uses the Levenberg–Marquardt algorithm [43] to find the local minima of a function
which is expressed as a sum of the squares of the difference between the proposed PDF and the data
PDF. The minimization function is expressed as

argmin
α

M∑
m=1

( fT(I, L,α) − hm)2, (21)

where fT(I, L,α) is the distribution function having α unknown parameters and M histogram bins hm.
Regardless of being a widely used model, it is found that the K-distribution works well only

in the case of high-resolution homogeneous ocean environments. Cases where the ocean is highly
heterogeneous or the signal energy recorded by the radar system is extremely low, the estimated shape
parameter values are not acceptable. Using the MoM for estimation yielded either to too high or too
negative values [44].

An example of the ship detection using the K-distribution applied on the RC F-SAR X-band
HH polarized data is shown in Figure 18. The NLLSQ method was used to estimate the unknown
parameters of the K-distribution. For a desired Pfa = 10−6, the computed CFAR threshold is applied
in range-Doppler domain as per the methodology described in previous sections. For visualization
purposes, the detections obtained in Doppler domain are shown in time domain.



Remote Sens. 2019, 11, 1270 19 of 36

Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 39 

 

 
Figure 18. Binary detection map based on the K-distribution obtained from the same RC F-SAR X-
band HH polarized data shown in Error! Reference source not found.. The detected ship signal 
(left) and high sea clutter spikes can be clearly observed. 

In Error! Reference source not found., it can be observed that along with the ship (left) the 
heterogeneous ocean clutter (i.e., the high sea spikes) at lower incidence angles are also detected. 
Therefore, in the next section other models are discussed as an alternative to the K-distribution. 

4.2. Chi Square (𝜒ଶ) Distribution 

The 𝜒ଶ distribution is one of the models used when the K-distribution fit fails because the 
estimated shape parameter gives negative values. The 𝜒ଶ distribution function with 2𝐿 degrees of 
freedom is represented as [45] 𝑓(𝐼, 𝜎, 𝐿) =  ூಽషభଶಽఙమಽ୻(௅) exp ቀ ିூଶఙమቁ , 𝐼 ൒ 0, (22) 

The number of unknowns in this case is 2: number of looks 𝐿 and the standard deviation 𝜎. The PFA 
as a function of the threshold 𝜂 can be written as 𝑃୤ୟ (𝜂) =  ଵ୻(௅) 𝛤(𝐿, ఎଶఙమ),  (23) 

where 𝛤(∙) is the gamma function. For a single look, the threshold becomes 𝜂 = −2𝜎ଶln (𝑃୤ୟ). The 
parameters in this case are estimated using the NLLSQ method as explained in section 4.1.2. 

4.3. Tri-Modal Discrete (3MD) Texture Model 

A new model called tri-modal discrete texture model (3MD) was recently proposed. This 
model is able to detect moving targets with a very low PFA. The model was mainly invented for 
spaceborne fully focused SAR data. It is based on the idea of the statistical modeling of the sea 
texture in a discrete form. The PDF of the 3MD model for 𝐿 number of looks can be written as 
[46,47] 

𝑓(𝐼, ʘ, 𝐿, 𝜌ୡ) = 𝐿௅𝛤(𝐿) 𝐼௅ିଵ ෍ 𝑐ୢ exp ൬− 𝐿𝐼𝜌ୡ𝑎ଶୢ + 𝜌୬൰൫𝜌ୡ𝑎ଶୢ + 𝜌୬൯௅஽
ௗୀଵ .  

(24) 

where ʘ = [𝑐ୢ, 𝑎ୢ ], 𝐷 corresponds to the number of discrete scatterers in a single pixel and 𝛤(∙) is 
the gamma function. The variables 𝜌ୡ  and 𝜌୬  are the normalized clutter and noise variances, 
respectively, whose sum is unity. The parameters 𝑎ୢ and 𝑐ୢ are the discrete texture intensity levels 
and their corresponding relative weightings, respectively, where ∑ 𝑐ୢ = 1, 𝑐ୢ > 0஽ௗୀଵ . 

