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Abstract: The ability of process-based biogeochemical models in estimating the gross primary
productivity (GPP) of alpine vegetation is largely hampered by the poor representation of phenology
and insufficient calibration of model parameters. The development of remote sensing technology
and the eddy covariance (EC) technique has made it possible to overcome this dilemma. In this
study, we have incorporated remotely sensed phenology into the Biome-BGC model and calibrated
its parameters to improve the modeling of GPP of alpine grasslands on the Tibetan Plateau (TP).
Specifically, we first used the remotely sensed phenology to modify the original meteorological-based
phenology module in the Biome-BGC to better prescribe the phenological states within the model.
Then, based on the GPP derived from EC measurements, we combined the global sensitivity
analysis method and the simulated annealing optimization algorithm to effectively calibrate the
ecophysiological parameters of the Biome-BGC model. Finally, we simulated the GPP of alpine
grasslands on the TP from 1982 to 2015 based on the Biome-BGC model after a phenology module
modification and parameter calibration. The results indicate that the improved Biome-BGC model
effectively overcomes the limitations of the original Biome-BGC model and is able to reproduce the
seasonal dynamics and magnitude of GPP in alpine grasslands. Meanwhile, the simulated results
also reveal that the GPP of alpine grasslands on the TP has increased significantly from 1982 to 2015
and shows a large spatial heterogeneity, with a mean of 289.8 gC/m2/yr or 305.8 TgC/yr. Our study
demonstrates that the incorporation of remotely sensed phenology into the Biome-BGC model and
the use of EC measurements to calibrate model parameters can effectively overcome the limitations of
its application in alpine grassland ecosystems, which is important for detecting trends in vegetation
productivity. This approach could also be upscaled to regional and global scales.

Keywords: alpine grassland; the Tibetan Plateau; Biome-BGC; GPP; remotely sensed phenology;
parameter calibration

1. Introduction

Gross Primary Productivity (GPP), defined as the total amount of carbon fixed by vegetation
through photosynthesis, is one of the most important components of the terrestrial carbon cycle [1,2].
Meanwhile, it is also the largest carbon flux between the terrestrial biosphere and the atmosphere,
and drives a variety of ecosystem services such as food, fiber, and wood production [3]. The Tibetan
Plateau (TP), with an average elevation exceeding 4000 m, is one of the most sensitive regions to global
climate change [4]. Moreover, due to the positive feedbacks associated with the melting of snow and
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ice, the warming rate on the TP is expected to be much higher than other regions over China [5,6].
Such a unique geographical environment makes the circulation of carbon on the TP different from
other regions. Therefore, accurate estimation of GPP on the TP and continuous monitoring of its spatial
and temporal dynamics are needed to enhance our understanding of terrestrial ecosystems and global
carbon cycling.

As of now, many models have been developed to estimate GPP at the regional scale, which can be
divided into statistical models [7], light use efficiency models [8,9], and process-based models [10–12].
Based on these models, numerous studies have quantified GPP of alpine grasslands on the TP [13–16].
However, it should be mentioned that there are large differences between the GPP values estimated by
different studies, which greatly impeded our understanding of the feedback mechanisms between
the terrestrial ecosystems and the atmosphere. For example, Zhuang et al. [13] estimated annual GPP
of alpine grasslands on the TP as 712 gC/m2/yr by the Terrestrial Ecosystem Model (TEM), which is
2.28 times the estimate of He et al. [14], in which annual GPP of alpine grasslands was quantified at
312.3 gC/m2/yr by the Vegetation Photosynthesis Model (VPM). The large model uncertainty may be
attributed to the inadequate calibration of model parameters, especially for complex process-based
models. Therefore, it is necessary to develop an effective parameter calibration method capable of
adapting the model to particular applications.

The Biome-BGC model is a typical process-based biogeochemical model that can be used to
simulate the carbon, nitrogen, and water fluxes within terrestrial ecosystems [11]. Initially, the
application of the Biome-BGC model was mainly focused on forest ecosystems [17–19]. Recently,
some studies have applied this model to grassland ecosystems [20,21]. However, in addition to
the aforementioned difficulties of parameter calibration in the process-based model, the phenology
module of the Biome-BGC also has limitations, especially when applied to alpine regions. Specifically,
this phenology module assumes that leaf onset occurs when both the summed soil temperature and
the summed precipitation are greater than the critical values, and leaf senescence occurs when the
date has passed July 1st and the average minimum temperature for the next 3 days is less than the
annual average minimum temperature [22]. Nevertheless, for alpine regions like the TP, frozen soil,
glaciers, and snow are usually widely distributed, and their seasonal thawing can provide water for
the germination and growth of alpine vegetation, which in turn will affect phenological shifts [23].
Unfortunately, the original phenology module in the Biome-BGC has not taken into account the effects
of frozen soil and snow, which caused a significant delay in the simulated leaf onset date and further
led to a severe underestimation of GPP [21]. Therefore, it is necessary to modify the phenology module
of the Biome-BGC to make it applicable to alpine regions.

In recent years, the development of remote sensing technology has made it possible to extract
phenological parameters on the regional scale. Due to its advantages such as wide coverage, spatial
continuity, and long time series, many studies have used remote sensing-derived vegetation index to
extract phenological metrics on the TP [24–26]. However, to the best of our knowledge, no research has
been conducted on combining remotely sensed phenology with the Biome-BGC model to improve its
simulation performance in alpine regions, although many studies have shown that combining higher
precision phenological data with process-based models can improve the performance of carbon flux
simulation [27–29].

To this end, we first used the remotely sensed phenology to prescribe the phenological states
within the Biome-BGC model. Then, we used the global sensitivity analysis method to identify those
ecophysiological parameters that have a significant impact on the GPP simulation. Subsequently, we
performed a calibration upon these specific parameters using the simulated annealing optimization
algorithm in conjunction with the eddy covariance (EC)-derived GPP data. Finally, we used the
Biome-BGC model after a phenology module modification and parameter calibration to simulate
the GPP of alpine grasslands on the TP from 1982 to 2015. Our objectives were threefold: (1) to
investigate whether the integration of remotely sensed phenology and the Biome-BGC model can
improve the performance of carbon flux simulation of alpine grasslands on the TP; (2) to develop a
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practical parameter calibration method for complex process-based models; (3) to analyze the spatial
and temporal variation of GPP of alpine grasslands on the TP from 1982 to 2015.

