
remote sensing

Article

A Robust Wi-Fi Fingerprint Positioning Algorithm
Using Stacked Denoising Autoencoder and
Multi-Layer Perceptron

Rongrong Wang 1 , Zhaohui Li 1, Haiyong Luo 2,3,* , Fang Zhao 1, Wenhua Shao 1 and
Qu Wang 4

1 Schoole of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
wangrongrong@bupt.edu.cn (R.W.); Lizhaoh888@bupt.edu.cn (Z.L.); zfsse@bupt.edu.cn (F.Z.);
shaowenhua@ict.ac.cn (W.S.)

2 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Information and Communication Engineering, Beijing University of Posts and

Telecommunications, Beijing 100876, China; wangqu@ict.ac.cn
* Correspondence: yhluo@ict.ac.cn

Received: 30 April 2019; Accepted: 28 May 2019; Published: 30 May 2019
����������
�������

Abstract: With the increasing demand for location-based services, Wi-Fi-based indoor positioning
technology has attracted much attention in recent years because of its ubiquitous deployment and low
cost. Considering that Wi-Fi signals fluctuate greatly with time, extracting robust features of Wi-Fi
signals is the key point to maintaining good positioning accuracy. To handle the dynamic fluctuation
with time and sparsity of Wi-Fi signals, we propose an SDAE (Stacked Denoising Autoencoder)-based
feature extraction method, which can obtain a robust and time-independent Wi-Fi fingerprint by
learning the reconstruction distribution from a raw Wi-Fi signal and an artificial-noise-added Wi-Fi
signal. We also leverage the strong representation ability of MLP (Multi-Layer Perceptron) to build a
regression model, which maps the extracted features to the corresponding location. To fully evaluate
the performance of our proposed algorithm, three datasets are applied, which represent three different
scenarios, namely, spacious area with time interval, no time interval, and complex area with large
time interval. The experimental results confirm the validity of our proposed SDAE-based feature
extraction method, which can accurately reflect Wi-Fi signals in corresponding locations. Compared
with other regression models, our proposed regression model can better map the extracted features to
the target position. The average positioning error of our proposed algorithm is 4.24 m when there
is a 52-day interval between training dataset and testing dataset. That confirms that the proposed
algorithm outperforms other state-of-the-art positioning algorithms when there is a large time interval
between training dataset and testing dataset.

Keywords: Indoor positioning; feature extraction; regression positioning; stacked denoising
autoencoder; multi-layer perceptron

1. Introduction

Indoor positioning technology, such as Wi-Fi [1,2], magnetic [3,4], pedestrian dead reckoning [5,6]
and visible light [7,8] technologies, have become increasingly more important in people’s daily life, and
positioning services have gradually become an indispensable mobile application. Most Wi-Fi based
positioning technologies do not require deploying additional hardware because they only utilize Wi-Fi
hotspots and existing wireless LANs (Wireless Local Area Networks) to obtain position estimation. At

Remote Sens. 2019, 11, 1293; doi:10.3390/rs11111293 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6916-4332
https://orcid.org/0000-0001-6827-4225
https://orcid.org/0000-0001-6551-6807
http://www.mdpi.com/2072-4292/11/11/1293?type=check_update&version=1
http://dx.doi.org/10.3390/rs11111293
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 1293 2 of 27

present, due to the wide deployment and availability of Wi-Fi infrastructure, Wi-Fi fingerprint-based
localization has become one of the most dominant indoor positioning techniques.

There are two main types of Wi-Fi-based indoor positioning technologies: RSSI (Received Signal
Strength Indicator)-based ranging positioning algorithm [9–11], and fingerprint-based positioning
algorithm [12–14]. The RSSI-based ranging positioning algorithm [11] usually adopts the received
Wi-Fi signal to estimate the distance between the target (its location is unknown) and the access
point (its location is known) using the wireless radio signal propagation model, and then estimates
the target position using trilateration or multilateration methods. The fingerprint-based positioning
algorithm [14] adopts the signal matching algorithm to estimate the user location. It first collects
environmental Wi-Fi signals and constructs a Wi-Fi fingerprint database during the offline phase.
During the online positioning phase, the fingerprint-based positioning algorithm compares the current
Wi-Fi observation with the recorded fingerprint in the database to obtain the target position using
the optimum matching criterion. Compared with the fingerprint-based positioning algorithm, the
RSSI-based ranging positioning algorithm struggles to meet high positioning accuracy due to the
complex multipath and dynamic characteristics of signal propagation in indoor environments [15,16].

Current Wi-Fi fingerprint-based indoor localization mainly adopts either deterministic or
probabilistic techniques [17–20]. The deterministic Wi-Fi positioning methods employ different
deterministic machine learning algorithms to estimate the target location based on the shortest
distance (such as Euclidean distance) criterion, such as KNN (K-NearestNeighbor) [21–23], linear
discriminant analysis [24], and SVM (Support Vector Machine) [25]. The probabilistic Wi-Fi positioning
methods use the posterior probability calculated by probabilistic inference methods [26,27] to estimate
the target location. By calculating the conditional posterior probability using Bayesian estimation
method in a previous study [19], the target location was obtained based on the maximum posterior
probability criterion.

Though much work has been done on the Wi-Fi fingerprint-based indoor localization using various
traditional machine learning methods, the localization accuracy still does not meet the high-accuracy
and robust requirement of indoor location-based services [28]. With the rapid development of
deep learning technology, some researchers have attempted to use deep learning methods in Wi-Fi
positioning. One important advantage of the deep-learning-based Wi-Fi positioning method is that it
can automatically filter the raw Wi-Fi observation data, extract reliable features, and build internal
representations from dynamic Wi-Fi signals without additional devices or human intervention [29]. To
handle the sparseness and volatility problem of the Wi-Fi signal, Khatab [30], Xu [31], and Kim [32]
tried using the AE (Autoencoder) method to learn the feature representation from the raw Wi-Fi signal.
Kim [33] and Nowicki [34] utilized a SAE (Stacked Autoencoder) to extract features for buildings and
floors identification, and obtained a relatively desirable positioning performance on the UJIIndoorLoc
dataset (http://indoorlocplatform.uji.es/databases/get/1/). By transforming the original Wi-Fi signal
into an image form, Wang [35], Mao [36], and Shao [37] introduced the convolutional neural network
to indoor positioning. Wang [38] and Hsieh [39] attempted to construct a recurrent neural network for
indoor positioning.

Because the above-mentioned positioning methods take the target positioning as a classification
problem, the location estimation results are discrete and the positioning accuracy relies on the density
of collected fingerprints. To improve the smoothness and robustness of positioning results, some
regression positioning algorithms are applied, such as support vector regression [40,41] and Gaussian
process regression [42].

Though the previously-described positioning algorithms can obtain good positioning accuracy
when there is a short time interval between the time of collecting training data and the time of collecting
testing data, the positioning accuracy of these algorithms declines dramatically when the collection
time of training data and testing data is separated by a large time interval. To maintain good positioning
performance, these algorithms often need to periodically collect new samples and train the positioning
model, which is time-consuming and labor-intensive. To solve the dynamic fluctuation with time

http://indoorlocplatform.uji.es/databases/get/1/

Remote Sens. 2019, 11, 1293 3 of 27

of Wi-Fi signals, this paper proposes a robust Wi-Fi fingerprint positioning algorithm using a SDAE
(Stacked Denoising Autoencoder) [43] and a MLP (Multi-Layer Perceptron) [44]. The SDAE is used to
extract time-independent features, and the MLP is used to find well-behaved mapping functions by
constructing a reasonable regression model. In our proposed algorithm, we train the SDAE and MLP
using the training dataset in a certain period.

The main contributions of this paper are summarized as follows:

• An SDAE-based robust feature extraction method is proposed. To extract the time-independent
and robust features of the raw Wi-Fi data by using the SDAE, we design a deep neural network
structure with three hidden layers, and the input data of each hidden layer adds reasonable noise.
We use the layer-by-layer greedy training method to train the SDAE model.

• An MLP-based regression positioning method is proposed. By taking advantage of the Universal
Approximation Theorem [45] and the fast training speed of MLP, we build a MLP-based regression
model with nine hidden layers to obtain a good mapping function.

• Our proposed algorithm is fully evaluated using three datasets, which represent three different
classical scenarios. We also compare our proposed localization algorithm with other localization
algorithms. Extensive experimental results demonstrate that our proposed algorithm obviously
outperforms the comparative localization algorithms when the Wi-Fi data covers longer
time intervals.

2. Materials and Methods

2.1. System Overview

Our proposed positioning algorithm is comprised of four main modules, i.e., the data collection
module, preprocessing module, feature extraction module, and MLP-based regression positioning
module. The overall structure of our proposed positioning algorithm is shown in Figure 1. The data
collection module collects Wi-Fi data using mobile devices. The preprocessing module is responsible
for normalizing the Wi-Fi data, and then constructing the fingerprint database. The feature extraction
module extracts robust and time-independent features using the SDAE method. The MLP-based
regression positioning module employs the extracted features to estimate position.

2.2. Data Preprocessing

The data preprocessing aims to produce reasonable input for the feature extraction module by
handling the raw Wi-Fi data. There are three steps in this phase. Firstly, we compensate the missing
observation for those locations without collecting Wi-Fi signals. Considering the common range of raw
RSSI observation is −110 dBm to 0 dBm, we set the missing RSSI value of the Wi-Fi signal to −110 dBm.
After handling all the missing Wi-Fi observations, the range of the whole RSSI data is (−110 dB, 0 dB).
Then, we normalize the raw RSSI data to the range between 0 and 1 using Equation (1), and obtain
normalized data. By adopting this normalization operation, the distribution of normalized Wi-Fi data
is unbiased and low variance. Directly using the raw asymmetry Wi-Fi observation data may lead to
the network model training failure.

rssii =
rssii −min_rssi

max_rssi−min_rssi
(1)

where rssii represents the RSSI value of the i-th Wi-Fi, min_rssi represents the smallest RSSI value, and
max_rssi represents the largest RSSI value.

Remote Sens. 2019, 11, 1293 4 of 27

Finally, we construct a fingerprint database, as shown in Equation (2), using the normalized
Wi-Fi data.

x1
1 . . . xn

1
...

x1
i
...

...
x j

i
...

...
xn

i
...

x1
m · · · xn

m

targetx1
...

targetxi
...

targetxm

targety1
...

targetyi
...

targetxm

(2)

where n represents the number of features, m represents the number of samples, x j
i represents the

j-th feature of the i-th sample, (targetx, targety) represents the coordinate of the target position,(
targetxi, targetyi

)
represents the coordinate of the i-th sample.

1

Figure 1. Overall structure of our proposed positioning algorithm.

2.3. Feature Extraction Based on the SDAE

The RSSI value of the Wi-Fi signal in the online stage may deviate from the initial fingerprint
firstly collected in the offline stage. Figures 2 and 3 correspond to a teaching building and office
building, respectively. As shown in Figures 2a and 3a, the two distributions of RSSI measurement
sequences are different at different times in a specific location. The averaged RSSI value changes by
about 9 dBm when there is a 10-day interval, as Figure 2b shows. The averaged RSSI value changes

Remote Sens. 2019, 11, 1293 5 of 27

by about 3.3 dBm when there is a 50-day interval, as shown in Figure 3b. A previous study [18] also
reported that the Wi-Fi signal fluctuates over time

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 28

⎣
⎢
⎢
⎢
⎡

��
� … ��

�

⋮
��

�

⋮

⋮

��
�

⋮

⋮

��
�

⋮

��
� ⋯ ��

�

⎝

⎜
⎛

��������

⋮
��������

⋮
��������

��������

⋮
��������

⋮
��������⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 (2)

where � represents the number of features, m represents the number of samples, ��
�
 represents the

j-th feature of the i-th sample, (target�, target�) represents the coordinate of the target position,

(��������, ��������) represents the coordinate of the i-th sample.