The PFA for a given threshold 𝜂 is given as 

𝑃୤ୟ (𝜂) =  ෍ 𝑐ୢ஽
ௗୀଵ

𝛤 ൬𝐿, 𝐿𝜂𝜌ୡ𝑎ଶୢ + 𝜌୬൰𝛤(𝐿) . (25) 

Figure 18. Binary detection map based on the K-distribution obtained from the same RC F-SAR X-band
HH polarized data shown in Figure 10. The detected ship signal (left) and high sea clutter spikes can
be clearly observed.

In Figure 18, it can be observed that along with the ship (left) the heterogeneous ocean clutter
(i.e., the high sea spikes) at lower incidence angles are also detected. Therefore, in the next section
other models are discussed as an alternative to the K-distribution.

4.2. Chi Square
(
χ2

)
Distribution

The χ2 distribution is one of the models used when the K-distribution fit fails because the estimated
shape parameter gives negative values. The χ2 distribution function with 2L degrees of freedom is
represented as [45]

f (I, σ, L) =
IL−1

2Lσ2LΓ(L)
exp

(
−I
2σ2

)
, I ≥ 0, (22)

The number of unknowns in this case is 2: number of looks L and the standard deviation σ. The PFA
as a function of the threshold η can be written as

Pfa (η) =
1

Γ(L)
Γ
(
L,

η

2σ2

)
, (23)

where Γ(·) is the gamma function. For a single look, the threshold becomes η = −2σ2 ln(Pfa).
The parameters in this case are estimated using the NLLSQ method as explained in Section 4.1.2.

4.3. Tri-Modal Discrete (3MD) Texture Model

A new model called tri-modal discrete texture model (3MD) was recently proposed. This model is
able to detect moving targets with a very low PFA. The model was mainly invented for spaceborne
fully focused SAR data. It is based on the idea of the statistical modeling of the sea texture in a discrete
form. The PDF of the 3MD model for L number of looks can be written as [46,47]

f (I,�, L,ρc) =
LL

Γ(L)
IL−1

D∑
d=1

cd

exp
(
−

LI
ρca2

d+ρn

)
(
ρca2

d + ρn
)L . (24)

where � = [cd, ad], D corresponds to the number of discrete scatterers in a single pixel and Γ(·) is the
gamma function. The variables ρc and ρn are the normalized clutter and noise variances, respectively,
whose sum is unity. The parameters ad and cd are the discrete texture intensity levels and their
corresponding relative weightings, respectively, where

∑D
d=1 cd = 1, cd > 0.
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The PFA for a given threshold η is given as

Pfa (η) =
D∑

d=1

cd

Γ
(
L, Lη

ρca2
d+ρn

)
Γ(L)

. (25)

The value of D after testing even highly heterogeneous sea state was found to be 3 [47]. Therefore,
for the 3MD clutter model there are eight unknown parameters: � = [cd, ad],ρc and L. These unknowns
are estimated using the non-linear least squares fit as explained in Section 4.1.2.

4.4. K-Rayleigh Distribution

The presence of a non-Bragg scattering component in the ocean surface, better known as discrete
sea spikes, is the main reason why the K-distribution fit fails even when the thermal noise is taken
into account [48]. Due to the high intensities of the sea spikes, they are often confused with the
target, giving rise to very high false alarms (cf. Figure 18). In recent studies, KA (K-class A), KK and
Pareto distribution models, along with their adaptations to consider thermal noise were proposed and
investigated to model these sea spikes. However, these models have many unknowns to estimate and
require a prior knowledge of the thermal noise [48].