2. Study Area and Dataset

2.1. Study Area

The TP, located in the southwest of China, is the largest and highest plateau in the world. It covers
an area of approximately 2.5× 106 km2 and has an average elevation of more than 4000 m [30]. At the
same time, it is also known as “the Third Pole of the Earth” and “the Roof of the World”. Due to its
high altitude and complex geographic environment, the TP has formed a unique climate condition
characterized by low air temperature, long sunshine duration, and strong solar radiation [31]. Such a
special climate environment also promotes the formation of a typical alpine vegetation ecosystem. The
dominant vegetation type on the TP is alpine grassland, with an area of about 1.0× 106 km2, including
alpine steppe and alpine meadow (Figure 1) [32]. At the same time, the TP is rich in frozen soil, snow,
and glacial resources, and their melting water makes the TP the source of several major rivers such as
the Yellow River and the Yangtze River. On the other hand, the TP is also extremely sensitive to global
climate change. It has been reported that the mean annual temperature on the TP has increased by
0.3 ◦C per decade over the past 50 years, much higher than other regions of China [5]. Such a sharp
warming trend has had a great impact on the alpine vegetation ecosystem, such as advanced spring
phenology and enhanced plant carbon fixation [6,23,25].
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Figure 1. Spatial distributions of grassland subtypes and elevations on the Tibetan Plateau (TP).
(a) Grassland subtypes; (b) Elevation.

2.2. Dataset

2.2.1. Meteorological Forcing and Land Surface Initial Conditions for the Biome-BGC Model

In order to estimate the GPP of alpine grasslands at the regional scale, the Biome-BGC model
needs spatially explicit forcing data and a vegetation distribution map. The forcing data used to
run the Biome-BGC model includes daily meteorological data, land surface initialization data, and
ecophysiological parameters. Among them, ecophysiological parameters need to be carefully calibrated
to adapt the model to particular applications. For alpine meadows and alpine steppes, both of them are
classified as C3 grass in the Biome-BGC model and contains a total of 28 ecophysiological parameters
(Table 1). In this study, we used the EC-derived GPP to calibrate these ecophysiological parameters and
evaluate the simulation performance of the Biome-BGC model. A detailed description of these data is as
follows. In addition, all of the following spatially explicit data was resampled to 5 km× 5 km resolution.
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(1) Daily meteorological data used to drive the Biome-BGC model mainly includes precipitation,
temperature, shortwave radiation, day length, and vapor pressure deficit (VPD). They were calculated
from the China Meteorological Forcing Dataset (http://westdc.westgis.ac.cn) using the MT-CLIM tool.
Among them, the China Meteorological Forcing Dataset has a 0.1◦ spatial resolution and a daily
temporal resolution, spanning the period from 1982 to 2015, and the MT-CLIM tool is a program
released with the Biome-BGC that can be used to estimate missing daily meteorological data that is not
available from in situ measurements [33]. In this study, we used the MT-CLIM tool to estimate the day
length and VPD that were not included in the China Meteorological Forcing Dataset.

(2) Land surface initialization data mainly contains soil texture (percentage of sand, clay, and silt),
soil depth, elevation, shortwave albedo, atmospheric CO2 concentration, and atmospheric nitrogen
deposition. Among them, soil texture and soil depth were obtained from Soil Map Based Harmonized
World Soil Database (v1.2) provided by Cold and Arid Regions Sciences Data Center with a spatial
resolution of 30 arc-second. Elevation data was acquired from STRM 90m Digital Elevation Database
provided by CGIAR Consortium for Spatial Information (available at http://www.cgiar-csi.org).
Shortwave albedo data with a spatial resolution of 0.05◦ × 0.05◦ was obtained from the National Earth
System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China
(available at http://www.geodata.cn). Atmospheric CO2 concentration data was obtained from the
National Oceanic and Atmospheric Administration (NOAA) (available at ftp://ftp.cmdl.noaa.gov/ccg/

co2/trends/). Atmospheric nitrogen deposition data at a 0.1◦ × 0.1◦ resolution was supplied by the
Chinese Academy of Agricultural Sciences.

(3) The EC flux data at two flux sites was obtained from the Chinese Flux Observation and Research
Network (ChinaFLUX), which was used to calibrate the ecophysiological parameters corresponding to
alpine meadows and alpine steppes, respectively. A detailed description of these two flux sites are
given in Table 2, and information on the EC measurement system can be found in [34]. The initial
measured fluxes (Net Ecosystem Exchange, NEE) were first processed by the ChinaFLUX CO2 data
processing system [35]. Then, the linear interpolation model and the Michaelis–Menten equation were
used to fill small gaps (less than 2 h) and large gaps in the time series, respectively [36]. Subsequently,
daytime ecosystem respiration was calculated using the Lloyd and Taylor method combined with
nighttime observations [37]. Finally, GPP was estimated as the difference between daytime NEE and
ecosystem respiration.

(4) The distribution map of alpine grassland was derived from the digitized 1:1 million vegetation
map of the TP compiled by Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences (Figure 1).

http://westdc.westgis.ac.cn
http://www.cgiar-csi.org
http://www.geodata.cn
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/
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Table 1. Ecophysiological parameters of the Biome-BGC model for the type of C3 grass.