2.3. Feature Extraction Based on the SDAE

The RSSI value of the Wi-Fi signal in the online stage may deviate from the initial fingerprint

firstly collected in the offline stage. Figure 2 and Figure 3 correspond to a teaching building and office

building, respectively. As shown in Figure 2(a) and Figure 3(a), the two distributions of RSSI

measurement sequences are different at different times in a specific location. The averaged RSSI value

changes by about 9dBm when there is a 10-day interval, as Figure 2(b) shows. The averaged RSSI

value changes by about 3.3dBm when there is a 50-day interval, as shown in Figure 3(b). A previous

study [18] also reported that the Wi-Fi signal fluctuates over time

(a) (b)

Figure 2. The dynamic fluctuation of Wi-Fi signal with time in a teaching building. (a) RSSI data

distribution of different Wi-Fi signals at different times in a specific location. (b) RSSI changes of

different Wi-Fi signals over a 10-day period in a specific location.

(a) (b)

P
ro

b
a
b

il
it

y
P

ro
b

a
b

il
it

y

Figure 2. The dynamic fluctuation of Wi-Fi signal with time in a teaching building. (a) RSSI data
distribution of different Wi-Fi signals at different times in a specific location. (b) RSSI changes of
different Wi-Fi signals over a 10-day period in a specific location.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 28

⎣
⎢
⎢
⎢
⎡

��
� … ��

�

⋮
��

�

⋮

⋮

��
�

⋮

⋮

��
�

⋮

��
� ⋯ ��

�

⎝

⎜
⎛

��������

⋮
��������

⋮
��������

��������

⋮
��������

⋮
��������⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 (2)

where � represents the number of features, m represents the number of samples, ��
�
 represents the

j-th feature of the i-th sample, (target�, target�) represents the coordinate of the target position,

(��������, ��������) represents the coordinate of the i-th sample.

2.3. Feature Extraction Based on the SDAE

The RSSI value of the Wi-Fi signal in the online stage may deviate from the initial fingerprint

firstly collected in the offline stage. Figure 2 and Figure 3 correspond to a teaching building and office

building, respectively. As shown in Figure 2(a) and Figure 3(a), the two distributions of RSSI

measurement sequences are different at different times in a specific location. The averaged RSSI value

changes by about 9dBm when there is a 10-day interval, as Figure 2(b) shows. The averaged RSSI

value changes by about 3.3dBm when there is a 50-day interval, as shown in Figure 3(b). A previous

study [18] also reported that the Wi-Fi signal fluctuates over time

(a) (b)

Figure 2. The dynamic fluctuation of Wi-Fi signal with time in a teaching building. (a) RSSI data

distribution of different Wi-Fi signals at different times in a specific location. (b) RSSI changes of

different Wi-Fi signals over a 10-day period in a specific location.

(a) (b)

P
ro

b
a
b

il
it

y
P

ro
b

a
b

il
it

y

Figure 3. The dynamic fluctuation of Wi-Fi signal with time in an office building. (a) RSSI data
distribution of different Wi-Fi signals at different times in a specific location. (b) RSSI changes of
different Wi-Fi signals over a 50-day period in a specific location.

The Wi-Fi signal fluctuation with time results in a negative influence on the positioning
performance. To enhance the accuracy and robustness of positioning, we employ the SDAE to
extract the robust and time-independent features from the raw Wi-Fi signal observation.

We think that the fundamentals that the reason the SDAE-based Wi-Fi feature extraction can
enhance the accuracy and robustness of positioning may lay below: (1) the SDAE adds noise to
the original Wi-Fi data, enabling it to approach the distribution of the new Wi-Fi data, which has a
large time interval from the original Wi-Fi data; (2) the SDAE reconstructs the original Wi-Fi data
from the corrupted Wi-Fi data and extracts features, and the extracted features represent the essential
distribution of the Wi-Fi signal. An experimental result shown in Figure 4 demonstrates that the
correlation of RSSI samples of the original Wi-Fi data and the new-collected Wi-Fi data (there is a

Remote Sens. 2019, 11, 1293 6 of 27

10-day interval) at the same position is higher using the SDAE-based feature extraction than that
without using the SDAE-based feature extraction.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 28

Figure 3. The dynamic fluctuation of Wi-Fi signal with time in an office building. (a) RSSI data

distribution of different Wi-Fi signals at different times in a specific location. (b) RSSI changes of

different Wi-Fi signals over a 50-day period in a specific location.

The Wi-Fi signal fluctuation with time results in a negative influence on the positioning

performance. To enhance the accuracy and robustness of positioning, we employ the SDAE to extract

the robust and time-independent features from the raw Wi-Fi signal observation.

We think that the fundamentals that the reason the SDAE-based Wi-Fi feature extraction can

enhance the accuracy and robustness of positioning may lay below: (1) the SDAE adds noise to the

original Wi-Fi data, enabling it to approach the distribution of the new Wi-Fi data, which has a large

time interval from the original Wi-Fi data; (2) the SDAE reconstructs the original Wi-Fi data from the

corrupted Wi-Fi data and extracts features, and the extracted features represent the essential

distribution of the Wi-Fi signal. An experimental result shown in Figure 4 demonstrates that the

correlation of RSSI samples of the original Wi-Fi data and the new-collected Wi-Fi data (there is a 10-

day interval) at the same position is higher using the SDAE-based feature extraction than that without

using the SDAE-based feature extraction.

Figure 4. Correlation of RSSI samples of the original Wi-Fi data and the new-collected Wi-Fi data at

the same position before SDAE and after SDAE.

The neural network structure and parameters of the proposed feature extraction method are

shown in Figure 5. These consist of three stacked DAEs (Denoising Autoencoders) [46], and each

DAE (Denoising Autoencoder) includes three parts, namely, the noise-added layer, encoder layer,

and decoder layer. The noise-added layer obtains corrupted Wi-Fi data by adding masking noise to

the original Wi-Fi data. In the first DAE, we set the noise parameter to 0.4, which randomly chooses

neurons to drop out and removes them from the input layer temporarily. We produce a random seed

for the disconnection operation, so the dropped neurons are definite. Noise parameters of the second

DAE and the third DAE are 0.5 and 0.6, respectively. The encoder layer maps the corrupted Wi-Fi

data into hidden representation, and the neurons of the encoder layer in each DAE are 256, 128, and

64, respectively. Finally, we extract 64 robust features using the SDAE. To increase nonlinearity, Relu

[47] is employed in each encoder layer. The decoder layer maps the hidden representation back to a

reconstruction of the original Wi-Fi data.

More specifically, the red rectangle part in Figure 5 is the second DAE in the SDAE. The

dimension of the original input x is 256, and the Dropout layer Drop(∙) obtains noise_x by adding

Figure 4. Correlation of RSSI samples of the original Wi-Fi data and the new-collected Wi-Fi data at the
same position before SDAE and after SDAE.

The neural network structure and parameters of the proposed feature extraction method are
shown in Figure 5. These consist of three stacked DAEs (Denoising Autoencoders) [46], and each
DAE (Denoising Autoencoder) includes three parts, namely, the noise-added layer, encoder layer,
and decoder layer. The noise-added layer obtains corrupted Wi-Fi data by adding masking noise to
the original Wi-Fi data. In the first DAE, we set the noise parameter to 0.4, which randomly chooses
neurons to drop out and removes them from the input layer temporarily. We produce a random
seed for the disconnection operation, so the dropped neurons are definite. Noise parameters of the
second DAE and the third DAE are 0.5 and 0.6, respectively. The encoder layer maps the corrupted
Wi-Fi data into hidden representation, and the neurons of the encoder layer in each DAE are 256, 128,
and 64, respectively. Finally, we extract 64 robust features using the SDAE. To increase nonlinearity,
Relu [47] is employed in each encoder layer. The decoder layer maps the hidden representation back
to a reconstruction of the original Wi-Fi data.

More specifically, the red rectangle part in Figure 5 is the second DAE in the SDAE. The dimension
of the original input x is 256, and the Dropout layer Drop(·) obtains noise_x by adding masking
noise to x. The Encoder layer Enc(·) obtains Enc_x by encoding noise_x. The Decoder layer Dec(·)
obtains x̃, whose dimension becomes 256 again. The DAE minimizes the reconstruction error LDAE, as
Equation (7) shows, by training the Encoder and Decoder.

x =
{
x1, x2, x3, . . . , x256

}
(3)

noise_x = Drop(x) (4)

Enc_x = Enc(noise_x) (5)

x̃ = Dec(Enc_x) (6)

LDAE(x, x̃) =
1

2M
(x− x̃)2 (7)

where M represents the number of samples.

Remote Sens. 2019, 11, 1293 7 of 27

The SDAE is trained by the layer-by-layer greedy training method, in which the output of a DAE
in the lower layer is used as the input of the DAE in the higher layer, and the SDAE completes the
training task until all DAEs in the SDAE are trained. The Encoders and Decoders in the SDAE are
trained to minimize the reconstruction error between the uncorrupted Wi-Fi data and reconstructed
Wi-Fi data. The SDAE can extract more essential and robust features because it reconstructs the original
Wi-Fi data even with the presence of high noise levels.

2

Figure 5. The SDAE network structure.

2.4. Regression Model Using MLP

To avoid dense fingerprint collection and maintain training features for each location grid, we
employ a MLP-based regression model to estimate target location, which can improve smoothness and
robustness of positioning results.

The MLP-based regression model is constructed by adopting the Universal Approximation
Theorem [45], which possesses fast training speed. MLP defines a mapping function, as shown in
Equation (8), and obtains the best function approximation by learning the value of the parameter θ.

y = f (x;θ) (8)

where y is target position, x is the Wi-Fi sample, and θ represent weight parameters in MLP.
The neural network structure and parameters of the proposed MLP-based regression model are

shown in Figure 6. The neurons of the input layer in the network structure are set to 64, which are the
features extracted by the SDAE algorithm. Our designed network structure includes nine hidden layers,
and the neurons are set to 128, 256, 512, 256, 128, 64, 32, 16, and 8, respectively. To increase nonlinearity,
we use the Tanh as the activation function for each hidden layer. We adopt the BatchNormalization [48]
layer between the hidden layers because this layer makes the input of each hidden layer have the same
distribution, which can speed up the convergence process. Furthermore, it plays a regularization role
and can mitigate the overfitting problem. Since the target value of the mapping function in MLP is
the position (x, y), the neurons in the output layer are set to 2. We exploit the sigmoid function as the
activation function of the output layer because the target value in the dataset has been normalized and
the sigmoid function maps the output of the last hidden layer to (0, 1). There are nine mixing layers
(each mixing layer consists of a Dense layer and a BatchNormalization layer) in our proposed network
structure, and the MLP network can approximate a function with arbitrary precision when the network

Remote Sens. 2019, 11, 1293 8 of 27

structure contains enough hidden neurons. The hidden layer weights are updated by minimizing the
loss function Lregression using the back-propagation algorithm, and the proposed network structure in
this module is determined according to the loss function value of the validation dataset.

Lregression =
1
M

M∑
i=1

(yi − f (xi))
2 (9)

sigmoid(x) =
1

1 + e−x (10)

where M represents the number of samples, yi represents the true position of the i-th sample, f (xi)

represents the prediction position of the i-th sample.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 28

Figure 6. Regression model network structure based on MLP.

Our proposed algorithm is implemented using Keras. Table 1 summarizes the hyperparameter

values in our proposed algorithm.

Table 1. Hyperparameter values in our proposed SDAE and MLP.

Parameter SDAE MLP

Batch size 30 100

Activation Relu[47] Tanh

Optimizer Adam[49] RMSprop[50]

Learning rate 0.1 0.0008

Epochs 30 (first DAE), 20 (second and third DAEs) 200

Loss function MSE MSE

Figure 6. Regression model network structure based on MLP.

Our proposed algorithm is implemented using Keras. Table 1 summarizes the hyperparameter
values in our proposed algorithm.