The K-Rayleigh distribution function is one of the recently proposed distribution functions that
models sea spikes as an extra Rayleigh component which is typically not captured by K or even
K+Noise (K+N) distributions [48]. In the K-Rayleigh distribution, the total speckle mean from (15) is
expressed into two components; x = xr + ρr where xr and ρr are the modified speckle mean and the
extra Rayleigh component modeled like the thermal noise ρn. If ρr = 0, it takes the form of the K+N
distribution. The texture is modeled as a gamma distribution similar as in the K-distribution. The PDF
of the K-Rayleigh distribution has no closed form solution and is given as [48]

f (I, br, vr, ρr + ρn) =
br

vr

Γ(vr)

∫
∞

0

xr
vr−1

xr + ρr + ρn
exp

(
−

I
xr + ρr + ρn

− brxr

)
dxr, (26)

where vr, br are the shape and scale parameters, respectively. There are three unknowns in the
K-Rayleigh distribution, and they are estimated using the MoM. The three equations to be solved are

v̂r =
18

(
〈I2
〉 − 2〈I〉2

)3(
12〈I〉3 − 9〈I2〉〈I〉+ 〈I3〉

)2 . (27)

(ρ̂r+n) = 〈I〉 −

√
v̂r

2

(
〈I2〉 − 2〈I〉2

)
. (28)

b̂r =
v̂r

〈I〉 − (ρ̂r+n)
. (29)

The term ρ̂r+n consists of ρ̂r+n = ρr + ρn, where the Rayleigh offset ρr and the thermal noise ρn

are estimated as a single parameter using (28). Even when the thermal noise is not known, all the
parameters needed to fit the data can be well estimated with the above equations. The PFA in this case
is computed using (13). A comparison between the detections obtained from the K and K-Rayleigh
distribution functions is shown in Figure 19.
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Figure 19. Binary detection map in range-Doppler domain using (a) K-distribution and (b) K-Rayleigh
distribution. The thresholds estimated in both the cases are shown on the top right. The X-band HH
F-SAR data were used as an input. The detection maps were generated using 128 azimuth and 512
range samples, the desired false alarm rate was set to Pfa = 10−6.

In Figure 19, it is clearly visible that the threshold computed using the K-Rayleigh distribution
function is much higher compared to the K-distribution. As a consequence, the number of false alarms
is significantly decreased but also the number of true detections.

5. Clustering and Tracking

Ships are generally extended targets occupying more than a single resolution cell in the data
(cf. Figures 18 and 19). After obtaining multiple pixel-based detections for a single ship, clustering
has an important role to declare this group of detections per scene and per ship as a single “physical
object”. For clustering, we use the DBSCAN (density based spatial clustering of applications with
noise) method [49]. It is able to form clusters of arbitrary shape with only two inputs from the user,
i.e., minPts (minimum number of points) and ε (radius). Given a set of points, DBSCAN algorithm
starts with an arbitrary point a. Point a is considered as a core point and forms a cluster if there are
at least minPts points (including a) within distance ε of point a. Every reachable point from point a
belongs to the same cluster. Point b is directly reachable from point a if it is within distance ε from
point a. Point c is also reachable from point a if there is a chain of points a1, . . . , an (all are core points,
except an) with a1 = a and an = c, where each ai+1 is directly reachable from ai. The edge of the cluster
is defined by the reachable non-core points, also known as the border points. The non-reachable points
are considered as outliers or noise.

The radius ε is set based on the Euclidean distance. This distance metric can only be used in the
case when the two axes have the same unit. However, in a range-Doppler image, the y-axis corresponds
to the slant range (in meters) and the x-axis to the Doppler frequency (in Hz). Therefore, to do clustering,
the detected pixels in slant range are firstly projected to ground range. Then, the corresponding
Doppler frequency bins (which are spaced in Hz) are mapped to meters (i.e., cross-range coordinates)
using the following approximation [24]

δcr =
λr0

2vpTCPI
. (30)

where δcr, vp, r0 and TCPI are the cross-range resolution (in meters), platform velocity (in meters/second),
the target range (in meters) and the time duration of a CPI (in seconds), respectively. An example of
clustering applied on a CPI of 128 azimuth samples is shown in Figure 20.
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Figure 20. (a) Range-Doppler image showing the total range of the complete scene and 128 Doppler
bins respectively (cf. black box in Figure 4 bottom right). The ship signal is highlighted by the red box.
(b) Scaled detail of the red box from (a); (c) the clustered ship signal with its centroid and the bounding
box. The ship pixels shown in this example were detected using the K-distribution.