No. Ecophysiological Parameters Symbol Units 1 PDF 2 Source

1 Transfer growth period as fraction of growing season TGGS proportion U(0.18, 0.54) Wang [38]
2 Litterfall as fraction of growing season LGS proportion U(0.135, 0.405) Sun et al. [21]
3 Annual whole plant mortality fraction WPM 1/year U(0.05, 0.15) White et al. [39]
4 Annual fire mortality fraction FM 1/year / /
5 New fine root C: new leaf C FRC:LC ratio U(0.281, 2.19) White et al. [39]
6 Current growth proportion CGP proportion U(0.25, 0.75) White et al. [39]
7 C:N ratio of leaves C:Nleaf kgC/kgN N(25, 8.6) White et al. [39]
8 C:N ratio of leaf litter C:Nlit kgC/kgN N(45, 11) White et al. [39]
9 C:N ratio of fine roots C:Nfr kgC/kgN N(50, 19) White et al. [39]
10 Leaf litter labile proportion Llab DIM 1-Lcel-Llig /
11 Leaf litter cellulose proportion Lcel DIM N(0.23, 0.077) White et al. [39]
12 Leaf litter lignin proportion Llig DIM N(0.09, 0.043) White et al. [39]
13 Fine root labile proportion FRlab DIM 1-FRcel-FRlig /
14 Fine root cellulose proportion FRcel DIM U(0.378, 0.495) White et al. [39]
15 Fine root lignin proportion FRlig DIM U(0.095, 0.361) White et al. [39]
16 Canopy water interception coefficient Wint 1/LAI/day U(0.018, 0.032) White et al. [39]
17 Canopy light extinction coefficient LEC DIM N(0.48, 0.13) White et al. [39]
18 All-sided to projected leaf area ratio LAIall:prj DIM U(1, 3) White et al. [39]
19 Canopy average specific leaf area SLA m2/kgC N(49, 16) White et al. [39]
20 Ratio of shaded SLA: sunlit SLA SLAsha:sun DIM U(1, 3) White et al. [39]
21 Percent of leaf N in Rubisco PLNR DIM U(0.075, 0.225) White et al. [39]
22 Maximum stomatal conductance Gsmax m/s U(0.0025, 0.0075) White et al. [39]
23 Cuticular conductance Gcut m/s 0.01*Gsmax /
24 Boundary layer conductance Gbl m/s U(0.02, 0.06) White et al. [39]
25 Leaf water potential: start of conductance reduction LWPi MPa U(−1.7, −0.2) White et al. [39]
26 Leaf water potential: complete conductance reduction LWPf MPa U(−4, −1.3) White et al. [39]
27 Vapor pressure deficit: start of conductance reduction VPDi Pa U(700, 1500) White et al. [39]
28 Vapor pressure deficit: complete conductance reduction VPDf Pa U(2000, 12000) White et al. [39]

1 DIM: dimensionless. 2 U(min, max): uniform distribution, N(mean, standard deviation): normal distribution. SLA, specific leaf area.
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Table 2. Descriptions of the two flux sites used in this study.

Site Grassland
Subtype Coordinate Elevation Canopy

Height Period

Haibei Station Alpine
Meadow

37◦37′N,
101◦19′E 3190 m 0.2–0.3 m 2003–2004

Damxung
Station Alpine Steppe 30◦29′N,

91◦04′E 4330 m <0.2 m 2004–2005

2.2.2. GIMMS NDVI Dataset and Preprocessing

Normalized difference vegetation index (NDVI), defined as the difference between the near-infrared
and red reflections divided by the sum of the two, is a dimensionless index that can be used to estimate
the density of green on an area of land [40]. The Global Inventory Modeling and Mapping Studies
(GIMMS) NDVI3g.v1 dataset, with a spatial resolution of 0.083◦ × 0.083◦ and a temporal resolution of
15-day intervals, has been the most widely used remote sensing product for monitoring vegetation
phenology over large areas [41]. It was generated from the Advanced Very High Resolution Radiometer
(AVHRR) sensors onboard on several NOAA satellites. At the same time, it was also the latest version
of the GIMMS NDVI dataset, spanning the period from January 1982 to December 2015. This dataset
has improved data quality at high latitudes, especially in regions where the growing season is shorter
than 2 months [42].

Before using the GIMMS NDVI dataset, some preprocessing procedures were needed to reduce
the effects of clouds and the atmosphere. Specifically, the maximum value composition (MVC) was
first applied to the NDVI dataset to eliminate noises caused by cloud and snow contamination [43].
Then, the Savitzky–Golay filter was used to remove outliers and smooth the NDVI time series [44].
Finally, regions with a multiyear average NDVI less than 0.1 were excluded from the analysis to further
minimize the impacts of barren land and non-vegetation [24].

3. Methodology

The methodology of this study is composed of four key steps. Firstly, the original phenology
module of the Biome-BGC was modified by remotely sensed phenology, which was achieved by using
the phenological indicators derived from remote sensing to prescribe the phenological states within the
Biome-BGC model. Secondly, based on the Biome-BGC model after a phenology module modification,
the Morris qualitative sensitivity analysis method was used to screen out those parameters that
have negligible effects on the GPP simulation, and then the Sobol’ quantitative sensitivity analysis
method was used to evaluate the influence of each of the remaining parameters on the simulated GPP
and further determine the parameters to be calibrated. Moreover, considering the differences in the
physiological characteristics of alpine meadows and alpine steppes, we performed a sensitivity analysis
on them separately. Thirdly, we used the simulated annealing optimization algorithm combined with
EC-derived GPP data to calibrate those influential parameters selected in the previous step, and set
those non-influential parameters to the default values. This calibration process was also performed on
alpine meadows and alpine steppes, respectively. In addition, since only two years of EC-derived GPP
data was obtained for both alpine meadows and alpine steppes, we used the first year of GPP data to
calibrate the influential parameters while using the second year of GPP data to validate the performance
of the Biome-BGC model. Finally, we extrapolated the Biome-BGC model after a phenology module
modification and parameter calibration to the entire alpine grasslands on the TP to simulate its GPP
from 1982 to 2015. Figure 2 shows the organizational flow chart of the methodology of this study, and
details will be given in the subsequent sections.
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3.1. The Biome-BGC Model

Biome-BGC is a process-based biogeochemical model used to simulate the carbon, nitrogen, and
water cycles within the terrestrial ecosystems from a single plot to regional and global scales [11]. It
uses a daily time-step and was developed from the Forest-BGC model [45]. Previous studies have
successfully applied this model to a variety of biomes such as forests and grasslands [17,18,20,46].
There are several critical processes in the Biome-BGC model, including photosynthesis, respiration,
evapotranspiration, decomposition, the allocation of photosynthetic assimilates, and mortality [11]. To
model the photosynthesis process, the Biome-BGC model converts leaf C into an equivalent leaf area
by multiplying the user-defined specific leaf area (SLA) parameters. SLA is a measure of the thickness
of a leaf and is defined as the leaf area per unit mass. The Biome-BGC model further partitions leaf
C and leaf area into sunlit and shaded fractions using a two-leaf photosynthesis model [47,48] and
calculates each photosynthetic process separately. The carbon flux simulated by the Biome-BGC model
mainly includes GPP, Net Primary Productivity (NPP), Net Ecosystem Productivity (NEP), and NEE.
Among them, GPP is the total carbon fixed by photosynthesis, NPP is the difference between GPP
and autotrophic respiration, NEP is the difference between NPP and heterotrophic respiration, and
NEE is the difference between NEP and the carbon loss caused by fire. In this study, we used the
newly released Biome-BGC v4.2 to simulate the GPP of alpine grasslands on the TP (available at
http://www.ntsg.umt.edu/project/biome-bgc.php).