Remote Sens. 2019, 11, 1293 9 of 27

Table 1. Hyperparameter values in our proposed SDAE and MLP.

Parameter SDAE MLP

Batch size 30 100
Activation Relu [47] Tanh
Optimizer Adam [49] RMSprop [50]

Learning rate 0.1 0.0008
Epochs 30 (first DAE), 20 (second and third DAEs) 200

Loss function MSE MSE

Algorithm 1 (As Figure 7 shows) describes the general process of our proposed robust Wi-Fi
fingerprint positioning algorithm using SDAE and MLP.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 28

Figure 7. The pseudo code of the robust Wi-Fi fingerprint positioning algorithm using SDAE and

MLP.

Algorithm 1 (As Figure 7 shows) describes the general process of our proposed robust Wi-Fi

fingerprint positioning algorithm using SDAE and MLP.

2.5. Tree-Fusion-Based Regression Model

Algorithm 1. robust Wi-Fi fingerprint positioning algorithm using SDAE and MLP

1 Input: training dataset, validation dataset, testing dataset

2 Output: positioning result (x, y)

3 // Data preprocessing

4
Normalize the training dataset, validation dataset and test dataset according to

Equation (1).

5 // Feature extraction

6 Build SDAE_model as shown in Figure 5

7 new_training_dataset = training dataset

8 new_validation_dataset = validation dataset

9 for sdae_layer in all hidden layers of SDAE_model do

10 for each training epoch do

11
 new_training_dataset is used to train sdae_layer, and the training process is

monitored by the new_validation_dataset.

12 new_training_dataset = sdae_layer.predict(new_training_dataset)

13 new_validation_dataset = sdae_layer.redict(new_validation_dataset)

14 //Model training

15 Build regression_model as shown in Figure 6

16 train_features = SDAE_model.predict(training dataset)

17 validation_features = SDAE_model.predict(validation dataset)

18 num_epoch = 0

19 for each training epoch do

20
 training features are used to train regression_model, and the training process is

monitored by the validation features.

21 if current_epoch_val_loss – previous_epoch_val_loss <= 1e-7 do

22 num_epoch += 1

23 if num_epoch == 10 do

24 lr = lr * factor

25 // Model prediction

26 test_features = SDAE_model.predict(testing dataset)

27 test_positioning_result = regression_model.predict(test_features)

28 return test_positioning_result

Figure 7. The pseudo code of the robust Wi-Fi fingerprint positioning algorithm using SDAE and MLP.

Remote Sens. 2019, 11, 1293 10 of 27

2.5. Tree-Fusion-Based Regression Model

Recently, tree models (such as XGBoost and LightGBM) [51–54] have been widely used in various
problems and have achieved good performances. Inspired by this idea, in this section, we construct
and implement a tree-fusion-based regression model and use it as a localization comparison.

The overall framework of our proposed tree-fusion-based regression model is shown in Figure 8.
Firstly, we train AdaBoost, RandomForest, and KernelRidge as three meta-learners, then utilize these
meta-learners to obtain a new training dataset. Secondly, we utilize the new training dataset to train
the secondary-learner GBDT (Gradient Boosting Decision Tree), and then utilize the secondary-learner
to obtain the stacked model predictions in Figure 8. Thirdly, we utilize the original training dataset
to train XGBoost and LightGBM, and the two single models are used to obtain the testing dataset
outputs, respectively, which are the XGBoost model predictions and LightGBM model predictions
in Figure 8. The weights of the stacking model, XGBoost, and LightGBM are configured to w3, w1,
and w2, respectively. Finally, the final prediction in Figure 8 is obtained by weighted average (as
Equation (11) shows).

final_prediction = Pstack∗w3 + Pxgb∗w1 + Plgb∗w2 (11)

where Pstack is the stacked model predictions, Pxgb is the XGBoost model predictions, and Plgb is the
LightGBM model predictions.

3

Figure 8. The overall framework of the tree-fusion-based regression model.

3. Experiments and Evaluation

In this section, we adopt three datasets to evaluate our proposed algorithm, and these datasets
represent three different typical scenarios, namely spacious area (i.e., teaching building) with time

Remote Sens. 2019, 11, 1293 11 of 27

interval, complex area (office building) without time interval, and complex area (office building) with
time interval. Several experiments are conducted to evaluate our proposed positioning algorithm. We
also compare our proposed algorithm with other state-of-the-art localization algorithms.

3.1. Datasets

Besides the public UJIIndoorLoc dataset (named Dataset1 in this paper), we also collect Wi-Fi
signals from 20 sampling points in our laboratory area. The distance between adjacent sampling
points is 5 m or more. We collect Wi-Fi signals three times in these locations, which are recorded as
the training dataset, validation dataset, and testing dataset, respectively. The sampling durations of
each sampling point in the training dataset, validation dataset, and testing dataset are 12 s, 9 s, and
6 s, respectively. The collection interval of the training dataset and validation dataset is about 13 min.
The collection interval of the validation dataset and testing dataset is 6 min. There is no time interval
between the training dataset and testing dataset. This dataset is recorded as Dataset2. The sampling
area is approximate 40 × 30 m2. The positions of sampling points are shown in Figure 9.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 28

interval, complex area (office building) without time interval, and complex area (office building) with

time interval. Several experiments are conducted to evaluate our proposed positioning algorithm.

We also compare our proposed algorithm with other state-of-the-art localization algorithms.

3.1. Datasets

Besides the public UJIIndoorLoc dataset (named Dataset1 in this paper), we also collect Wi-Fi

signals from 20 sampling points in our laboratory area. The distance between adjacent sampling

points is 5 m or more. We collect Wi-Fi signals three times in these locations, which are recorded as

the training dataset, validation dataset, and testing dataset, respectively. The sampling durations of

each sampling point in the training dataset, validation dataset, and testing dataset are 12 s, 9 s, and 6

s, respectively. The collection interval of the training dataset and validation dataset is about 13 min.

The collection interval of the validation dataset and testing dataset is 6 min. There is no time interval

between the training dataset and testing dataset. This dataset is recorded as Dataset2. The sampling

area is approximate 40 × 30 ��. The positions of sampling points are shown in Figure 9.

Figure 9. The sampling positions of Dataset2 in our laboratory.

We collect Wi-Fi signals from 57 sampling points in the laboratory area. The distance between

sampling points is 5 m or more. Firstly, we collect Wi-Fi data twice in these locations, which are

record as the training dataset and validation dataset, respectively. The sampling durations of each

sampling point in the training dataset and validation dataset are 14 s and 9 s, respectively. For the

testing dataset, we collect three sub-datasets, and record them the as sub-test1, sub-test2, and sub-

test3, respectively. The sampling durations of these sub-datasets are 6 s. The collection intervals

between these sub-datasets and the training dataset are one day, eleven days, and fifty-two days,

respectively, and all sub-datasets are collected at 3 pm. The sampling area is approximate 40 × 60 ��.

This dataset is recorded as Dataset3. The position of sampling points is shown in Figure 10.

Figure 9. The sampling positions of Dataset2 in our laboratory.

We collect Wi-Fi signals from 57 sampling points in the laboratory area. The distance between
sampling points is 5 m or more. Firstly, we collect Wi-Fi data twice in these locations, which are
record as the training dataset and validation dataset, respectively. The sampling durations of each
sampling point in the training dataset and validation dataset are 14 s and 9 s, respectively. For the
testing dataset, we collect three sub-datasets, and record them the as sub-test1, sub-test2, and sub-test3,
respectively. The sampling durations of these sub-datasets are 6 s. The collection intervals between
these sub-datasets and the training dataset are one day, eleven days, and fifty-two days, respectively,
and all sub-datasets are collected at 3 pm. The sampling area is approximate 40 × 60 m2. This dataset
is recorded as Dataset3. The position of sampling points is shown in Figure 10.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 28

interval, complex area (office building) without time interval, and complex area (office building) with

time interval. Several experiments are conducted to evaluate our proposed positioning algorithm.

We also compare our proposed algorithm with other state-of-the-art localization algorithms.

3.1. Datasets

Besides the public UJIIndoorLoc dataset (named Dataset1 in this paper), we also collect Wi-Fi

signals from 20 sampling points in our laboratory area. The distance between adjacent sampling

points is 5 m or more. We collect Wi-Fi signals three times in these locations, which are recorded as

the training dataset, validation dataset, and testing dataset, respectively. The sampling durations of

each sampling point in the training dataset, validation dataset, and testing dataset are 12 s, 9 s, and 6

s, respectively. The collection interval of the training dataset and validation dataset is about 13 min.

The collection interval of the validation dataset and testing dataset is 6 min. There is no time interval

between the training dataset and testing dataset. This dataset is recorded as Dataset2. The sampling

area is approximate 40 × 30 ��. The positions of sampling points are shown in Figure 9.

Figure 9. The sampling positions of Dataset2 in our laboratory.

We collect Wi-Fi signals from 57 sampling points in the laboratory area. The distance between

sampling points is 5 m or more. Firstly, we collect Wi-Fi data twice in these locations, which are

record as the training dataset and validation dataset, respectively. The sampling durations of each

sampling point in the training dataset and validation dataset are 14 s and 9 s, respectively. For the

testing dataset, we collect three sub-datasets, and record them the as sub-test1, sub-test2, and sub-

test3, respectively. The sampling durations of these sub-datasets are 6 s. The collection intervals

between these sub-datasets and the training dataset are one day, eleven days, and fifty-two days,

respectively, and all sub-datasets are collected at 3 pm. The sampling area is approximate 40 × 60 ��.

This dataset is recorded as Dataset3. The position of sampling points is shown in Figure 10.

Figure 10. The sample position of the Dataset3 in our laboratory.

Remote Sens. 2019, 11, 1293 12 of 27

The sample format of these three datasets at a certain sampling point (x, y) is as shown in
Equation (12).

s =
{
rssi0, rssi1, . . . , rssin, x, y

}
(12)

where n represents the number of Wi-Fi AP, and (x, y) represents the position of the sample s, rssii
represents RSSI value of the i-th Wi-Fi AP.

The environment of the experimental area is shown in Figure 11.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 28

Figure 10. The sample position of the Dataset3 in our laboratory.

The sample format of these three datasets at a certain sampling point (x, y) is as shown in

Equation (12).

s = {�����, �����, … , �����, x, y} (12)

where n represents the number of Wi-Fi AP, and (x, y) represents the position of the sample s, �����

represents RSSI value of the i-th Wi-Fi AP.

The environment of the experimental area is shown in Figure 11.

(a) (b)

Figure 11. The experimental environment: (a) corridor; (b) work-station.

3.2. Effect of SDAE Feature Extraction

To evaluate the effect of the SDAE-based feature extraction method for localization performance,

we use the Dataset1 to train our proposed MLP-based regression model with feature extraction

operation and without feature extraction operation. The positioning accuracy comparison with or

without SDAE-based feature extraction operation is shown in Figure 12. It can be seen from Figure

12 that using the SDAE-based feature extraction method can obtain higher localization accuracy,

which confirms that the SDAE can extract the robust and time-independent Wi-Fi fingerprint features

from the original dynamic Wi-Fi dataset, and using the features obtained by the SDAE method can

improve the positioning accuracy.

Figure 12. Comparison of CDF (Cumulative Distribution Function) positioning errors between the

algorithm with feature extraction and the algorithm without feature extraction.

3.3. Positioning Performance of the Proposed Algorithm

3.3.1. Performance of Our Proposed Algorithm under Different Parameters

In this section, we evaluate the performance of our proposed algorithm on Dataset1 with

different parameters.

P
ro

b
a
b

il
it

y

Figure 11. The experimental environment: (a) corridor; (b) work-station.