Figure 20c shows the clustered ship signal with its centroid and the corresponding bounding box.
The estimated 2D cluster centroids in ground-range/cross-range coordinates are projected back to slant
range/Doppler coordinates for performing target tracking afterwards.

Target tracking is a method to reconstruct the trajectory of a moving object based on a given noisy
measurement. Although tracking is not the main focus of this paper, for completeness we also show
some tracking results. Here, the Kalman filter [50] is used to track the cluster centroids in successive
range-Doppler image patches. It is a recursive filter that updates the probability density function of
the state recursively over azimuth time using the measurements at each time step, i.e., at each CPI.
In the Kalman filter, the target dynamics, measurements and the probability distribution of the state are
assumed to be Gaussian and linear. It is computationally very fast as it uses the current measurement
and the estimated state and uncertainty matrix from the previous time step. In our case, tracking is
performed completely in the range-Doppler domain where the range and Doppler coordinates are
considered as the target dynamics which are written in the form of a vector xk, where k is the given
time step (=CPI). The Kalman filter computes an a posteriori state estimate x̂′k as a linear combination
of an a priori estimate x̂k (predicted state) and a weighted difference between the sensor originated
measurement zk and a measurement prediction Hkx̂k. The posteriori state estimate or the corrected
state x̂′k of the target is written as:

x̂′k = x̂k + Kk(zk −Hkx̂k) (31)

where Kk, zk Hk are the Kalman gain, the measurement vector (=cluster centroids) and the observation
matrix, respectively. The corrected state x̂′k gives the refined coordinates of the moving ship in
range-Doppler domain. An exemplary tracking result was already shown in Figure 1d.
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6. Experimental Results and Discussion

A two-day F-SAR flight campaign was conducted in June 2016 in the North Sea [9]. All radar
data, in total more than 1 TB, were acquired fully polarimetric and simultaneously in X- and L-band.
Additionally, the AIS data transmitted by the ships were collected for ground truth purposes. At the
first day of the campaign the island Helgoland and the town Cuxhaven including the coastal areas
and ships of opportunity were observed, mainly during linear flight tracks but also during a circular
track with the radar antenna pointing not to the circle center but to the opposite direction (cf. red circle
in Figure 21, top). At the second day, a dedicated experiment with a controlled ship operated by the
German federal police was carried out. The ship moved with velocities of 0 to 20 kn (knot) between
three different waypoints. The circular flight tracks, this time with the antenna pointing to the circle
center, were flown with a radius of 5600 m resulting in a total ship observation time of approx. 400 s
(=6.7 min) per circle (cf. red circle in Figure 21, bottom) [9].Remote Sens. 2018, 10, x FOR PEER REVIEW  24 of 39 

 

 
Figure 21. Flight tracks flown during the two-day North Sea campaign (top: day 1; bottom: day 2). 

A small part of the acquired fully polarimetric radar data as well as the corresponding AIS 
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Cuxhaven and the corresponding AIS data. 

Figure 21. Flight tracks flown during the two-day North Sea campaign (top: day 1; bottom: day 2).

A small part of the acquired fully polarimetric radar data as well as the corresponding AIS data is
shown in Figure 22.

Figure 23 shows the Google Earth image of the scene where the linear and circular flight
experiments were conducted.
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Figure 23. (a) Google Earth image showing a part of the test site. The region within the white box marks
the area where the data were acquired during (b) a linear and (c) a circular F-SAR flight track. The red
and yellow ellipses in (b,c) are the 3 dB antenna footprints of the X- and L-band antenna, respectively.

In Table 2 the X- and L-band system and acquisition geometry parameters used during the
experiments are listed.
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Table 2. Radar system and acquisition geometry parameters for the linear and circular flight.