3.2. Phenology Module Modification

Vegetation phenology determines the start (SOS) and end (EOS) of the growing season. Accurate
representation of phenology is critical for terrestrial biosphere models to simulate the temporal
dynamics of biological processes on the land surface [49]. The phenology module used in the
Biome-BGC was developed based on the empirical relationship between phenology and meteorological
conditions. It defines SOS as the date when both the summed precipitation and the summed soil
temperature are greater than the critical values, and defines EOS as the date after July 1st where
the average minimum temperature for the next 3 days is less than the annual average minimum
temperature [22]. However, this module was found to have significantly delayed the SOS of vegetation

http://www.ntsg.umt.edu/project/biome-bgc.php
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in alpine regions, resulting in a severe underestimation of GPP [21]. To this end, we proposed to
incorporate remotely sensed phenology into the Biome-BGC model to better prescribe the phenological
states within the model. Specifically, we first extracted the SOS and EOS of alpine grasslands on the TP
from 1982 to 2015 based on the GIMMS NDVI dataset, and then we used the SOS and EOS extracted
from the NDVI dataset to prescribe the phenological states of vegetation within the Biome-BGC model.
Through this modification, the Biome-BGC can effectively overcome the limitations of its original
phenology module.

In order to extract phenological parameters from NDVI time series data, several methods have
been proposed, such as the NDVI thresholds method [22,50], fitting logistic functions [51], largest
NDVI increase method [52], and delayed moving average method [53]. Among them, the dynamic
threshold method [50] has been proven to be one of the simplest and most effective methods for the
extraction of phenological parameters [54,55]. Therefore, we also used this method to extract the SOS
and EOS from the NDVI dataset. The ratio of NDVI is defined as

NDVIratio =
NDVI −NDVImin

NDVImax −NDVImin
(1)

where NDVIratio represents the output ratio, ranging from 0 to 1, NDVI represents the daily NDVI,
NDVImax represents the annual maximum NDVI, and NDVImin represents the annual minimum NDVI
in the upward or downward direction, which corresponds to the calculation of SOS or EOS, respectively.

Based on the NDVIratio, the SOS and EOS are defined as the dates when the NDVIratio reaches the
dynamic threshold of 0.2 in the upward and downward directions, respectively [55]. Accordingly, the
length of growing season (LOS) can be defined as the difference between EOS and SOS.

3.3. Model Parameterization

Despite improvements in the phenology module of the Biome-BGC, additional model parameter
calibration is still required to achieve accurate simulation of the GPP. However, the Biome-BGC model
typically includes a large number of parameters, and these parameters are generally interdependent,
making the calibration process very difficult. Therefore, prior to calibrating the model parameters, it is
necessary to identify those parameters that have a significant impact on the simulated variables for
further calibration. Global sensitivity analysis can quantify the contribution of uncertainty in model
inputs to uncertainty in model outputs and allow for the evaluation of interactions between model
inputs [56]. In this study, we also used the global sensitivity analysis to identify those ecophysiological
parameters that have a significant impact on the GPP simulation. Then, we used the simulated
annealing optimization algorithm in conjunction with EC-derived GPP data to calibrate those selected
influential parameters to achieve model calibration.

In the Biome-BGC model, both alpine meadows and alpine steppes are classified as the type of C3
grass, which includes a total of 28 tunable ecophysiological parameters (Table 1). However, it should be
noted that there are still some differences in the physiological characteristics between alpine meadows
and alpine steppes. Therefore, in order to more accurately quantify the GPP of alpine grasslands on
the TP, we performed a parameter sensitivity analysis and calibration on them separately. On the other
hand, since only two years of EC-derived GPP data was obtained for each flux station, we used the
first year of daily measured GPP to calibrate the influential parameters while using the second year of
GPP data to validate its performance.

3.3.1. Sensitivity Analysis

Global sensitivity analysis typically requires a large amount of computational resources and is
quite time-consuming. To overcome this limitation, we used a combination of qualitative sensitivity
analysis and quantitative sensitivity analysis to identify those parameters that have a significant impact
on the GPP simulation. Specifically, we first collected the probability distribution function (PDF) of the
ecophysiological parameters of C3 grass from relevant literature, as shown in Table 1. Subsequently,
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we used the Morris qualitative analysis method [57] to screen out those ecophysiological parameters
that have negligible effects on the GPP simulation and set them to the default values. Finally, we
used the Sobol’ quantitative analysis method [58] to evaluate the influence of each of the remaining
parameters on the GPP simulation and further determine which parameters to be calibrated. A detailed
description of these steps is as follows.

• Distribution of ecophysiological parameters

In addition to the two phenological parameters for prescribing the phenological states within
the model, the Biome-BGC includes a total of 28 tunable ecophysiological parameters for C3 grass. In
addition, there is no evidence of periodic fires in alpine grasslands of the TP in the past few decades, so
we set the fire mortality parameter to zero and did not calibrate it. Finally, a total of 27 parameters are
left for the next sensitivity analysis, and their PDFs were collected from relevant literature, as shown in
Table 1.

• Qualitative sensitivity analysis based on the Morris method

The Morris method is a typical One-at-a-Time sensitivity analysis method [57]. Due to its low
computational cost, it is often used as the first step in global sensitivity analysis to remove parameters
that have negligible effects on the simulated results. Two sensitivity indices, mean (µ) and standard
deviation (σ), are calculated by the Morris method to qualitatively evaluate the relative importance of
each parameter. To perform the analysis, the Morris method needs to be executed r× (n + 1) times,
where r represents the number of trajectories and n represents the number of input parameters. In this
study, r was set to 10 [56] and the value of n was 27. In addition, we used the average of the annual
GPP between 1982 and 2015 as the output variable of the Morris method and set a low threshold value
of µ = 0.05 to distinguish between influential and non-influential parameters. That is, parameters
with µ ≤ 0.05 were considered to have negligible effects on the GPP simulation and were excluded
from the next quantitative analysis. Further information on the Morris method can be found in the
Supplementary Materials.