3.2. Effect of SDAE Feature Extraction

To evaluate the effect of the SDAE-based feature extraction method for localization performance,
we use the Dataset1 to train our proposed MLP-based regression model with feature extraction
operation and without feature extraction operation. The positioning accuracy comparison with or
without SDAE-based feature extraction operation is shown in Figure 12. It can be seen from Figure 12
that using the SDAE-based feature extraction method can obtain higher localization accuracy, which
confirms that the SDAE can extract the robust and time-independent Wi-Fi fingerprint features from
the original dynamic Wi-Fi dataset, and using the features obtained by the SDAE method can improve
the positioning accuracy.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 28

Figure 10. The sample position of the Dataset3 in our laboratory.

The sample format of these three datasets at a certain sampling point (x, y) is as shown in

Equation (12).

s = {�����, �����, … , �����, x, y} (12)

where n represents the number of Wi-Fi AP, and (x, y) represents the position of the sample s, �����

represents RSSI value of the i-th Wi-Fi AP.

The environment of the experimental area is shown in Figure 11.

(a) (b)

Figure 11. The experimental environment: (a) corridor; (b) work-station.

3.2. Effect of SDAE Feature Extraction

To evaluate the effect of the SDAE-based feature extraction method for localization performance,

we use the Dataset1 to train our proposed MLP-based regression model with feature extraction

operation and without feature extraction operation. The positioning accuracy comparison with or

without SDAE-based feature extraction operation is shown in Figure 12. It can be seen from Figure

12 that using the SDAE-based feature extraction method can obtain higher localization accuracy,

which confirms that the SDAE can extract the robust and time-independent Wi-Fi fingerprint features

from the original dynamic Wi-Fi dataset, and using the features obtained by the SDAE method can

improve the positioning accuracy.

Figure 12. Comparison of CDF (Cumulative Distribution Function) positioning errors between the

algorithm with feature extraction and the algorithm without feature extraction.

3.3. Positioning Performance of the Proposed Algorithm

3.3.1. Performance of Our Proposed Algorithm under Different Parameters

In this section, we evaluate the performance of our proposed algorithm on Dataset1 with

different parameters.

P
ro

b
a
b

il
it

y

Figure 12. Comparison of CDF (Cumulative Distribution Function) positioning errors between the
algorithm with feature extraction and the algorithm without feature extraction.

3.3. Positioning Performance of the Proposed Algorithm

3.3.1. Performance of Our Proposed Algorithm under Different Parameters

In this section, we evaluate the performance of our proposed algorithm on Dataset1 with
different parameters.
� Influence of different numbers of hidden layers in SDAE network structure

Remote Sens. 2019, 11, 1293 13 of 27

In addition to the SDAE structure proposed in this paper (256-128-64), we also build two
comparative SDAE network structures, i.e., one SDAE network structure only contains one hidden
layer with 256 neurons, and the other SDAE network structure contains two hidden layers (256-128).
The positioning accuracy is shown in Figure 13. We can see from Figure 13 that using more hidden
layers can obtain higher positioning accuracy, which demonstrates that adopting more a complex
SDAE network structure can better represent the robust and time-independent Wi-Fi fingerprint.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 28

 Influence of different numbers of hidden layers in SDAE network structure

In addition to the SDAE structure proposed in this paper (256-128-64), we also build two

comparative SDAE network structures, i.e., one SDAE network structure only contains one hidden

layer with 256 neurons, and the other SDAE network structure contains two hidden layers (256-128).

The positioning accuracy is shown in Figure 13. We can see from Figure 13 that using more hidden

layers can obtain higher positioning accuracy, which demonstrates that adopting more a complex

SDAE network structure can better represent the robust and time-independent Wi-Fi fingerprint.

(a) (b)

Figure 13. The positioning accuracy using different SDAE network structures. (a) CDF positioning

errors. (b) Average positioning errors.

 MLP regression model comparison in different parameters

(1) Performance using different MLP network structures

Figure 14 compares the positioning accuracy using different MLP network structures. According

to the CDF positioning errors (shown in Figure 14a) and average positioning errors (shown in Figure

14b), the MLP-based regression model can obtain smaller localization error when adopting a more

complicated network structure. Using our proposed MLP network structure (128-256-512-256-128-

64-32-16-8-2) can obtain the best positioning accuracy.

(a) (b)

Figure 14. The positioning accuracy using different MLP network structures. (a) CDF positioning

errors. (b) Average positioning errors.

(2) Performance using different activation functions

From Figure 15, we can obviously see that using the Tanh activation function outperforms the

Linear and Relu activation functions. The MLP-based regression model obtains an average

P
ro

b
a

b
il
it

y

a
v
e
ra

g
e
 p

o
s
it

io
n

in
g

 e
rr

o
r/

m

P
ro

b
a
b

il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 13. The positioning accuracy using different SDAE network structures. (a) CDF positioning
errors. (b) Average positioning errors.

� MLP regression model comparison in different parameters

(1) Performance using different MLP network structures
Figure 14 compares the positioning accuracy using different MLP network structures. According

to the CDF positioning errors (shown in Figure 14a) and average positioning errors (shown
in Figure 14b), the MLP-based regression model can obtain smaller localization error when
adopting a more complicated network structure. Using our proposed MLP network structure
(128-256-512-256-128-64-32-16-8-2) can obtain the best positioning accuracy.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 28

 Influence of different numbers of hidden layers in SDAE network structure

In addition to the SDAE structure proposed in this paper (256-128-64), we also build two

comparative SDAE network structures, i.e., one SDAE network structure only contains one hidden

layer with 256 neurons, and the other SDAE network structure contains two hidden layers (256-128).

The positioning accuracy is shown in Figure 13. We can see from Figure 13 that using more hidden

layers can obtain higher positioning accuracy, which demonstrates that adopting more a complex

SDAE network structure can better represent the robust and time-independent Wi-Fi fingerprint.

(a) (b)

Figure 13. The positioning accuracy using different SDAE network structures. (a) CDF positioning

errors. (b) Average positioning errors.

 MLP regression model comparison in different parameters

(1) Performance using different MLP network structures

Figure 14 compares the positioning accuracy using different MLP network structures. According

to the CDF positioning errors (shown in Figure 14a) and average positioning errors (shown in Figure

14b), the MLP-based regression model can obtain smaller localization error when adopting a more

complicated network structure. Using our proposed MLP network structure (128-256-512-256-128-

64-32-16-8-2) can obtain the best positioning accuracy.

(a) (b)

Figure 14. The positioning accuracy using different MLP network structures. (a) CDF positioning

errors. (b) Average positioning errors.

(2) Performance using different activation functions

From Figure 15, we can obviously see that using the Tanh activation function outperforms the

Linear and Relu activation functions. The MLP-based regression model obtains an average

P
ro

b
a

b
il
it

y

a
v
e
ra

g
e
 p

o
s
it

io
n

in
g

 e
rr

o
r/

m

P
ro

b
a
b

il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 14. The positioning accuracy using different MLP network structures. (a) CDF positioning
errors. (b) Average positioning errors.

(2) Performance using different activation functions

Remote Sens. 2019, 11, 1293 14 of 27

From Figure 15, we can obviously see that using the Tanh activation function outperforms the
Linear and Relu activation functions. The MLP-based regression model obtains an average positioning
error of 5.64 m when using the Tanh activation function, which is 28.1% less than using Linear activation
function and 17.3% less than using Relu activation function, respectively.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 28

positioning error of 5.64 m when using the Tanh activation function, which is 28.1% less than using

Linear activation function and 17.3% less than using Relu activation function, respectively.

(a) (b)

Figure 15. The positioning accuracy using different activation functions. (a) CDF positioning errors.

(b) Average positioning errors.

(3) Performance using different MLP optimizers

In addition to RMSprop used in our proposed algorithm, we also try using other optimizers,

such as Adamax, Adam, Nadam, Adadelta, Adagrad, and SGD. For each optimizer, we optimize the

learning rate that corresponds to the best positioning performance. The positioning accuracy using

these optimizers is shown in Figure 16. The MLP using RMSprop obtains the best positioning

accuracy. As shown in Figure 16a, the localization error using the MLP-based regression model for

80% of the testing dataset falls between 8 m and 9 m, except the model using Nadam, in which the

model using RMSprop obtains approximately 8 m. The MLP-based regression model using RMSprop

obtains an average positioning error of 5.64 m, which is 26.6% less than using Nadam, which obtains

the worst positioning performance and 8.3% less than using the SGD, which obtains the highest

positioning accuracy, except using RMSprop, as shown in Figure 16b.

(a) (b)

Figure 16. The positioning accuracy using different optimizers. (a) CDF positioning errors. (b)

Average positioning errors.

(4) Performance using different MLP epoch

The loss function declining curve with epoch on the validation dataset is plotted in Figure 17.

As can be seen from Figure 17, when epoch reaches 150, val_loss approximates the minimum value,

P
ro

b
a

b
il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

P
ro

b
a

b
il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 15. The positioning accuracy using different activation functions. (a) CDF positioning errors.
(b) Average positioning errors.

(3) Performance using different MLP optimizers
In addition to RMSprop used in our proposed algorithm, we also try using other optimizers,

such as Adamax, Adam, Nadam, Adadelta, Adagrad, and SGD. For each optimizer, we optimize the
learning rate that corresponds to the best positioning performance. The positioning accuracy using
these optimizers is shown in Figure 16. The MLP using RMSprop obtains the best positioning accuracy.
As shown in Figure 16a, the localization error using the MLP-based regression model for 80% of the
testing dataset falls between 8 m and 9 m, except the model using Nadam, in which the model using
RMSprop obtains approximately 8 m. The MLP-based regression model using RMSprop obtains an
average positioning error of 5.64 m, which is 26.6% less than using Nadam, which obtains the worst
positioning performance and 8.3% less than using the SGD, which obtains the highest positioning
accuracy, except using RMSprop, as shown in Figure 16b.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 28

positioning error of 5.64 m when using the Tanh activation function, which is 28.1% less than using

Linear activation function and 17.3% less than using Relu activation function, respectively.

(a) (b)

Figure 15. The positioning accuracy using different activation functions. (a) CDF positioning errors.

(b) Average positioning errors.

(3) Performance using different MLP optimizers

In addition to RMSprop used in our proposed algorithm, we also try using other optimizers,

such as Adamax, Adam, Nadam, Adadelta, Adagrad, and SGD. For each optimizer, we optimize the

learning rate that corresponds to the best positioning performance. The positioning accuracy using

these optimizers is shown in Figure 16. The MLP using RMSprop obtains the best positioning

accuracy. As shown in Figure 16a, the localization error using the MLP-based regression model for

80% of the testing dataset falls between 8 m and 9 m, except the model using Nadam, in which the

model using RMSprop obtains approximately 8 m. The MLP-based regression model using RMSprop

obtains an average positioning error of 5.64 m, which is 26.6% less than using Nadam, which obtains

the worst positioning performance and 8.3% less than using the SGD, which obtains the highest

positioning accuracy, except using RMSprop, as shown in Figure 16b.

(a) (b)

Figure 16. The positioning accuracy using different optimizers. (a) CDF positioning errors. (b)

Average positioning errors.

(4) Performance using different MLP epoch

The loss function declining curve with epoch on the validation dataset is plotted in Figure 17.

As can be seen from Figure 17, when epoch reaches 150, val_loss approximates the minimum value,

P
ro

b
a

b
il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

P
ro

b
a

b
il
it

y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 16. The positioning accuracy using different optimizers. (a) CDF positioning errors. (b) Average
positioning errors.

Remote Sens. 2019, 11, 1293 15 of 27

(4) Performance using different MLP epoch
The loss function declining curve with epoch on the validation dataset is plotted in Figure 17. As

can be seen from Figure 17, when epoch reaches 150, val_loss approximates the minimum value, but
there is still slight vibration. When epoch reaches 200, val_loss becomes stable. Therefore, The epoch
200 is the appropriate epoch in our proposed algorithm.

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 28

but there is still slight vibration. When epoch reaches 200, val_loss becomes stable. Therefore, The

epoch 200 is the appropriate epoch in our proposed algorithm.