Acquisition Parameters Linear Circular

Average platform velocity [m/s] 91.4 83.55
Platform altitude above ground [m] 5638 5637

Total observation time along azimuth [s] 90 400
Number of SAR image(s) used 1 1

Azimuth spacing [m] 0.038 0.034
Chirp bandwidth [MHz] for X- and L-band 384, 150

Incidence angle range [◦] 15–60
Radar wavelength [m] for X- and L-band 0.0306, 0.226

Pulse repetition frequency [Hz] 2403.85
Total number of range samples 17,723

Ground swath [km] 8
Range Resolution [m] for X- and L-band 0.39, 1.0

Range sample spacing [m] for X- and L-band 0.3, 0.6

Azimuth antenna length [m] for X- and L-band 0.3 m (Transmit), 0.2 m (Receive) (X-band)
0.3 m (Transmit), 0.3 m (Receive) (L-band)

Geographical coordinates Shown in Figure 23a

6.1. Clutter Model Fitting and Performance Evaluation

To test the clutter models fitting, the radar data are first partitioned into three regions: (a) near
range (15◦–30◦ incidence angle), (b) mid-range (30◦–50◦) and (c) far range (>50◦). Since the backscatter
changes over the incidence angle range (cf. Figure 7), it is important to segment the data for a detailed
investigation and understanding of the chosen models.

The image patches, each from the near, mid and far ranges of the linear and circular data, were
independently chosen from each other to evaluate the models behavior. The RC data patch used for
the investigations has 1280 azimuth samples and 512 range samples (cf. the red sub-region shown at
the top in Figure 4). Figures 24 and 25 show the fit between the measured data PDF and the PDFs
provided from different sea clutter models.Remote Sens. 2018, 10, x FOR PEER REVIEW  27 of 39 
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model fit only for the intensity values of up to 2.5 and 4, respectively. In contrast, the K-Rayleigh 
distribution is able to fit well in the near and mid-range for both linear and circular data. Due to the 

Figure 24. Logarithmic PDFs of different distribution functions plotted for (a) near (b) mid and (c) far
range using the data acquired during the linear flight track (cf. Figure 23b). The estimated parameters
corresponding to different distribution functions are shown in the legends of the plots, apart from the
3MD model since it has 8 unknowns.
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Figure 25. Logarithmic PDFs of different distribution functions plotted for (a) near (b) mid and (c) far
range using data acquired during the circular flight track (cf. Figure 23c). The estimated parameters
corresponding to different distribution functions are shown in the legends of the plots.

From Figures 24a,b and 25a,b, it can be observed that in near and mid-range, the K-distribution,
the chi-square distribution and the 3MD model fit only for the intensity values of up to 2.5 and 4,
respectively. In contrast, the K-Rayleigh distribution is able to fit well in the near and mid-range
for both linear and circular data. Due to the presence of spiky clutter, the data histogram is more
skewed in the mid-range compared to the near range. The K-Rayleigh distribution is able to model this
skewness by estimating an extremely low texture value of 0.04 (cf. Figure 24b), and 0.09 (cf. Figure 25b)
respectively. When the K-distribution is used instead of the preferred K-Rayleigh, then the V-statistics
rather than the X-statistics and the NLLSQ shall be used for parameter estimation, since it leads to the
best K-distribution performance in both near and mid ranges.

In the far range however, only the K-distribution parameters estimated using the NLLSQ method,
the chi-square and the 3MD model fit well. Others do not fit because the estimated parameters have
negative values. This is because the NLLSQ fits the data histogram in a least square sense, whereas the
MoM doesn’t have optimal properties [44]. Another reason why they do not fit in far range is because,
due to the long range and shallow incidence angle, the clutter power in far range is comparable to the
noise power, as shown in Figure 26.
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From Figure 26, it is clear that due to high incidence angle, the backscatter power received in far
range is very low. It can also be said that in far range, the intensities are more Rayleigh distributed.
This is evident from Figures 24c and 25c, where the texture value from the K-distribution estimated
using the NLLSQ method in both the data is approximately 171. Such a high value implies Rayleigh
distributed statistics [48].