• Quantitative sensitivity analysis based on the Sobol’ method

The Sobol’ method is a widely used quantitative global sensitivity analysis method, which can
decompose the variance of the model output into the contribution of each input parameter and their
interactions [58]. Given that VY represents the total variance of the model output, it can be decomposed
into the following components:

VY =
∑

i

Vi +
∑

i

∑
j>i

Vi j +
∑

i

∑
j>i

∑
k> j

Vi jk + · · ·+ V1,2,...,n (2)

where Vi represents the variance explained by the ith input parameter, Vi j represents the variance
explained by the interactions between the ith and jth input parameters, and n represents the number
of input parameters. Based on Equation (2), the first order sensitivity index can be defined as
Si = Vi/VY, and the higher order sensitivity indices can be defined as Si j = Vi j/VY, Si jk = Vi jk/VY,. . .,
S1,2,...,i,...,n = V1,2,...,i,...,n/VY. Accordingly, the total order sensitivity index of the ith parameter can be
defined as the sum of its first order sensitivity index and all higher order sensitivity index involving it.
In addition, a large difference between the first order sensitivity index and the total order sensitivity
index indicates that the parameter mainly affects the model output through interactions.

The Sobol’ method uses the Monte Carlo [59] sampling scheme to generate random parameter
samples. To calculate sensitivity metrics, it requires a parameter set with a sample size of M× (2n + 2),
where M represents the number of base samples and n represents the number of input parameters. In
this study, M was set to 512. In addition, we used the total order sensitivity index to quantitatively
evaluate the effect of each ecophysiological parameter on the GPP simulation and set its threshold
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to 0.05. That is, parameters with a total order sensitivity index greater than 0.05 were considered as
influential parameters and required further calibration.

3.3.2. Parameter Calibration

The simulated annealing algorithm is a heuristic optimization algorithm based on Monte Carlo’s
iterative solution [60]. It is able to find the optimal parameter values in the parameter space that enable
the model to generate the best agreement between the simulation and the observation. In this study,
we used this algorithm to calibrate the influential ecophysiological parameters selected by the Sobol’
method. Specifically, we first designed a cost function for the simulated annealing algorithm based on
the difference between the observed GPP and the simulated GPP, with the following form:

E =
K∑

i=1

|GPPMODi −GPPOBSi| (3)

where E represents the sum of absolute errors, GPPMODi represents the daily GPP simulated by
the Biome-BGC model, GPPOBSi represents the daily GPP observed by the EC technique, and K
represents the number of observed values. Subsequently, we imported the PDFs of those influential
ecophysiological parameters into the simulated annealing algorithm to generate new parameter values,
and further calculated its corresponding cost function value. Then, we judged the cost function value
according to the Metropolis criterion to decide whether to accept the new parameter values. Finally, the
above two steps were repeated until the termination condition was reached. Through these iterative
optimization processes, we have a high probability of obtaining global optimal parameter values.

3.4. Biome-BGC Model Simulation

The simulation of the Biome-BGC model consists of two phases, namely the spin-up simulation and
the normal simulation. For the spin-up simulation phase, the Biome-BGC model started with constant
preindustrial atmospheric CO2 concentration (286 ppm) and nitrogen deposition (0.0002 kgN/m2/yr)
and looped through the meteorological data from 1982 to 2015 many times until a steady state was
reached [61,62]. For the normal simulation phase, the results of the spin-up simulation were used as
initial values for the carbon and nitrogen pools and then normal simulations were performed.

In this study, the original Biome-BGC model without any modifications was called Version-0
(V0), the Biome-BGC model whose phenology module was modified by remotely sensed phenology
was called Version-1 (V1), and the Biome-BGC model after a phenology module modification and
parameter calibration was called Version-2 (V2). In order to estimate the GPP of alpine grasslands at
the regional scale, we first used the EC-derived GPP data to validate the performance of V2. Then, we
extrapolated V2 to the entire alpine grasslands on the TP to simulate its GPP from 1982 to 2015.

4. Results and Analysis

4.1. Remotely Sensed Phenology

The spatial patterns of mean annual SOS, EOS, and LOS extracted from the NDVI time series
data were provided in Figure 3. As depicted, the SOS showed a decreasing trend from west to east,
consistent with the hydrothermal gradient of the TP. The EOS showed a large spatial heterogeneity
across the TP and roughly exhibited a decreasing trend from south to north. Meanwhile, the LOS
generally showed a decreasing trend from southeast to northwest, which is also consistent with the
hydrothermal gradient on the TP. In addition, according to the statistical results, the SOS was mainly
concentrated between the 100th and 150th days of the year, accounting for 95.4% of the alpine grassland
area. The EOS mainly occurred between the 290th and 320th days of the year, accounting for 94.7% of
the alpine grassland area. Furthermore, the LOS was mainly concentrated between 170 and 210 days,
accounting for 85.3% of the alpine grassland area.



Remote Sens. 2019, 11, 1287 11 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW                                                              11 of 22 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 
(a) (b) (c) 

Figure 3. Spatial distribution of phenological indicators of alpine grasslands on the TP. (a) The start 

of growing season (SOS); (b) The end of growing season (EOS); (c) The length of growing season 

(LOS). 

4.2. Parameter Sensitivity Analysis and Calibration 

Based on the Biome-BGC model after a phenology module modification (V1), we used the Morris 

method and the Sobol’ method to identify those parameters that have a significant impact on the GPP 

simulation for further calibration. The results of Morris sensitivity analysis at Haibei Station and 

Damxung Station are shown in Figure S1. At Haibei Station, three ecophysiological parameters (Lcel, 

VPDi, and VPDf) had a Morris index (𝜇) below the preset threshold of 0.05, and six ecophysiological 

parameters (Llig, FRcel, SLAsha:sun, Gbl, VPDi, and VPDf) at Damxung Station had a Morris index below 

the preset threshold. These parameters were considered to have negligible effects on the GPP 

simulation and were excluded from the next Sobol’ sensitivity analysis. 

The results of Sobol’ sensitivity analysis of the remaining parameters at Haibei Station and 

Damxung Station are provided in Figure S2. As can be seen, at Haibei Station, the simulation of GPP 

was most sensitive to C:Nfr, and its large first order and total order sensitivity index values indicate 

that this parameter affects the GPP simulation either directly or through interaction. The second most 

influential parameters were C:Nleaf and C:Nlit. Among them, C:Nleaf mainly affects GPP through 

interaction, while C:Nlit directly controls the simulation of GPP. Interestingly, similar sensitivity 

analysis results also appeared in Damxung Station, which suggests that there is no significant 

difference between the parameters that have an important impact on the GPP simulation of alpine 

meadows and alpine steppes. To further determine the influential parameters to be calibrated, we set 

the threshold of the total order sensitivity index to 0.05. Through screening, Haibei Station retained 

seven ecophysiological parameters and Damxung Station retained eight ecophysiological parameters, 

as shown in Table 3. 