Figure 17. The loss function declining curve with epoch of the validation dataset.

(5) Performance using different learning rates in optimizer RMSprop

In addition to the learning rate (lr = 0.0008) used in this paper, we try employing 0.0004, 0.0006,

0.0007, 0.0009, 0.001, and 0.002. The positioning performance influence using different learning rates

is shown in Figure 18 and the MLP-based regression model obtains the best positioning accuracy

when the learning rate is set to 0.0008. According to Figure 18(a), the localization error of the MLP-

based regression model for 80% of the testing dataset falls between 8 m and 10 m when using

RMSprop under different learning rates, in which the model (l r= 0.0008) obtains about 8 m.

According to Figure 18(b), the MLP-based regression model obtains the average positioning error of

5.64 m when the learning rate is set to 0.0008, which is 12.7% less than the model (lr = 0.002) that

obtains the highest positioning error and 1.2% less than the model (lr = 0.0007) that obtains the highest

positioning accuracy, except the model (lr = 0.0008).

(a) (b)

Figure 18. The positioning accuracy using different learning rates in optimizer (RMSprop). (a) CDF

positioning errors. (b) Average positioning errors.

In the following experiments, we will use above-mentioned optimal parameters to further

evaluate our proposed algorithm.

3.3.2. The Performance of Our Proposed Algorithm under Different Sample Densities

P
ro

b
a

b
il

it
y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 17. The loss function declining curve with epoch of the validation dataset.

(5) Performance using different learning rates in optimizer RMSprop
In addition to the learning rate (lr = 0.0008) used in this paper, we try employing 0.0004, 0.0006,

0.0007, 0.0009, 0.001, and 0.002. The positioning performance influence using different learning rates is
shown in Figure 18 and the MLP-based regression model obtains the best positioning accuracy when
the learning rate is set to 0.0008. According to Figure 18a, the localization error of the MLP-based
regression model for 80% of the testing dataset falls between 8 m and 10 m when using RMSprop under
different learning rates, in which the model (lr = 0.0008) obtains about 8 m. According to Figure 18b,
the MLP-based regression model obtains the average positioning error of 5.64 m when the learning
rate is set to 0.0008, which is 12.7% less than the model (lr = 0.002) that obtains the highest positioning
error and 1.2% less than the model (lr = 0.0007) that obtains the highest positioning accuracy, except
the model (lr = 0.0008).

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 28

but there is still slight vibration. When epoch reaches 200, val_loss becomes stable. Therefore, The

epoch 200 is the appropriate epoch in our proposed algorithm.

Figure 17. The loss function declining curve with epoch of the validation dataset.

(5) Performance using different learning rates in optimizer RMSprop

In addition to the learning rate (lr = 0.0008) used in this paper, we try employing 0.0004, 0.0006,

0.0007, 0.0009, 0.001, and 0.002. The positioning performance influence using different learning rates

is shown in Figure 18 and the MLP-based regression model obtains the best positioning accuracy

when the learning rate is set to 0.0008. According to Figure 18(a), the localization error of the MLP-

based regression model for 80% of the testing dataset falls between 8 m and 10 m when using

RMSprop under different learning rates, in which the model (l r= 0.0008) obtains about 8 m.

According to Figure 18(b), the MLP-based regression model obtains the average positioning error of

5.64 m when the learning rate is set to 0.0008, which is 12.7% less than the model (lr = 0.002) that

obtains the highest positioning error and 1.2% less than the model (lr = 0.0007) that obtains the highest

positioning accuracy, except the model (lr = 0.0008).

(a) (b)

Figure 18. The positioning accuracy using different learning rates in optimizer (RMSprop). (a) CDF

positioning errors. (b) Average positioning errors.

In the following experiments, we will use above-mentioned optimal parameters to further

evaluate our proposed algorithm.

3.3.2. The Performance of Our Proposed Algorithm under Different Sample Densities

P
ro

b
a

b
il

it
y

a
v
e

ra
g

e
 p

o
s

it
io

n
in

g
 e

rr
o

r/
m

Figure 18. The positioning accuracy using different learning rates in optimizer (RMSprop). (a) CDF
positioning errors. (b) Average positioning errors.

Remote Sens. 2019, 11, 1293 16 of 27

In the following experiments, we will use above-mentioned optimal parameters to further evaluate
our proposed algorithm.

3.3.2. The Performance of Our Proposed Algorithm under Different Sample Densities

In this section, we evaluate the positioning performance of our proposed algorithm under different
sample densities. We collect four datasets with different sampling densities. The distances between
neighboring sampling points in the four datasets are 3 m, 5 m, 7 m, and 10 m, respectively. Each dataset
contains training data, validation data and testing data. The positioning accuracy of our proposed
algorithm on the four datasets is shown in Figure 19 and Table 2.

Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 28

In this section, we evaluate the positioning performance of our proposed algorithm under

different sample densities. We collect four datasets with different sampling densities. The distances

between neighboring sampling points in the four datasets are 3 m, 5 m, 7 m, and 10 m, respectively.

Each dataset contains training data, validation data and testing data. The positioning accuracy of our

proposed algorithm on the four datasets is shown in Figure 19 and Table 2.

Figure 19. The CDF positioning error of our proposed algorithm under different sample densities.

Table 2. Average positioning error of our proposed algorithm under different sample densities.

Dataset Neighboring sample_spacing (m) Mean_error (m)

Sample Density 3 m 3 2.84

Sample Density 5 m 5 3.56

Sample Density 7 m 7 4.18

Sample Density 10 m 10 5.63

From Figure 19 and Table 2, we find that the positioning accuracy of our proposed algorithm

decreases with the sampling density decrease. According to Table 2 the average positioning error is

2.84 m when the distance between sampling points is 3m. The average positioning error increases to

5.63 m when the distance between sampling points is 10 m. In general, with the increase of

neighboring sample distance, the localization errors of our proposed algorithm increase gradually.

3.3.3. The Positioning Performance on Three Datasets

The positioning performance of our proposed algorithm on Dataset1, Dataset2, and Dataset3 is

shown in Figure 20 and Table 3.

P
ro

b
a

b
il
it

y

P
ro

b
a
b

il
it

y

P
ro

b
a

b
il

it
y

Figure 19. The CDF positioning error of our proposed algorithm under different sample densities.

Table 2. Average positioning error of our proposed algorithm under different sample densities.

Dataset Neighboring sample_spacing (m) Mean_error (m)

Sample Density 3 m 3 2.84
Sample Density 5 m 5 3.56
Sample Density 7 m 7 4.18
Sample Density 10 m 10 5.63

From Figure 19 and Table 2, we find that the positioning accuracy of our proposed algorithm
decreases with the sampling density decrease. According to Table 2 the average positioning error is
2.84 m when the distance between sampling points is 3 m. The average positioning error increases to
5.63 m when the distance between sampling points is 10 m. In general, with the increase of neighboring
sample distance, the localization errors of our proposed algorithm increase gradually.

3.3.3. The Positioning Performance on Three Datasets

The positioning performance of our proposed algorithm on Dataset1, Dataset2, and Dataset3 is
shown in Figure 20 and Table 3.

Remote Sens. 2019, 11, 1293 17 of 27Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28

(a) (b)

(c)

Figure 20. The CDF positioning error of our proposed algorithm on three datasets. (a) Dataset1. (b)

Dataset2. (c) Dataset3.

Table 3. Average positioning error of the algorithm proposed in this paper on three datasets.

Dataset Collection Interval (day) Mean_error (m)

Dataset1 10 5.64

Dataset2 0 3.05

Dataset3

1 3.39

11 3.85

52 4.24

According to Figure 20, the proposed algorithm achieves about 8 m localization error for 80% of

the testing dataset on Dataset1. The proposed algorithm achieves about 2.5 m and 5.2 m localization

error for 50% and 90% of the testing dataset on Dataset2, respectively. On Dataset3, the proposed

algorithm produces about 4.7 m localization error, 5.8 m localization error, and 6 m localization error

for 80% of sub-test1, sub-test2, and sub-test3, respectively. From Table 3, we can find that using our

proposed algorithm can obtain 5.64 m and 3.05 m of average positioning errors on Dataset1 and

Dataset2, respectively. On Dataset3, the average positioning error of our presented method is 4.24 m

when there is a 52-day collection interval between training dataset and testing dataset.

3.4. Performance Comparison with the Tree-Fusion-Based Regression Model

We compare the positioning accuracy of our proposed algorithm with the tree-fusion-based

regression model described in Section 2.5 with the above-mentioned datasets. The fusion weight

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28

(a) (b)

(c)

Figure 20. The CDF positioning error of our proposed algorithm on three datasets. (a) Dataset1. (b)

Dataset2. (c) Dataset3.

Table 3. Average positioning error of the algorithm proposed in this paper on three datasets.

Dataset Collection Interval (day) Mean_error (m)

Dataset1 10 5.64

Dataset2 0 3.05

Dataset3

1 3.39

11 3.85

52 4.24

According to Figure 20, the proposed algorithm achieves about 8 m localization error for 80% of

the testing dataset on Dataset1. The proposed algorithm achieves about 2.5 m and 5.2 m localization

error for 50% and 90% of the testing dataset on Dataset2, respectively. On Dataset3, the proposed

algorithm produces about 4.7 m localization error, 5.8 m localization error, and 6 m localization error

for 80% of sub-test1, sub-test2, and sub-test3, respectively. From Table 3, we can find that using our

proposed algorithm can obtain 5.64 m and 3.05 m of average positioning errors on Dataset1 and

Dataset2, respectively. On Dataset3, the average positioning error of our presented method is 4.24 m

when there is a 52-day collection interval between training dataset and testing dataset.

3.4. Performance Comparison with the Tree-Fusion-Based Regression Model

We compare the positioning accuracy of our proposed algorithm with the tree-fusion-based

regression model described in Section 2.5 with the above-mentioned datasets. The fusion weight

Figure 20. The CDF positioning error of our proposed algorithm on three datasets. (a) Dataset1.
(b) Dataset2. (c) Dataset3.

Table 3. Average positioning error of the algorithm proposed in this paper on three datasets.

Dataset Collection Interval (day) Mean_error (m)

Dataset1 10 5.64

Dataset2 0 3.05

Dataset3
1 3.39

11 3.85
52 4.24

According to Figure 20, the proposed algorithm achieves about 8 m localization error for 80% of
the testing dataset on Dataset1. The proposed algorithm achieves about 2.5 m and 5.2 m localization
error for 50% and 90% of the testing dataset on Dataset2, respectively. On Dataset3, the proposed
algorithm produces about 4.7 m localization error, 5.8 m localization error, and 6 m localization error
for 80% of sub-test1, sub-test2, and sub-test3, respectively. From Table 3, we can find that using our
proposed algorithm can obtain 5.64 m and 3.05 m of average positioning errors on Dataset1 and
Dataset2, respectively. On Dataset3, the average positioning error of our presented method is 4.24 m
when there is a 52-day collection interval between training dataset and testing dataset.

Remote Sens. 2019, 11, 1293 18 of 27

3.4. Performance Comparison with the Tree-Fusion-Based Regression Model

We compare the positioning accuracy of our proposed algorithm with the tree-fusion-based
regression model described in Section 2.5 with the above-mentioned datasets. The fusion weight
parameters of w1, w2, and w3 corresponding to the XGBoost, LightGBM, and Stacking model are set
to 0.15, 0.15, and 0.7, respectively, based on our optimal experiments.

� Dataset1

We sort Dataset1 according to the data collection timestamp, and divide it into training dataset,
validation dataset, and testing dataset. The collection time of the training dataset is 30 May 2013, and
the collection time of the testing dataset is 10 June 2013. The positioning performance on Dataset1 is
shown in Figure 21 and Table 4. Our proposed algorithm can obtain 5.64 m of average positioning
error, as shown in Table 4, which is 10.8% less than the tree-fusion-based regression model. Our
proposed algorithm and the tree-fusion-based regression model achieve 8 m localization error and 9 m
localization error (shown in Figure 21) for 80% of the testing dataset, respectively, i.e., the localization
accuracy using the tree-fusion-based regression model is 1 m worse than that using our proposed
algorithm for 80% of the testing dataset.