Furthermore, the complementary cumulative distribution function (CCDF) computed from the
estimated data PDF and the CCDFs computed from different clutter models are also plotted. Plotting
such functions is important due to their relationship with the detection threshold. In the literature,
the CCDF is also known as PFA [48]. The logarithmic CCDF plots for linearly and circularly acquired
data are shown in Figures 27 and 28, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  29 of 39 
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It can be observed from Figure 27a,b and Figure 28a,b (near and mid ranges) that the CCDF from
the K-Rayleigh distribution align very well with the estimated data CCDF. In contrast in Figures 27c
and 28c (far range), the CCDF from the K-Distribution using NLLSQ for parameter estimation,
the chi-square and the 3MD model fit very well with the data CCDF. The reason why other models
don’t fit in far range can again be explained in terms of low clutter-to-noise ratio (CNR) and Rayleigh
distributed characteristics.

In the following sections, the methods to evaluate the accuracy of the clutter models (cf. Section 4)
are presented. For this paper, we have used two different error matrices: threshold error for a fixed
CCDF and false alarm rate error for a fixed PFA = 10−6.

6.1.1. Threshold Error

In order to know which models give the best results, the actual threshold errors are estimated.
The threshold error is computed by calculating the absolute difference between the thresholds estimated
from the data CCDF and the model CCDF at a certain CCDF value in the tail region of the histogram.
The threshold error errorthreshold is written as

errorthreshold =
∣∣∣ηdata − ηmodel

∣∣∣
CCDF=10−4. (32)

where ηdata and ηmodel are the thresholds obtained from the data and the clutter model at a specific
CCDF value, respectively. The threshold error is computed in the tail region because of two reasons:
bright ship target signals lie mostly in that region and the tail region is the region where most of the
mismatch between reality and models occurs. The threshold errors (in log scale) at CCDF = 10−4 and
10−5 computed using different distribution functions for near, mid and far ranges as well as for linear
and circular data are shown in Tables 3 and 4, respectively.

Table 3. Estimated threshold errors for different clutter models for linearly acquired F-SAR data.

Clutter Models
Near Range Mid-Range Far Range

CCDF
10−4 10−4 10−4 10−5

K-NLLSQ 3.97 8.01 −10.34 −2.16
K-Vstat 2.41 6.89 -
K-Xstat 3.23 7.61 -

Chi-square 6.98 8.87 −10.34 −4.98
3MD 5.62 8.27 −10.34 −5.17

K-Rayleigh −5.79 −0.26 -

Table 4. Estimated threshold error for different clutter models for circularly acquired F-SAR data.

Clutter Models
Near Range Mid-Range Far Range

CCDF
10−4 10−4 10−4

K-NLLSQ 6.89 6.02 −5.86
K-Vstat 5.19 4.60 -
K-Xstat 6.19 5.49 -

Chi-square 9.70 7.73 −11.65
3MD 8.94 6.94 −10.86

K-Rayleigh −6.68 2.27 -

From Tables 3 and 4 it can be seen that the threshold error is minimum in case of K-Rayleigh
distribution and maximum in case of chi-square distribution in near and mid-range. In circular data,
for far range the chi-square distribution gives the minimum error.
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In far range of linearly acquired data (cf. Table 3, right), the computed threshold errors are the
same for CCDF = 10−4 for the K-NLLSQ, chi-square and 3MD model. Therefore, the threshold errors
were additionally computed for CCDF = 10−5 and it is found that the 3MD gives minimum error in far
range of linear data.

6.1.2. False Alarm Rate Error

To further quantify the suitability of the clutter models, the actual false alarm rates are also
evaluated for different ranges. The false alarm rate is estimated as the ratio of the number of false
detections to the number of samples in the data (cf. (8)). It has to be noted that for estimating the false
alarm rate all the bright targets have first to be excluded from the scene for avoiding biases. This can
be done using the proposed pre-detection method. The obtained results from all the clutter models
using linearly and circularly acquired data are shown in Tables 5 and 6, respectively.

Table 5. False alarm rate errors for linearly acquired data. The values in the table are the ratio between
the estimated actual false alarm rate and the set false alarm rate of 10−6.