Based on these selected influential parameters, we used the simulated annealing optimization 

algorithm combined with EC-derived GPP data to calibrate these parameters to achieve model 

parameterization. The calibrated results for Haibei Station and Damxung Station are provided in 

Table 3. 

Table 3. The influential ecophysiological parameters and its calibrated values for Haibei Station and 

Damxung Station. 

Influential Parameters 1 Default Value 
Calibrated Value 

Haibei Station Damxung Station 

FRC:LC 2.0 2.07 1.94 

C:Nleaf 24.0 32.93 35.04 

C:Nlit 49.0 45.12 44.23 

C:Nfr 42.0 43.66 35.42 

SLA 45.0 44.39 44.61 

PLNR 0.15 0.124 0.137 

Figure 3. Spatial distribution of phenological indicators of alpine grasslands on the TP. (a) The start of
growing season (SOS); (b) The end of growing season (EOS); (c) The length of growing season (LOS).

4.2. Parameter Sensitivity Analysis and Calibration
Based on the Biome-BGC model after a phenology module modification (V1), we used the Morris

method and the Sobol’ method to identify those parameters that have a significant impact on the
GPP simulation for further calibration. The results of Morris sensitivity analysis at Haibei Station and
Damxung Station are shown in Figure S1. At Haibei Station, three ecophysiological parameters (Lcel,
VPDi, and VPDf) had a Morris index (µ) below the preset threshold of 0.05, and six ecophysiological
parameters (Llig, FRcel, SLAsha:sun, Gbl, VPDi, and VPDf) at Damxung Station had a Morris index
below the preset threshold. These parameters were considered to have negligible effects on the GPP
simulation and were excluded from the next Sobol’ sensitivity analysis.

The results of Sobol’ sensitivity analysis of the remaining parameters at Haibei Station and
Damxung Station are provided in Figure S2. As can be seen, at Haibei Station, the simulation of
GPP was most sensitive to C:Nfr, and its large first order and total order sensitivity index values
indicate that this parameter affects the GPP simulation either directly or through interaction. The
second most influential parameters were C:Nleaf and C:Nlit. Among them, C:Nleaf mainly affects
GPP through interaction, while C:Nlit directly controls the simulation of GPP. Interestingly, similar
sensitivity analysis results also appeared in Damxung Station, which suggests that there is no significant
difference between the parameters that have an important impact on the GPP simulation of alpine
meadows and alpine steppes. To further determine the influential parameters to be calibrated, we set
the threshold of the total order sensitivity index to 0.05. Through screening, Haibei Station retained
seven ecophysiological parameters and Damxung Station retained eight ecophysiological parameters,
as shown in Table 3.

Based on these selected influential parameters, we used the simulated annealing optimization algorithm
combined with EC-derived GPP data to calibrate these parameters to achieve model parameterization. The
calibrated results for Haibei Station and Damxung Station are provided in Table 3.

Table 3. The influential ecophysiological parameters and its calibrated values for Haibei Station and
Damxung Station.

Influential Parameters 1 Default Value
Calibrated Value

Haibei Station Damxung Station

FRC:LC 2.0 2.07 1.94
C:Nleaf 24.0 32.93 35.04
C:Nlit 49.0 45.12 44.23
C:Nfr 42.0 43.66 35.42
SLA 45.0 44.39 44.61

PLNR 0.15 0.124 0.137
Gsmax 0.005 0.0025 0.0059
LWPi −0.6 / 2 −0.84

1 Influential parameters represent those parameters that have a significant impact on the GPP simulation and require
calibration. They are a subset of ecophysiological parameters. 2 The backslash indicates that the parameter LWPi is
insensitive to the GPP simulation at Haibei Station and is set to the default value.
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4.3. Site-Level Evaluation

The effects of phenology on GPP simulation for the calibration year and the validation year are
shown in Figure 4 and Figure S3, respectively. Among them, the calibration year represents the first
year of the acquired EC-derived GPP data, which is used for model calibration, and the validation year
represents the second year of the acquired EC-derived GPP data, which is used for model validation.
As can be seen from Figure 4 and Figure S3, V0 severely underestimated the GPP values at both Haibei
Station and Damxung Station as compared to the EC-derived GPP (marked with red dots). However,
the GPP simulated by V1 effectively overcame this limitation, which indicated that remotely sensed
phenology can more realistically reflect the phenological characteristics of alpine grasslands on the TP.
The reason for the substantial underestimation of GPP in V0 is mainly attributable to the severe lag in
the simulation of SOS, which directly leads to a shortened LOS and further affects the carbon fixation
process of vegetation. Nevertheless, it should be noted that there was still a large difference between
the GPP simulated by V1 and the GPP derived from EC measurements, so further calibration of V1 is
still necessary.
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Figure 4. Comparisons between GPP derived from EC measurements and GPP simulated by the
version of V0, V1, and V2 for the calibration year. (a) Haibei Station (alpine meadow); (b) Damxung
Station (alpine steppe).

A comparison of GPP simulations before and after calibration for the calibration year and the
validation year were shown in Figure 4 and Figure S3, respectively. As depicted in Figure 4, V2
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significantly improved the simulation accuracy of GPP and showed the best performance in all versions
of the Biome-BGC model. Compared with the initial version V0, the RMSE of the final version V2
was reduced by 1.49 gC/m2/day at Haibei Station and 0.27 gC/m2/day at Damxung Station, and its
coefficient of determination R2 (P < 0.01) increased by 0.08 and 0.03 at Haibei Station and Damxung
Station, respectively. However, it should be mentioned that the simulation accuracy of V2 is slightly
lower than that of V0 at Damxung Station for the validation year (Figure S3), but it is still much higher
than the simulation accuracy of V1. The reason may be attributable primarily to the relatively low
carbon fixation rate at Damxung Station, while the GPP simulated by V0 is also underestimated due to
the severe lag of the simulated SOS, thus making the GPP simulated by V0 close to the EC-derived GPP.