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 28

Figure 21. Comparison of CDF positioning errors between the proposed algorithm and the tree-

fusion-based regression model.

Table 4. Average positioning errors of the proposed algorithm and the tree-fusion-based regression

model.

Model Mean_error (m)

tree-fusion-based regression model 6.32

Proposed model 5.64

 Dataset2

The positioning performance on Dataset2 using the proposed algorithm and the tree-fusion-

based regression model is shown in Figure 22 and Table 5. Both the proposed algorithm and the tree-

fusion-based regression model achieve about 4.8 m localization error for 80% of the testing dataset,

as shown in Figure 22. Furthermore, the two algorithms produce about 3 m of average positioning

error, as shown in Table 5. Considering that there is no time interval between training dataset and

testing dataset in Dataset2, the fingerprint features corresponding to a specific location between the

training dataset and the testing dataset are very similar, both the proposed algorithm and the tree-

fusion-based regression model can accurately estimate target locations.

Figure 22. The positioning errors (CDF) between the proposed algorithm and the tree-fusion-based

regression model.

P
ro

b
a

b
il

it
y

P
ro

b
a
b

il
it

y

Figure 21. Comparison of CDF positioning errors between the proposed algorithm and the
tree-fusion-based regression model.

Table 4. Average positioning errors of the proposed algorithm and the tree-fusion-based
regression model.

Model Mean_error (m)

tree-fusion-based regression model 6.32
Proposed model 5.64

� Dataset2

The positioning performance on Dataset2 using the proposed algorithm and the tree-fusion-based
regression model is shown in Figure 22 and Table 5. Both the proposed algorithm and the
tree-fusion-based regression model achieve about 4.8 m localization error for 80% of the testing
dataset, as shown in Figure 22. Furthermore, the two algorithms produce about 3 m of average
positioning error, as shown in Table 5. Considering that there is no time interval between training
dataset and testing dataset in Dataset2, the fingerprint features corresponding to a specific location
between the training dataset and the testing dataset are very similar, both the proposed algorithm and
the tree-fusion-based regression model can accurately estimate target locations.

Remote Sens. 2019, 11, 1293 19 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 28

Figure 21. Comparison of CDF positioning errors between the proposed algorithm and the tree-

fusion-based regression model.

Table 4. Average positioning errors of the proposed algorithm and the tree-fusion-based regression

model.

Model Mean_error (m)

tree-fusion-based regression model 6.32

Proposed model 5.64

 Dataset2

The positioning performance on Dataset2 using the proposed algorithm and the tree-fusion-

based regression model is shown in Figure 22 and Table 5. Both the proposed algorithm and the tree-

fusion-based regression model achieve about 4.8 m localization error for 80% of the testing dataset,

as shown in Figure 22. Furthermore, the two algorithms produce about 3 m of average positioning

error, as shown in Table 5. Considering that there is no time interval between training dataset and

testing dataset in Dataset2, the fingerprint features corresponding to a specific location between the

training dataset and the testing dataset are very similar, both the proposed algorithm and the tree-

fusion-based regression model can accurately estimate target locations.

Figure 22. The positioning errors (CDF) between the proposed algorithm and the tree-fusion-based

regression model.

P
ro

b
a

b
il

it
y

P
ro

b
a
b

il
it

y

Figure 22. The positioning errors (CDF) between the proposed algorithm and the tree-fusion-based
regression model.

Table 5. The average positioning error comparison between the proposed algorithm and the
tree-fusion-based regression model.

Model Mean_error (m)

tree-fusion-based regression model 3.22
Proposed model 3.05

� Dataset3

In Dataset3, positioning algorithms are performed on the testing dataset, which contains three
sub-datasets (sub-test1, sub-test2, and sub-test3). The positioning performance is shown in Figure 23
and Table 6. As shown in Figure 23, the proposed algorithm and the tree-fusion-based regression
model achieve 6 m and 7.2 m localization error for 80% of the sub-test3 (there is a 52-day long interval),
respectively. As shown in Table 6, our proposed algorithm outperforms the tree-fusion-based regression
model on all three sub-datasets. For instance, our proposed algorithm obtains 4.24 m of average
positioning error on sub-test3, which is 14.5% less than the tree-fusion-based regression model. These
experimental results confirm that our proposed algorithm can obtain better positioning performance
than the tree-fusion-based regression model when there is a long time interval.

Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 28

Table 5. The average positioning error comparison between the proposed algorithm and the tree-

fusion-based regression model.

Model Mean_error (m)

tree-fusion-based regression model 3.22

Proposed model 3.05

 Dataset3

In Dataset3, positioning algorithms are performed on the testing dataset, which contains three

sub-datasets (sub-test1, sub-test2, and sub-test3). The positioning performance is shown in Figure 23

and Table 6. As shown in Figure 23, the proposed algorithm and the tree-fusion-based regression

model achieve 6 m and 7.2 m localization error for 80% of the sub-test3 (there is a 52-day long

interval), respectively. As shown in Table 6, our proposed algorithm outperforms the tree-fusion-

based regression model on all three sub-datasets. For instance, our proposed algorithm obtains 4.24

m of average positioning error on sub-test3, which is 14.5% less than the tree-fusion-based regression

model. These experimental results confirm that our proposed algorithm can obtain better positioning

performance than the tree-fusion-based regression model when there is a long time interval.

Figure 23. Comparison of CDF positioning errors between the proposed algorithm and the tree-

fusion-based regression model.

Table 6. Comparison of average positioning errors between the proposed algorithm and the tree-

fusion-based regression model.

Model Collection Interval (day) Mean_error (m)

Proposed model
1

3.39

tree-fusion-based regression model 4.19

Proposed model
11

3.85

tree-fusion-based regression model 4.54

Proposed model
52

4.24

tree-fusion-based regression model 4.97

The experimental results conducted on these three datasets demonstrate that when there is no

time interval between training dataset and testing dataset, both the tree-fusion-based model and our

proposed algorithm can achieve similar positioning performance. However, when there is a large

time interval between training dataset and testing dataset, our proposed algorithm can obtain better

positioning performance than the tree-fusion-based regression model. Therefore, the proposed

algorithm is more robust when there is a large time interval between training dataset and testing

P
ro

b
a
b

il
it

y

Figure 23. Comparison of CDF positioning errors between the proposed algorithm and the
tree-fusion-based regression model.

Remote Sens. 2019, 11, 1293 20 of 27

Table 6. Comparison of average positioning errors between the proposed algorithm and the
tree-fusion-based regression model.

Model Collection Interval (day) Mean_error (m)

Proposed model
1

3.39
tree-fusion-based regression model 4.19

Proposed model
11

3.85
tree-fusion-based regression model 4.54

Proposed model
52

4.24
tree-fusion-based regression model 4.97

The experimental results conducted on these three datasets demonstrate that when there is no
time interval between training dataset and testing dataset, both the tree-fusion-based model and
our proposed algorithm can achieve similar positioning performance. However, when there is a
large time interval between training dataset and testing dataset, our proposed algorithm can obtain
better positioning performance than the tree-fusion-based regression model. Therefore, the proposed
algorithm is more robust when there is a large time interval between training dataset and testing
dataset, which confirms that the MLP-based regression model can find good mapping between the
Wi-Fi fingerprints and locations based on the strong representation of MLP.

3.5. Performance Comparison with Related Methods

We also compare the localization accuracy of our proposed algorithm with other state-of-the-art
methods (Khatab [30], Xu [31]). Khatab introduced the AE to extract Wi-Fi features, and then used the
ELM (Extreme Learning Machine) for indoor positioning. Xu also adopted the AE method for feature
extraction, and then used the MLP for indoor positioning.

3.5.1. Performance Comparison with Khatab’s Method

Considering that the dataset used in this paper is different from the dataset used in Khatab’s paper,
we do not use the same parameter values as those used in Khatab’s paper. This paper reconstructs the
same network structure of Khatab’s paper. Then, we train this reconstructed model using our dataset.
We conduct comparative experiments on Dataset1, Dataset2, and Dataset3. The experimental results
are shown in Figure 24 and Table 7.

Table 7. The average positioning errors between our proposed algorithm and Khatab’s method.

Dataset Model Collection Interval (day) Mean_error (m)

Dataset1
Khatab [30] 10 8.14
proposed 10 5.64

Dataset2
Khatab [30] 0 3.14
proposed 0 3.05

Dataset3

Khatab [30]
1 4.08
11 5.01
52 5.60

proposed
1 3.39
11 3.85
52 4.24

Remote Sens. 2019, 11, 1293 21 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 28

dataset, which confirms that the MLP-based regression model can find good mapping between the

Wi-Fi fingerprints and locations based on the strong representation of MLP.

3.5. Performance Comparison with Related Methods

We also compare the localization accuracy of our proposed algorithm with other state-of-the-art

methods (Khatab [30], Xu [31]). Khatab introduced the AE to extract Wi-Fi features, and then used

the ELM (Extreme Learning Machine) for indoor positioning. Xu also adopted the AE method for

feature extraction, and then used the MLP for indoor positioning.

3.5.1. Performance Comparison with Khatab’s Method

Considering that the dataset used in this paper is different from the dataset used in Khatab’s

paper, we do not use the same parameter values as those used in Khatab’s paper. This paper

reconstructs the same network structure of Khatab’s paper. Then, we train this reconstructed model

using our dataset. We conduct comparative experiments on Dataset1, Dataset2, and Dataset3. The

experimental results are shown in Figure 24 and Table 7.

(a) (b)

(c)

Figure 24. The positioning error comparison between our proposed algorithm and Khatab’s method

on three different datasets. (a) Dataset1. (b) Dataset2. (c) Dataset3.

Table 7. The average positioning errors between our proposed algorithm and Khatab’s method.

Dataset Model Collection Interval (day) Mean_error (m)

Dataset1
Khatab[30] 10 8.14

proposed 10 5.64

Dataset2 Khatab[30] 0 3.14

P
ro

b
a
b

il
it

y

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il
it

y

Figure 24. The positioning error comparison between our proposed algorithm and Khatab’s method
on three different datasets. (a) Dataset1. (b) Dataset2. (c) Dataset3.

From Table 7, we can find that the average positioning errors of our proposed algorithm and
Khatab’s method on the Dataset2 are similar (3.05 m and 3.14 m, respectively). This similar positioning
performance is also illustrated in Figure 24b (both the proposed algorithm and Khatab achieve about 6
m localization error for 90% of the testing dataset on Dataset2). This demonstrates that when there
is no time interval between training dataset and testing dataset, both algorithms can achieve good
and similar positioning performance. However, from Figure 24a,c and Table 7, we can see that the
positioning performance using our proposed algorithm is better on Dataset1 and Dataset3. Our
proposed algorithm produces 5.64 m of average positioning error on Dataset1, which is 30.7% less
than Khatab. Our proposed algorithm produces the average positioning error of 4.24 m on sub-test3
of Dataset3, which is 24.3% less than Khatab. These experimental results confirm that our proposed
algorithm is more robust when there is a large time interval between the training dataset and testing
dataset. The reason why our proposed algorithm can obtain better positioning accuracy when there is
a large time interval between the training dataset and testing dataset is as follows—the output features
extracted by AE may be a simple copy of the input layer, which does not extract more essential features
from the Wi-Fi signal. Furthermore, the weights of hidden layers in ELM are no longer updated after
determining their weights by solving the equation set. Differing from ELM, the MLP updates the
weights of hidden layers until the loss function becomes steady. Therefore, the MLP can obtain a better
mapping function.