Distribution Functions Near Range Mid-Range Far Range

K-NLLSQ 80.5 112.1 3.08
K-Vstat 35.1 57.1 -
K-Xstat 56.9 86.8 -

Chi-square 277.4 242.9 2.43
3MD 149.2 135.9 1.56

K-Rayleigh 1.31 1.68 -

Table 6. False alarm rate errors for circularly acquired data. The values in the table are the ratio between
the estimated actual false alarm rate and the set false alarm rate of 10−6.

Distribution Functions Near Range Mid-Range Far Range

K-NLLSQ 63.3 74.6 12.2
K-Vstat 30.6 38.9 -
K-Xstat 46.9 55.9 -

Chi-square 422.4 234.9 9.43
3MD 257.9 154.7 7.73

K-Rayleigh 2.03 2.08 -

From Tables 5 and 6, it can be concluded that the K-Rayleigh distribution gives the least false
alarm rate error in near and mid ranges, whereas the chi-square gives the highest error. In far range,
the 3MD, chi-square and K-NLLSQ match well with the set false alarm rate.

Based on the analyses in the previous three sections, it can be concluded that for near and mid
ranges (15◦–50◦ incidence angle) the K-Rayleigh distribution function is the best suitable choice,
whereas for the far range (>50◦ incidence angle), the 3MD model or the chi-square is the preferred
choice. This recommendation is at least valid for the RC X-band HH polarized F-SAR data used for the
investigations and the current sea state conditions during data acquisitions.

It has to be further noted that the detection rate of the proposed CFAR detector is not evaluated
in this paper. This is because the vessel size is larger than the spatial resolution of the image which
gives several pixel-based detections for a single vessel (cf. Figure 20c). Thus, even with the ground
truth information the number of “true” detections belonging to a vessel cannot be determined reliably.
Therefore, it is difficult when not even impossible to accurately measure the probability of detection
using data containing real ships. Even if the detected pixels would be (manually) clustered to a
single physical object, it is important to set an appropriate detection criterion to consider it as a “true”
detection. Therefore, this kind of “object-based” detection and the derived “object-based” detection
rate so far cannot be compared with the established “pixel-based” probability of detection used in any
CFAR detection framework [37,51].
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6.2. Detection Results

This section of the paper provides the detection results obtained after the analyses performed in
Section 6.1. The K-Rayleigh distribution function is used in the near and mid ranges and 3MD model
is used in the far range of the data. The detection threshold is estimated based on a desired false alarm
rate of 10−6. The binary ship detection maps of the linearly and circularly acquired F-SAR data are
shown in Figures 29 and 30, respectively. The equations finally used to generate the detection results
are (7), (10), (13), (25) and (26).
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detections marked by the red circles are due to the interfering signals from a ground surveillance radar
located close to the test site (for visualization purposes not all of the interfering signals are marked).

In Figure 30, the ship signal is not completely visible over the entire observation time. There are
some gaps. This is because the F-SAR X-band 3 dB azimuth antenna beamwidth in the order of 8◦ is
rather small. Since the antenna also cannot be steered electronically or mechanically, during a circular
flight with a ship moving in the circle center, the cross-wind may cause a significant yaw angle so
that the ship is not always illuminated. In contrast to the X-band, the L-band 3 dB azimuth antenna
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Figure 31. (a) Circularly acquired real single-channel HH polarized RC L-band radar data. (b) Binary
detection map shown in time-domain after applying CFAR based ship detection in range–Doppler
domain. K-Rayleigh distribution was used in the near and mid ranges, and the 3MD model was used
in the far range of the data. The desired false alarm rate was set to Pfa = 10−6. The detections marked
by the red circles are due to the interfering signals from a ground surveillance radar located close to the
test site (for visualization purposes not all of the interfering signals are marked).
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Furthermore, experimental detection results from the linearly acquired VV polarized real X-band
single-channel RC radar data are shown in Figure 32. Here, the ships are moving in directions of 45◦,
90◦ and 0◦ w.r.t. the flight direction.Remote Sens. 2018, 10, x FOR PEER REVIEW  35 of 39 
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Figure 32. RC F-SAR X-band VV polarized radar data with a ship moving at (a) 45◦, (b) 90◦ and (c) 0◦

w.r.t the flight track. The detection results corresponding to (a–c) are shown in (d–f) respectively. Only
the K-Rayleigh distribution was used for detection because the maximum incidence angle in the data is
below 50◦. The desired false alarm rate was set to Pfa = 10−6.