On the other hand, we also used EC-measured NEE and total ecosystem respiration (TER) to
validate the performance of V2. As can be seen from Figure 5 and Figure S4, compared with V0 and V1,
V2 significantly improved the simulation accuracy of NEE during the growing season at both Haibei
Station and Damxung Station. However, it should be noted that there were still some discrepancies
between the NEE simulated by V2 and the NEE measured by EC technique during the non-growing
season, which may be attributed to the limitations in the soil respiration module of the Biome-BGC.
In addition, as shown in Figure 6 and Figure S5, V2 also greatly improved the simulation accuracy
of TER, which generated a good agreement with the observed TER. Overall, the Biome-BGC model,
after a phenology module modification and parameter calibration, effectively improved the simulation
accuracy of carbon fluxes and had a good consistency with the observations, which can be used for
GPP simulation of alpine grasslands on the TP.
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Figure 5. Comparisons between NEE measured by EC technique and NEE simulated by the version
of V0, V1, and V2 for the calibration year. (a) Haibei Station (alpine meadow); (b) Damxung Station
(alpine steppe).
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Figure 6. Comparisons between total ecosystem respiration (TER) derived from EC measurements
and TER simulated by the version of V0, V1, and V2 for the calibration year. (a) Haibei Station (alpine
meadow); (b) Damxung Station (alpine steppe).
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4.4. Spatial Patterns and Trends of GPP

Based on V2, we simulated the GPP of alpine grasslands on the TP from 1982 to 2015. The spatial
pattern of mean annual GPP and its standard deviation (sd) were shown in Figure 7. Generally, the
mean annual GPP (Figure 7a) gradually decreased from southeast to northwest, consistent with the
hydrothermal gradient of the TP. At the same time, the sd of GPP (Figure 7b) showed a decreasing trend
from east to west, indicating that GPP in the eastern region has experienced greater fluctuations than
GPP in the western region in the past 34 years. According to the statistical results, the mean annual
GPP of alpine grasslands on the TP was 289.8 gC/m2/yr (305.8 TgC/yr), of which alpine meadows and
alpine steppes accounted for 461.6 gC/m2/yr and 87.9 gC/m2/yr, respectively. In addition, most regions
(65.3% of the alpine grassland area) had low sd of GPP within 60 gC/m2/yr over the study period,
mainly distributed in the western region of the TP. Meanwhile, only 12.4% of the alpine grassland areas
had sd greater than 120 gC/m2/yr, mainly located in the eastern region of the TP.
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Figure 7. Spatial distribution of mean and standard deviation of GPP of alpine grasslands on the TP
from 1982 to 2015. (a) Mean annual GPP; (b) Standard deviation of GPP.

The spatial distribution of the trends of GPP between 1982 and 2015 was provided in Figure 8.
Obviously, the GPP trends on the TP showed a large spatial heterogeneity, which may be mainly
attributable to the different changes in climatic conditions. Overall, the mean annual GPP in most
regions (96.5%) showed an increasing trend, with 63.5% of the alpine grassland area increasing
significantly. This trend was also reflected in its interannual variations (Figure 9a). As depicted, the
mean annual GPP increased significantly from 1982 to 2015, with a rate of 2.91 gC/m2/yr, and it varied
from 250.9 gC/m2/yr in 1982 to 347.5 gC/m2/yr in 2015. Meanwhile, its changing trend was closely
related to the changes in precipitation and temperature, as shown in Figure 9b,c. In addition, it should
be noted that the mean annual GPP in 1998 had a significant increase as compared to the mean annual
GPP of the previous year. This anomaly may be attributed to the EI Nino and La Nina events in 1998.
Specifically, the average temperature and precipitation in 1998 were obviously higher than those in
1997, and the SOS of most alpine grasslands was also advanced [23], all of which directly contributed
to the significant increase of GPP in 1998.
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5. Discussion

5.1. The Role of Remotely Sensed Phenology in the Biome-BGC Model

Vegetation phenology strongly influences energy, carbon, and nitrogen cycling between the
atmosphere and the terrestrial ecosystems. Accurate phenology simulation is a prerequisite for
the accurate simulation of carbon fluxes. As mentioned earlier, the original meteorological-based
phenology module in the Biome-BGC was found to significantly delay the SOS of alpine grasslands,
which seriously affected the simulation accuracy of GPP. This limitation has also been discovered
by [21], and its reason may be attributed to the fact that the moisture threshold and the temperature
threshold in the original meteorological-based phenology module are not applicable to alpine regions
like the TP. Specifically, the meteorological-based phenology module in the Biome-BGC assumes that
leaf onset occurs when both the summed soil temperature and the summed precipitation are greater
than the critical values [22]. However, for the TP, the seasonal thawing of frozen soil and snow cover
can provide water for the germination and growth of alpine vegetation, which will make the original
moisture threshold become inapplicable. Furthermore, the temperature threshold in the original
phenology module of the Biome-BGC was derived from the empirical data for well-suited regions,
which may also not well represent the vegetation growth on the TP. Therefore, improvements to the
phenology module of the Biome-BGC is required.
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Due to the temporal and spatial continuity of remote sensing technology, it has been successfully
used for the study of vegetation phenology on the TP [25,26]. In this study, we have used the remotely
sensed phenology to prescribe the phenological states within the Biome-BGC model. Results show that
the remotely sensed phenology can more accurately represent the phenological characteristics of alpine
grasslands than the original meteorological-based phenology module in the Biome-BGC. In addition,
different from the previous studies that improved the phenology module of the Biome-BGC [19,20],
our study integrated the remotely sensed phenology with the Biome-BGC model, which is more
suitable for applications over large areas. This strategy could also be extended to other process-based
ecosystem models. However, some limitations of this strategy should also be mentioned. Because
remote sensing is an earth observation technique, it can only observe vegetation phenology in a
hindcasting manner. Therefore, the Biome-BGC model after a phenology module modification in
this study is incapable of making future predictions based on future climate scenarios. At the same
time, since NDVI is not sensitive to seasonal changes in most evergreens, this strategy is also not
applicable to evergreen species. On the other hand, it is worth mentioning that Sun et al. [63] proposed
a multi-factor-driven prognostic phenology module for alpine meadows by combining temperature,
precipitation, photoperiod, insolation, and snowfall, which could also be integrated into the Biome-BGC
model to overcome the limitations in its original phenology module.