Remote Sens. 2019, 11, 1293 22 of 27

3.5.2. Performance Comparison with Xu’s Method

Similar to the 3.5.1, we also employ our three datasets to evaluate the performance of Xu’s method.
We also reconstruct the network structure of Xu’s paper. The comparative experiments on Dataset1,
Dataset2, and Dataset3 are conducted and the experimental results are shown in Figure 25 and Table 8.

Remote Sens. 2019, 11, x FOR PEER REVIEW 22 of 28

proposed 0 3.05

Dataset3

Khatab[30]

1 4.08

11 5.01

52 5.60

proposed

1 3.39

11 3.85

52 4.24

From Table 7, we can find that the average positioning errors of our proposed algorithm and

Khatab’s method on the Dataset2 are similar (3.05 m and 3.14 m, respectively). This similar

positioning performance is also illustrated in Figure 24b (both the proposed algorithm and Khatab

achieve about 6 m localization error for 90% of the testing dataset on Dataset2). This demonstrates

that when there is no time interval between training dataset and testing dataset, both algorithms can

achieve good and similar positioning performance. However, from Figure 24a,c and Table 7, we can

see that the positioning performance using our proposed algorithm is better on Dataset1 and

Dataset3. Our proposed algorithm produces 5.64 m of average positioning error on Dataset1, which

is 30.7% less than Khatab. Our proposed algorithm produces the average positioning error of 4.24 m

on sub-test3 of Dataset3, which is 24.3% less than Khatab. These experimental results confirm that

our proposed algorithm is more robust when there is a large time interval between the training

dataset and testing dataset. The reason why our proposed algorithm can obtain better positioning

accuracy when there is a large time interval between the training dataset and testing dataset is as

follows—the output features extracted by AE may be a simple copy of the input layer, which does

not extract more essential features from the Wi-Fi signal. Furthermore, the weights of hidden layers

in ELM are no longer updated after determining their weights by solving the equation set. Differing

from ELM, the MLP updates the weights of hidden layers until the loss function becomes steady.

Therefore, the MLP can obtain a better mapping function.

3.5.2. Performance Comparison with Xu’s Method

Similar to the 3.5.1, we also employ our three datasets to evaluate the performance of Xu’s

method. We also reconstruct the network structure of Xu’s paper. The comparative experiments on

Dataset1, Dataset2, and Dataset3 are conducted and the experimental results are shown in Figure 25

and Table 8.

(a) (b)

P
ro

b
a
b

il
it

y

P
ro

b
a

b
il

it
y

Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 28

(c)

Figure 25. Comparison of CDF positioning errors between the proposed algorithm and Xu on

different datasets. (a) Dataset1. (b) Dataset2. (c) Dataset3.

Table 8. Comparison of the average positioning errors between the proposed algorithm and Xu.

Dataset Model
Collection Interval

(day)
Mean_error (m)

Dataset1
Xu [31] 10 7.00

proposed 10 5.64

Dataset2
Xu [31] 0 3.07

proposed 0 3.05

Dataset3

Xu [31]

1 4.30

11 4.86

52 5.67

proposed

1 3.39

11 3.85

52 4.24

From Table 8 and Figure 25b, we can find that both our proposed method and Xu’s method

obtain similar localization performance on the Dataset2, without time intervals between the training

dataset and testing dataset. Both the proposed algorithm and Xu achieve about 6 m localization error

for 90% of the testing dataset on Dataset2, and produce about 3 m of average positioning error.

However, when there is a large time interval between training dataset and testing dataset, the

positioning performance using our proposed algorithm is obviously better on Dataset1 and Dataset3,

as Figure 25a,c and Table 8 show. Our proposed algorithm produces 5.64 m of average positioning

error on Dataset1, which is 19.4% less than Xu. Our proposed algorithm produces the average

positioning error of 4.24 m on sub-test3 of Dataset3, which is 25.2% less than Xu. The reason for this

difference between our proposed algorithm and Xu’s method is that AE is also used for feature

extraction in Xu’s method. Similar to previous experiments, the features extracted by AE may be a

simple copy of the input layer, which does not extract more essential features.

From the results of all experiments in section 3.5.1 and 3.5.2, we obtain the following main

conclusions:

 When there is no time interval between training dataset and testing dataset, both Khatab’s

method and Xu’s methods can achieve good positioning results.

 When there is a time interval between the training dataset and testing dataset, our proposed

algorithm can obtain better positioning performance, which confirms that our proposed

algorithm is more robust.

3.6. Calculation Complexity

P
ro

b
a

b
il
it

y

Figure 25. Comparison of CDF positioning errors between the proposed algorithm and Xu on different
datasets. (a) Dataset1. (b) Dataset2. (c) Dataset3.

Table 8. Comparison of the average positioning errors between the proposed algorithm and Xu.

Dataset Model Collection Interval (Day) Mean_error (m)

Dataset1
Xu [31] 10 7.00

proposed 10 5.64

Dataset2
Xu [31] 0 3.07

proposed 0 3.05

Dataset3

Xu [31]
1 4.30

11 4.86
52 5.67

proposed
1 3.39

11 3.85
52 4.24

Remote Sens. 2019, 11, 1293 23 of 27

From Table 8 and Figure 25b, we can find that both our proposed method and Xu’s method obtain
similar localization performance on the Dataset2, without time intervals between the training dataset
and testing dataset. Both the proposed algorithm and Xu achieve about 6 m localization error for 90%
of the testing dataset on Dataset2, and produce about 3 m of average positioning error. However, when
there is a large time interval between training dataset and testing dataset, the positioning performance
using our proposed algorithm is obviously better on Dataset1 and Dataset3, as Figure 25a,c and Table 8
show. Our proposed algorithm produces 5.64 m of average positioning error on Dataset1, which is
19.4% less than Xu. Our proposed algorithm produces the average positioning error of 4.24 m on
sub-test3 of Dataset3, which is 25.2% less than Xu. The reason for this difference between our proposed
algorithm and Xu’s method is that AE is also used for feature extraction in Xu’s method. Similar to
previous experiments, the features extracted by AE may be a simple copy of the input layer, which
does not extract more essential features.

From the results of all experiments in Sections 3.5.1 and 3.5.2, we obtain the following
main conclusions:

• When there is no time interval between training dataset and testing dataset, both Khatab’s method
and Xu’s methods can achieve good positioning results.

• When there is a time interval between the training dataset and testing dataset, our proposed
algorithm can obtain better positioning performance, which confirms that our proposed algorithm
is more robust.

3.6. Calculation Complexity

To evaluate the calculation complexity of our proposed algorithm, we compare the total time
(including total training time and prediction time for one sample on Dataset1) of our proposed
algorithm with Khatab’s method and Xu’ method. All algorithms are run on a PC with Intel i5-6500
CPU and 8GB RAM. Table 9 lists the total time of different algorithms.

Table 9. Calculation time of different algorithms.

Model Total Training Time (s) Prediction Time for One Sample (ms)

proposed 20.84 181
Khatab 5.21 3

Xu 16.54 166

Table 9 indicates that it takes the longest time for our proposed algorithm. However, the total
training time is only about 21 s and run on the offline stage, which does not influence online real-time
positioning. Khatab’s method adopts ELM to obtain positioning results during the positioning phase.
The weights in the ELM are obtained by solving the equation set. However, the MLP method adopts
the back-propagation algorithm to repeatedly adjust the weights, so the ELM algorithm obtains the
shortest runtime in the offline stage. Khatab’s method and the proposed algorithm in this paper adopt
AE and DAE in the feature extraction phase, respectively, with the DAE having longer runtime than
the AE. In the positioning phase, ELM in Khatab’s method adopts a simpler network structure, and
the MLP network structure proposed in this paper is more complicated. Therefore, Khatab’s method
obtains the shortest prediction time. Finally, although our algorithm has the longest prediction time
for one sample, the latency at the millisecond level is negligible.

4. Conclusions

In this paper, we propose an indoor positioning algorithm combining SDAE and MLP, in which
the SDAE performs feature extraction and the MLP performs regression positioning. To solve the Wi-Fi
signal dynamic fluctuation with time, we adopt the SDAE-based robust feature extraction method, and
then build a MLP-based regression model for indoor positioning. To evaluate our proposed algorithm,

Remote Sens. 2019, 11, 1293 24 of 27

we conduct experiments in three datasets which represent different scenarios. The experimental
results indicate that the SDAE-based feature extraction method extracts robust and time-independent
features, which represent the raw Wi-Fi data well, and the MLP-based regression model finds a good
mapping function. Extensive experimental results demonstrate that the proposed algorithm and other
algorithms can achieve similar and good positioning performance when there is a short time interval
between the training dataset and testing dataset. However, the proposed algorithm obtains 4.24 m
of average positioning error when there is a 52-day interval between training dataset and testing
dataset, which is 24.3% less than Khatab’s method, 25.2% less than Xu’s method, and 14.7% less than
the tree-fusion-based regression model, respectively. This confirms that our proposed algorithm is
more robust than other algorithms when there is a large time interval between the training dataset and
testing dataset.

In future work, we will continue to improve positioning accuracy, apply our proposed method
in practical environments, and we will evaluate our proposed algorithm using more datasets. Also,
we will consider extracting more essential features to eliminate the effect of time on the Wi-Fi signal.
Furthermore, we will consider better mapping the extracted features to the target position by building
other network structures.

Author Contributions: Conceptualization, R.W., H.L., and Z.F.; methodology, R.W.; software, R.W.; validation,
H.L. and Z.L.; formal analysis, Q.W.; investigation, Z.L. and H.L.; resources, H.L.; data curation, Z.L., R.W., and
Q.W.; writing—original draft preparation, R.W.; writing—review and editing, R.W., H.L., and Q.W.; visualization,
R.W. and Z.L.; supervision, H.L. and W.S.; project administration, H.L.; funding acquisition, H.L. and F.Z.

Funding: This work was supported in part by the National Key Research and Development Program (2018YFB0505200),
the National Natural Science Foundation of China (61872046,61374214), the “Blue Fire Plan” (Huizhou)
Industry-University Joint Innovation Project of Ministry of Education (CXZJHZ201729), and the Open Project
of the Beijing Key Laboratory of Mobile Computing and Pervasive Device.

Acknowledgments: We would like to thank the editors and the three anonymous reviewers for their valuable
comments, which greatly improved the quality of this manuscript. Many thanks to the Beijing Key Laboratory of
Mobile Computing and Pervasive Device, Institute of Computing Technology Chinese Academy of Sciences for
the support in our research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wei, J.; Zhao, F.; Luo, H. SP-Loc: A crowdsourcing fingerprint based shop-level indoor localization algorithm
integrating shop popularity without the indoor map. Int. J. Distrib. Sens. Netw. 2018, 14. [CrossRef]

2. Guo, X.; Shao, W.; Fang, Z.; Qu, W.; Li, D.; Luo, H. WiMag: Multimode Fusion Localization System based on
Magnetic/WiFi/PDR. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8.