From Figure 32, it can be observed that the ship is well detected in the RC radar data with the
proposed methodology, independent of its moving direction w.r.t. the flight path.

To summarize, the performance of the proposed CFAR ship detection algorithm mainly depends
on two factors: the target pre-detection threshold (cf. Section 3.1) and the accuracy of the clutter
model. Inappropriate estimation of the target pre-detection threshold in time domain may prevent
target cancellation, and, thus can directly impact the average Doppler spectrum (cf. Figure 16c) and
degrade the performance of the clutter models. Therefore, the parameters for computing the target
pre-detection threshold should be carefully selected for obtaining later a valid CFAR threshold in
Doppler domain. Additionally, an appropriate selection of the clutter model also plays a key role to
improve the target detection by minimizing the detection threshold amplitude and the false alarm rate
errors (cf. Sections 6.1.1 and 6.1.2). In the paper, we recommend using a K-Rayleigh distribution in the
near and mid ranges because of the numerous discrete sea spikes present in the data at those ranges.
For the far range, where less sea spikes are observable in our experimental data, the clutter intensity is
more Rayleigh distributed so we recommend using a chi-square or 3MD model.
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One potential third factor which may negatively influence the performance of the proposed
algorithm is the sea state, although not investigated in the paper. Especially in the case of high sea state,
i.e., if the pixels corresponding to the vessel have similar statistics and intensity as the surrounding
clutter, it may happen that the vessel is not detectable, especially not in the time or imaging domain.
However, high sea state does not prevent the vessel detection if it is properly illuminated by the radar
(i.e., if the illumination is not prevented by high sea waves) and, if the line-of-sight velocity component
is large enough so that the corresponding echo signal is shifted to the exo-clutter region (cf. (1) and
Figure 1a).

7. Conclusions

This paper proposes a CFAR-based ship detection processing chain principally suitable for
real time applications. The major component of the proposed processing chain is the automatic
training data selection approach. This approach includes a novel target pre-detection module used
for successfully cancelling the outliers, i.e., spiky clutter peaks and strong ship signals, from the
training data. This ensures a proper fit of suitable sea clutter models, and consequently an accurate
CFAR threshold computation. A proper fit of the sea clutter models and an accurate CFAR threshold
computation are essential for keeping the threshold errors and false alarm rate errors at a low level.

Various sea clutter models were thoroughly investigated in terms of threshold errors and false
alarm rate errors using experimental single-channel range-compressed radar data acquired with DLR’s
airborne sensor F-SAR during linear and circular flight tracks. Many X-band data with HH polarization
and a range bandwidth of 384 MHz were used for these investigations. It was found that as a sea
clutter model the K-distribution (regardless of any parameter estimation method) is generally not a
good choice, especially not for near (15◦–30◦ incidence angle) and mid ranges (30◦–50◦). The chi-square
and the 3MD model lead to extremely high false alarm rate errors and threshold errors in the near
and mid ranges but perform very well in the far range (>50◦ incidence angle), which is dominated by
thermal noise. In contrast, the K-Rayleigh distribution results in the smallest false alarm rate errors
and threshold errors in the near and mid-ranges but were found unsuitable for the far range.

Therefore, in terms of suitable sea clutter models, we recommend using the K-Rayleigh distribution
function for lower incidence angle ranges (15◦–50◦) and the 3MD model or the chi-square model for
higher incidence angles (>50◦). We also want to point out that for the investigations in this paper
we mainly have used X-band radar data acquired during two F-SAR flights each lasting only a few
hours. During that short time frame, it can be expected that the sea state has not changed significantly.
Therefore, we were not able to investigate the influence of the sea state on the sea clutter model
performance. This is an open topic for the future. Further investigations using linearly and circularly
acquired radar data at different sea states are recommended. However, to the authors knowledge, so
far, such an extensive data set, which would allow for more sophisticated investigations, does not exist.
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