5.2. Performance of the Calibrated Biome-BGC Model

Model parameter calibration has long been considered as a difficult task, especially for complex
process-based ecosystem models such as the Biome-BGC. In this study, we proposed a practical
method for model calibration by combining a global sensitivity analysis with the simulated annealing
optimization algorithm. The calibration results show that the carbon fluxes simulated by the calibrated
Biome-BGC model are in good agreement with the EC measurements. However, it should be noted
that the NEE simulated by the calibrated model is still overestimated during the non-growing season,
and its reason can be traced back to the overestimation of TER. Furthermore, the overestimation of
TER can be largely attributed to the soil respiration simulation, which is the main source of respired
carbon during the non-growing season. The problem of soil respiration module in the Biome-BGC has
also been reported in previous studies [17,19,64], and its reason was attributed to either the flaw in
the respiration algorithm or the oversimplified simulation of soil temperature [19]. Nevertheless, for
the TP, the problem of soil respiration module may also be attributed to the widespread distribution
of frozen soil in the non-growing season. Specifically, the presence of frozen soil usually has a large
impact on soil temperature, which will further affect the activity of soil microbes and ultimately act on
soil respiration. Another study conducted on the TP has also demonstrated the important effects of
frozen soil on soil respiration during the non-growing season [65].

On the other hand, some problems regarding model parameter calibration by numerical inversion
methods must be acknowledged. Since the mathematical methods used to estimate model parameters
usually treat the model as a “black box”, that is, the calibration procedure is only based on mathematical
optimization criteria without considering the physiological processes within the model, so the calibrated
results may not be true [20]. Therefore, some studies suggest avoiding the use of mathematical methods
for model calibration and instead using field measurements to determine parameter values [66].
However, for complex process-based ecosystem models like the Biome-BGC, it usually contains a
large number of tunable parameters (e.g., 28 ecophysiological parameters for the Biome-BGC), which
means that it is almost impossible to obtain all (or even some specific) model parameters through
field measurements, especially for applications over large areas. Admittedly, we can choose a subset
of parameters for observation, but considering the correlation between model parameters and the
large difference in the sensitivity of the parameters to the model output [61], it is still a difficult
task, especially when some parameters cannot be observed directly. Therefore, in the absence of
alternatives, combining sensitivity analysis with numerical inversion methods for model calibration is
still a relatively feasible and reliable approach, which is also the method used in this study.
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5.3. Uncertainties and Limitations

The spatial pattern of GPP of alpine grasslands on the TP exhibited obvious spatial heterogeneity
in our study (Figure 7), consistent with other studies revealed that the GPP of Tibetan alpine grasslands
showed a decreasing trend from southeast to northwest [14,16]. In addition, the mean annual GPP
of Tibetan alpine grasslands from 2003 to 2008 simulated by [14] using a modified VPM model was
312.3 gC/m2/yr, which is slightly lower than the GPP (317.1 gC/m2/yr) simulated by our study during
the same period, and this small discrepancy may be attributable to the differences in the model used.

On the other hand, some uncertainties still remain in our simulation of the carbon fluxes based
on the improved Biome-BGC model. Firstly, since we used the EC-derived GPP data to calibrate
the Biome-BGC model, which is essentially obtained through flux partitioning rather than direct
observation, the GPP data will inevitably have errors and will further bring uncertainty to the model
calibration and GPP simulation. Secondly, disturbances in human activities such as grazing and
land use changes can also lead to bias in the GPP simulation. Thirdly, the NDVI dataset used to
determine the phenology metrics may also bring uncertainty to the GPP simulation. Specifically, some
studies reported that newly launched sensors such as MODIS have better performance than AVHRR
for determining phenological parameters in alpine regions [24,67,68]. However, MODIS data was
not available until 2000, so we chose to use a single data source to extract phenological parameters
to avoid new uncertainties caused by the combination of different sensors. In addition, it is worth
mentioning that Kern et al. [69] have improved the quality of GIMMS NDVI3g dataset by applying a
local correction to the NDVI3g dataset using MODIS NDVI, which could also be considered in our
future work. Finally, uncertainties may also come from the internal structure of the Biome-BGC model.
Specifically, due to the widespread distribution of frozen soil on the TP, they will have an important
impact on the physiological processes of alpine grasslands, which in turn will affect the carbon cycle
and energy flow of alpine grassland ecosystems [25,70]. However, the existence of frozen soil and its
effects on the physiological processes have not been considered in the Biome-BGC model, so further
improvements to the model structure are still needed. On the other hand, it is worth mentioning that
some already improved versions of the Biome-BGC model could also be considered in our future work
to reconcile the above issues. For example, Hidy et al. [71] obtained an improved Biome-BGC model
(referred to as the Biome-BGCMuSo) by adding a multilayer soil module and a management module
to the original model, which could help with the issue of frozen soil and human activities.

6. Conclusions

In view of the limitations of the Biome-BGC model when applied to alpine regions, we have
prescribed its phenological states based upon the remotely sensed phenology and calibrated its
parameters to improve the modeling of GPP of alpine grasslands on the Tibetan Plateau (TP).
Specifically, we first used the remotely sensed phenology to modify the original meteorological-based
phenology module in the Biome-BGC to better prescribe the phenological states within the model, and
then we combined the global sensitivity analysis method with the simulated annealing algorithm to
calibrate the model parameters. Furthermore, we used the improved Biome-BGC model to simulate the
GPP of alpine grasslands on the TP from 1982 to 2015. The results show that the improved Biome-BGC
model effectively overcame the limitations in the original model and was capable of reproducing the
magnitude and the temporal dynamics of GPP of alpine grasslands. At the same time, the simulated
results indicate that the GPP of alpine grasslands on the TP exhibited a large spatial heterogeneity,
which generally showed a decreasing trend from southeast to northwest and was consistent with the
hydrothermal gradient of the TP. In addition, the mean annual GPP of alpine grasslands on the TP
from 1982 to 2015 estimated by our study was 289.8 gC/m2/yr (305.8 TgC/yr), and GPP in most regions
showed a significant increasing trend. However, it should be noted that although GPP exhibits an
increasing trend over the past 34 years, the general trend in net carbon uptake is still unclear given the
large uncertainty in soil respiration during the non-growing season. Therefore, in the case that more
field-measured data such as soil temperature is available, we also need to consider the effects of frozen
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soil on alpine vegetation and further improve the soil respiration module of the Biome-BGC to obtain
the carbon budget dynamics of alpine grassland ecosystem on the TP.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/11/1287/s1.
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from EC measurements and GPP simulated by the version of V0, V1, and V2 for the validation year; Figure S4:
Comparisons between NEE measured by EC technique and NEE simulated by the version of V0, V1, and V2 for
the validation year; Figure S5: Comparisons between TER derived from EC measurements and TER simulated by
the version of V0, V1, and V2 for the validation year.
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