3. Luo, H.; Zhao, F.; Jiang, M.; Ma, H.; Zhang, Y. Constructing an indoor floor plan using crowdsourcing based
on magnetic fingerprinting. Sensors 2017, 17. [CrossRef]

4. Shao, W.; Zhao, F.; Wang, C.; Luo, H.; Muhammad Zahid, T.; Wang, Q.; Li, D. Location Fingerprint Extraction
for Magnetic Field Magnitude Based Indoor Positioning. J. Sens. 2016, 2016, 1–16. [CrossRef]

5. Xu, L.; Xiong, Z.; Liu, J.; Wang, Z.; Ding, Y. A Novel Pedestrian Dead Reckoning Algorithm for Multi-Mode
Recognition Based on Smartphones. Remote Sens. 2019, 11, 294. [CrossRef]

6. Yang, F.; Xiong, J.; Liu, J.; Wang, C.; Li, Z.; Tong, P.; Chen, R. A Pairwise SSD Fingerprinting Method of
Smartphone Indoor Localization for Enhanced Usability. Remote Sens. 2019, 11, 566. [CrossRef]

7. Wang, Q.; Luo, H.; Men, A.; Zhao, F.; Gao, X.; Wei, J.; Zhang, Y.; Huang, Y. Light positioning: A high-accuracy
visible light indoor positioning system based on attitude identification and propagation model. Int. J. Distrib.
Sens. Netw. 2018, 14. [CrossRef]

8. Wang, Q.; Luo, H.; Men, A.; Zhao, F.; Huang, Y. An infrastructure-free indoor localization algorithm for
smartphones. Sensors 2018, 18. [CrossRef] [PubMed]

9. Sen, S.; Lee, J.; Kim, K.H.; Congdon, P. Avoiding multipath to revive inbuilding WiFi localization.
In Proceedings of the 11th annual international conference on Mobile systems, applications, and services,
Taipei, Taiwan, China, 25–28 June 2013; pp. 249–262.

http://dx.doi.org/10.1177/1550147718815637
http://dx.doi.org/10.3390/s17112678
http://dx.doi.org/10.1155/2016/1945695
http://dx.doi.org/10.3390/rs11030294
http://dx.doi.org/10.3390/rs11050566
http://dx.doi.org/10.1177/1550147718758263
http://dx.doi.org/10.3390/s18103317
http://www.ncbi.nlm.nih.gov/pubmed/30282938

Remote Sens. 2019, 11, 1293 25 of 27

10. Ciurana, M.; Barcelo-Arroyo, F.; Izquierdo, F. A ranging method with IEEE 802.11 data frames for indoor
localization. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference(WCNC),
Kowloon, China, 11–15 March 2007; pp. 2094–2098.

11. Chintalapudi, K.; Padmanabha, I.A.; Padmanabhan, V.N. Indoor localization without the pain. In Proceedings
of the sixteenth annual international conference on Mobile computing and networking, New York, NY, USA,
20–24 September 2010; pp. 173–184.

12. Zhang, J.; Han, G.; Sun, N.; Shu, L. Path-loss-based fingerprint localization approach for location-based
services in indoor environments. IEEE Access 2017, 5, 13756–13769. [CrossRef]

13. He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons.
IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [CrossRef]

14. Ding, H.; Zheng, Z.; Zhang, Y. AP weighted multiple matching nearest neighbors approach for fingerprint-based
indoor localization. In Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning,
Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016; pp. 218–222.

15. Zayets, A.; Steinbach, E. Robust WiFi-based indoor localization using multipath component analysis. In
Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Sapporo, Japan, 18–21 September 2017; pp. 1–8.

16. Xiao, C.; Yang, D.; Chen, Z.; Tan, G. 3-D BLE Indoor Localization Based on Denoising Autoencoder.
IEEE Access 2017, 5, 12751–12760. [CrossRef]

17. Barsocchi, P.; Crivello, A.; La Rosa, D.; Palumbo, F. A multisource and multivariate dataset for indoor
localization methods based on WLAN and geo-magnetic field fingerprinting. In Proceedings of the 2016
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7
October 2016; pp. 1–8.

18. Ficco, M.; Esposito, C.; Napolitano, A. Calibrating Indoor Positioning Systemswith Low Efforts[M]. IEEE Trans.
Mob. Comput. 2014, 13, 737–751. [CrossRef]

19. Chai, X.; Yang, Q. Reducing the calibration effort for probabilistic indoor location estimation. IEEE Trans.
Mob. Comput. 2007, 6, 649–662. [CrossRef]

20. Umair, M.Y.; Ramana, K.V.; Dongkai, Y. An enhanced K-Nearest Neighbor algorithm for indoor positioning
systems in a WLAN. In Proceedings of the 2014 IEEE Computers, Communications and IT Applications
Conference, Beijing, China, 20–22 October 2014; pp. 19–23.

21. Ge, X.; Qu, Z. Optimization WIFI indoor positioning KNN algorithm location-based fingerprint.
In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science
(ICSESS), Beijing, China, 26–28 August 2016; pp. 135–137.

22. Lu, X.; Qiu, Y.; Yuan, W.; Yang, F. An improved dynamic prediction fingerprint localization algorithm based
on KNN. In Proceedings of the 2016 Sixth International Conference on Instrumentation & Measurement,
Computer, Communication and Control (IMCCC), Harbin, China, 21–23 July 2016; pp. 289–292.

23. Dakkak, M.; Daachi, B.; Nakib, A.; Siarry, P. Multi-layer perceptron neural network and nearest neighbor
approaches for indoor localization. In Proceedings of the 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 1366–1373.

24. Altay, O.; Ulas, M. Location determination by processing signal strength of Wi-Fi routers in the indoor
environment with linear discriminant classifier. In Proceedings of the 2018 6th International Symposium on
Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; pp. 1–4.

25. Zhang, S.; Guo, J.; Luo, N.; Wang, L.; Wang, W.; Wen, K. Improving Wi-Fi Fingerprint Positioning with a
Pose Recognition-Assisted SVM Algorithm. Remote Sens. 2019, 11, 652. [CrossRef]

26. Bekkali, A.; Sanson, H.; Matsumoto, M. RFID indoor positioning based on probabilistic RFID map and Kalman
Filtering. In Proceedings of the Third IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2007), White Plains, NY, USA, 8–10 October 2007; p. 21.

27. Youssef, M.; Agrawala, A. Handling samples correlation in the horus system. In Proceedings of the IEEE
INFOCOM 2004, Hong Kong, China, 7–11 March 2004; pp. 1023–1031.

28. Rizk, H.; Torki, M.; Youssef, M. CellinDeep: Robust and Accurate Cellular-based Indoor Localization via
Deep Learning. IEEE Sens. J. 2018, 19, 2305–2312. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2017.2728789
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.1109/ACCESS.2017.2720164
http://dx.doi.org/10.1109/TMC.2013.29
http://dx.doi.org/10.1109/TMC.2007.1025
http://dx.doi.org/10.3390/rs11060652
http://dx.doi.org/10.1109/JSEN.2018.2885958

Remote Sens. 2019, 11, 1293 26 of 27

29. Zhang, W.; Sengupta, R.; Fodero, J.; Li, X. DeepPositioning: Intelligent fusion of pervasive magnetic field
and Wifi fingerprinting for smartphone indoor localization via Deep Learning. In Proceedings of the 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21
December 2017; pp. 7–13.

30. Khatab, Z.E.; Hajihoseini, A.; Ghorashi, S.A. A Fingerprint Method for Indoor Localization Using Autoencoder
Based Deep Extreme Learning Machine. IEEE Sens. Lett. 2017, 2, 1–4. [CrossRef]

31. Xu, C.; Jia, Z.; Chen, P.; Wang, B. CSI-based autoencoder classification for Wi-Fi indoor localization. In
Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May
2016; pp. 6523–6528.

32. Kim, K.S.; Wang, R.; Zhong, Z.; Tan, Z.; Song, H.; Cha, J.; Lee, S. Large-scale location-aware services in access:
Hierarchical building/floor classification and location estimation using Wi-Fi fingerprinting based on deep
neural networks. In Proceedings of the 2017 International Workshop on Fiber Optics in Access Network
(FOAN), Munich, Germany, 6–8 November 2017; pp. 1–5.

33. Kim, K.S. Hybrid building/floor classification and location coordinates regression using a single-input
and multi-output deep neural network for large-scale indoor localization based on Wi-Fi fingerprinting.
In Proceedings of the 2018 Sixth International Symposium on Computing and Networking Workshops
(CANDARW), Takayama, Japan, 27–30 November 2018; pp. 196–201.

34. Nowicki, M.; Wietrzykowski, J. Low-effort place recognition with WiFi fingerprints using deep learning.
In International Conference Automation; Springer: Berlin, Germany, 2017; pp. 575–584.

35. Wang, X.; Wang, X.; Mao, S. Deep Convolutional Neural Networks for Indoor Localization with CSI Images.
IEEE Trans. Netw. Sci. Eng. 2018. [CrossRef]

36. Wang, X.; Wang, X.; Mao, S. CiFi: Deep convolutional neural networks for indoor localization with 5 GHz
Wi-Fi. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

37. Shao, W.; Luo, H.; Zhao, F.; Ma, Y.; Zhao, Z.; Crivello, A. Indoor Positioning Based on Fingerprint-Image and
Deep Learning. IEEE Access 2018, 6, 74699–74712. [CrossRef]

38. Wang, X.; Yu, Z.; Mao, S. DeepML: Deep LSTM for Indoor Localization with Smartphone Magnetic and Light
Sensors. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City,
MO, USA, 20–24 May 2018; pp. 1–8.

39. Hsieh, H.-Y.; Prakosa, S.W.; Leu, J.-S. Towards the Implementation of Recurrent Neural Network Schemes
for WiFi Fingerprint-Based Indoor Positioning. In Proceedings of the 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 74699–74712.

40. Lu, X.; Long, Y.; Zou, H.; Yu, C.; Xie, L. Robust extreme learning machine for regression problems with its
application to wifi based indoor positioning system. In Proceedings of the 2014 IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), Reims, France, 21–24 September 2014; pp. 1–6.

41. Zhou, R.; Chen, J.; Lu, X.; Wu, J. CSI fingerprinting with SVM regression to achieve device-free passive
localization. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–9.

42. Sun, W.; Xue, M.; Yu, H.; Tang, H.; Lin, A. Augmentation of Fingerprints for Indoor WiFi Localization Based
on Gaussian Process Regression. IEEE Trans. Veh. Technol. 2018, 67, 10896–10905. [CrossRef]

43. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11,
3371–3408. [CrossRef]

44. Simon, H. Neural Networks: A Comprehensive Foundation; Macmillan College Publishing Company: New York,
NY, USA, 1994; Volume 13, pp. 409–412.

45. Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and
Systems 1989, 2, 303–314. [CrossRef]

46. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th international conference on Machine learning(ICML),
Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

47. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

http://dx.doi.org/10.1109/LSENS.2017.2787651
http://dx.doi.org/10.1109/TNSE.2018.2871165
http://dx.doi.org/10.1109/ACCESS.2018.2884193
http://dx.doi.org/10.1109/TVT.2018.2870160
http://dx.doi.org/10.1111/1467-8535.00290
http://dx.doi.org/10.1007/BF02551274

Remote Sens. 2019, 11, 1293 27 of 27

48. Ioffe, S.; Christian, S. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine
Learning, Lille, France, 6–11 July 2015; pp. 1–13.

49. Diederik, P.; Kingma, J.B. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR 2015,
San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

50. Tieleman, T.; Hinton, G.E.; Srivastava, N.; Swersky, K. Lecture 6.5-rmsprop: Divide the Gradient by a
Running Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26–30.
Available online: http://www.cs.toronto.edu/~{}tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 20
December 2018).

51. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS
2017), Long Beach, CA, USA, 4–9 December 2017; pp. 1–9.

52. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’16), SanFrancisco, CA, USA,
13–17 August 2016; ACM Press: New York, NY, USA, 2016; pp. 785–794.

53. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29,
1189–1232. [CrossRef]

54. Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms; Chapman & Hall/CRC: New York, NY, USA, 2012;
Volume 8, pp. 77–79.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cs.toronto.edu/~{}tijmen/csc321/slides/lecture_slides_lec6.pdf
http://dx.doi.org/10.1214/aos/1013203451
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	System Overview
	Data Preprocessing
	Feature Extraction Based on the SDAE
	Regression Model Using MLP
	Tree-Fusion-Based Regression Model

	Experiments and Evaluation
	Datasets
	Effect of SDAE Feature Extraction
	Positioning Performance of the Proposed Algorithm
	Performance of Our Proposed Algorithm under Different Parameters
	The Performance of Our Proposed Algorithm under Different Sample Densities
	The Positioning Performance on Three Datasets

	Performance Comparison with the Tree-Fusion-Based Regression Model
	Performance Comparison with Related Methods
	Performance Comparison with Khatab’s Method
	Performance Comparison with Xu’s Method

	Calculation Complexity

	Conclusions
	References

